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Abstract

The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with
a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as
1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated
with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and
the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme.
Both the numerical and computational efficiency of the scheme with the different dissipation operators are
discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D)
compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil
at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence
are investigated for Reynolds numbers between 5.7 x 10 and 100.0 x 10%. Results are also obtained for a
transonic wing flow. For both 2-D and 3-D problems, it is demonstrated that the computational time of a
well-tuned standard RK scheme can be reduced at least a factor of four.

Introduction

The field of computational fluid dynamics has expanded rapidly over the last 25 to 30 years, and fluid
dynamics problems with increasing complexity are being solved. While relatively good computational ef-
ficiency has been attained for the Euler equations, there are still significant challenges remaining for the
Navier-Stokes equations. As a minimum near term objective one should seek comparable efficiency to that
for the Euler equations. A major obstacle in achieving such a goal is the geometrical stiffness of the discrete
Navier-Stokes equations caused by the requirement to adequately resolve viscous boundary layers with an
economical distribution of grid points. In addition, we are also confronted with the dilemma of how to
improve computational efficiency and at the same time minimize computer storage required, especially in
3-D simulations.

One powerful solution strategy for solving large scale problems in fluid dynamics is multigrid.® The
multigrid approach offers the possibility of solving discrete partial differential equations with grid independent
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convergence rates. Although most of the theory developed for multigrid is for elliptic problems, effective
multigrid solvers® 5 have been constructed for the Euler equations, which are hyperbolic in time. In fact,
Jameson and Caughey® demonstrated that an Euler solution for airfoil flows could be obtained in 3-5
multigrid cycles (converged to the level of the truncation error). Such multigrid methods depend on two
elements to accelerate convergence. One element is the smoothing of high frequency components of the
solution error. The choice of an iterative scheme for smoothing is crucial, since multigrid requires a smooth
solution error to approximate a fine grid problem on a coarser grid. Moreover, it is the coarser grids that are
responsible for removing the low-frequency error modes that cause slow asymptotic convergence of iterative
schemes. The second element for accelerating convergence is the expulsion of errors on the coarse grids,
which occurs faster due to the larger time steps permitted on coarser grids.

Many multigrid methods that are currently used for solving the Euler and Navier-Stokes equations
rely upon an explicit multistage time stepping scheme for a smoother. Frequently this explicit scheme is
augmented with implicit residual smoothing” to extend stability, allowing the use of larger time steps. This
combination proved to be quite effective in solving inviscid flow problems. In addition, such schemes have
been applied effectively to a wide variety of viscous flow problems in both two and three dimensions.??
However, convergence rates exceeding 0.99 are encountered when solving turbulent viscous flows.

For viscous flow problems the anisotropy due to grid cell aspect ratio causes a low effectiveness in high-
frequency damping in certain coordinate directions. There are two principal techniques that can reduce
or even eliminate the dramatic slowdown that can occur due to such geometrical stiffness. One technique
involves semi-coarsening, where a family of coarse grids is generated by coarsening in one direction at a
time rather than all directions. Mulder!'® introduced this type of coarsening in order to treat the flow
alignment problem (i.e., vanishing damping in a coordinate direction normal to the flow) and also the
cell aspect ratio problem. The primary difficulties with such an approach are programming complexity
and increased operation count, especially in three dimensions. In order to reduce the operation count a
directional coarsening was considered.!!!2 For example, in a 2-D flow the grid was coarsened only in the
direction normal to a solid boundary (sometimes called j-line coarsening), resulting in a reduced cell aspect
ratio and improved smoothing.

The second technique for reducing geometrical stiffness is to apply an implicit method in the direction of
strongest coupling. In two dimensions appropriate line relaxation allows the removal of the adverse effects
on convergence due to aspect ratio. With this in mind efforts were made to improve the performance of
the implicit residual smoothing being used in conjunction with Runge-Kutta schemes. As an initial step the
simple diffusion operator in this implicit process was replaced with a convection operator that includes flux
Jacobians.'® Since approximate factorization was used to facilitate the inversion of the implicit operator,
there was still a strong limitation on the actual time step allowed due to the factorization error. To reduce
the complexity of the operator, as well as to eliminate the factorization error, a directional smoothing was
developed,'* where smoothing was performed in only the wall normal direction (i.e., j-line smoothing). With
this approach the time step still was limited due to the other coordinate directions. These directional
coarsening and smoothing methods have not been widely adopted due to their programming complexity and
limited applicability in general block-structured grid formulations. However, using unstructured grids where
there is a flexible database structure, Mavriplis'® combined j-line coarsening and j-line smoothing along with
Jacobi preconditioning to demonstrate cell aspect ratio independent convergence rates for two dimensional,
turbulent, viscous airfoil flow computations.

The directional methods just described can significantly mitigate, and when combined appropriately
even eliminate, the effects of cell aspect ratio in two dimensions; they are considerably less effective when
applied to general 3-D problems.'® Furthermore, there is still a significant Courant-Friedrichs-Lewy (CFL)
restriction (generally less than 10), which reflects the explicit nature of the foundation Runge-Kutta (RK)
scheme. In order to extend the generality of the implicit procedure and significantly augment the stability of
bound of the RK scheme, Rossow!” introduced a fully implicit operator into the implicit residual smoothing
procedure. This RK/implicit scheme requires computation of the flux Jacobians that appear in the flow
equations. To reduce storage Rossow expressed the Jacobians in terms of the Mach number and computed
them with each application of the residual smoothing. The implicit operator was approximately inverted
with a symmetric Gauss-Seidel iteration. The Roe scheme was used to approximate the dissipation in the
implicit operator and the residual function. With the RK/implicit scheme CFL numbers exceeding 100 were
attained in turbulent airfoil flow calculations.

In the present work we evaluate the RK/implicit scheme and extend it to three dimensions. Initially,
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the flexibility of the scheme is investigated by considering the effect of choosing an alternative numerical
dissipation operator for the residual function. As a result, we demonstrate that the preconditioned RK
scheme can be implemented with similar benefits in a variety of existing multigrid methods with a multistage
time stepping scheme as a smoother. The RK/implicit scheme is applied to several airfoil flows, including a
transonic case with strong shock/boundary-layer interaction. In addition, the performance of the scheme for
Reynolds numbers between 5.7 x 108 and 100 x 10° is also considered. At the highest Reynolds number the
maximum grid cell aspect ratio exceeds 50,000. To assess the scheme in three dimensions viscous transonic
flow over the ONERA M6 wing is computed. For all calculations the convergence behavior and computational
effort with the scheme are discussed.

Governing Equations

In this paper we consider both the 2-D and 3-D Navier-Stokes equations for compressible flow. Assuming
a volume fixed in space and time, the integral form of these equations can be written as

[ 2 [[ #onis - 0

where the symbol 0 indicates partial differentiation, W is the state vector of conservative variables, F is the
flux density tensor, and V, S, and n denote the volume, area, and the outward facing normal of the control
volume. One can split the flux density tensor into a convective contribution F. and a viscous contribution
Fu, which are given by

rq 0
puq + pe; T ey
Fe=| pvgq+pe, |, Fy= T ey (2)
pwq + pe, T-€e,
pHq T-9q—-Q

where q is the velocity vector with Cartesian components (u,v,w), and the unit vectors (e,,e,,e,) are
associated with the Cartesian coordinates (z,y,z). The variables p, p, H represent density, pressure, and
total specific enthalpy, respectively. The stress tensor 7 and the heat flux vector Q are given by

Tex Tyx Tzx (9T/833
T=| Tay Tyy Tay |> Q=Fk| 0T/0y (3)
Tez Tyz Tzz 3T/8z

with k& denoting the coefficient of thermal conductivity and T representing the temperature.
In order to close the the system given by Eq. (1) we use the equation of state

p = pRT (4)

where R is the specific gas constant.

Numerical Algorithms

In this section we first briefly describe the standard solution scheme for solving the compressible Navier-
Stokes equations. Variations of this scheme are considered based on the choice of the numerical dissipation
scheme. A principal component of the standard scheme is implicit residual smoothing, which provides
additional support for the basic iterative scheme, and thus, allows extended stability. A modification of this
component of the standard scheme is the basis for an alternative scheme that allows dramatically improved
convergence rates. This alternative formulation is discussed in the second part of this section.

RK/Standard Scheme

There are three elements in the standard solution scheme: a multistage time-stepping scheme, implicit resid-
ual smoothing and multigrid acceleration. Here, as in many existing computer codes for flow computations,
we consider a five stage Runge-Kutta (RK) scheme. This scheme can be written as
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WO =wn
WO = WO _ o AtR(W©®)

WO = WO _ g AtR(W®)
wntl — W(5),

where R is the vector residual function, At is the time step, the superscript n denotes time level, the
superscript enclosed in parentheses indicates RK stage, and the RK coefficients are given by

[a, -, a5] = [0.25, 0.1667, 0.375, 0.5, 1.0].

For convenience we have omitted the indices referring to the grid points. The residual function R is defined
by

q q

R=R(W®)= % LWD £ "y LW 3 " LW (6)
r=0 r=0

and the operators L., L,, and L, relate to the convection, viscous, and numerical dissipation terms. Terms

in the governing equations are approximated with central differencing. The coefficients v, are the weights

of the viscous and dissipation terms on each stage (see Ref. 19), which are taken to be [1, 0, 0.56, 0, 0.44].

Such a scheme is frequently designated as a (5, 3) scheme, since the dissipation terms are evaluated only on

three stages.

To extend the stability of the RK scheme we apply implicit residual smoothing, which is defined by

(1= Bede®)(1 = 5,8,°)(1 = Bcd*) R = R, (7)
where 62 is the standard central difference operator for a diffusion term, and (&,n, () are the coordinates
of a uniformly spaced computational domain. The parameter 3 is a local function of the grid aspect ratio.
There are several ways to define this function (for examples see Martinelli,'® Swanson and Turkel'?). After
inverting the product operator in Eq. 7 we substitute R for R in Eq. 5. For the inversion tridiagonal solves
are performed in each coordinate direction.

One can view the implicit residual smoothing as a preconditioner. The multistage scheme can be viewed
as a smoother for the multigrid method. As a smoother the scheme should be designed so that it has good
high frequency damping properties. A Fourier analysis shows that the five stage RK scheme alone smooths
effectively the high frequency components of the solution error. However, with the addition of implicit
residual smoothing, there is significant deterioration in the smoothing behavior of the RK scheme.'® In
evaluating the resulting scheme one must also consider the improved stability of the scheme, which allows
faster error propagation in the course grid process of multigrid.

In the standard scheme the full approximation scheme (FAS) is applied to the system of equations.
Consider a fine grid and a sequence of successively coarser grids generated by eliminating every other mesh
line in each coordinate direction. Let the index k denote the k-th grid. Also, let I ,’:_1 be the fine-to-coarse
grid restriction operator and I¥ | be the coarse-to-fine grid prolongation operator. If W, is the current

solution on grid &, the residual on this grid is Ry = fx, — L W .. This leads to the coarse-grid equation

LioiWio1 =1 = —I "Wy + Loy (I77TWy) . (8)
After solving the coarse-grid equation for Wy_1, the fine-grid solution is corrected by
Wy — Wi+ I (Wit — I "W). (9)

Equation (8) is solved by applying the same relaxation procedure that is used to solve the fine-grid equation.
Multigrid is applied recursively to the coarse-grid equation.

The restriction operators for transferring the residual and solution values from a fine grid to a coarse
grid are the ones proposed by Jameson® for a cell-centered, finite-volume scheme. The residual and solution
restriction operators are defined by a summing of the residuals and by a volume weighting of the solution
values over the fine-grid cells that comprise a coarse-grid cell. Coarse-grid corrections are transferred with a
bilinear interpolation operator. A conventional V- or W-cycle is used to execute the multigrid process.
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Discretization and Dissipation

Using the finite volume technique for spatial discretization, Eq. (1) can be written in semidiscrete form as

oW 1
— F,_S=0 10
TRy Z n : (10)
all faces
where F,, is the normal flux density vector at the cell face, now V represents the volume of a computational
cell, and S is the area of a cell face. The convective part of the flux density vector F. can be expressed as

1
FC:E(FL+FR)+D, (11)

where F¥ and F are the left and right states of the inviscid flux density vector normal to the cell interface,
and D is the numerical dissipation. This particular form results in a central difference approximation plus
numerical dissipation. A central differencing is used to approximate the physical diffusion terms.

In the present work we consider three different forms for the dissipation. One form comes from Roe’s
flux difference split scheme,?! and it can be written as

D= AW~ W) (12
= —AlAW, (13)

where A is the flux Jacobian at a cell face. For this form we use |A|AW expressed in terms of the cell
interface Mach number My, according to Rossow.?? The Mach number M is given by

Mo = min(|M], 1) sign (M). (14)

The resulting form for |A|AW is given in the Appendix. For second order accuracy the symmetric limited
positive (SLIP) scheme of Jameson?? is used following the implementation of Swanson, Radespiel, and
Turkel.?*

Another dissipation formulation being considered is closely related to that of the Roe scheme. It is
generally called matrix dissipation (see Swanson and Turkel®). There are two principal differences between
the Roe scheme dissipation and the matrix dissipation. First, a switching function based on pressure is used
to change from third order dissipation (second order scheme) and first order dissipation (e.g., first order
scheme in neighborhood of shock). Second, there are lower bounds imposed on both the convective and
acoustic eigenvalues of the Jacobian matrix.

The third dissipation scheme is the convective upwind and split pressure (CUSP) scheme. Jameson
designed this scheme such that it can support single interior point discrete shock waves. For this scheme the
dissipation flux can be written as

23

D= —%mw - %6AF, (15)

with 7 and 3 being parameters determined such that single interior point shocks are permitted. Discussion
and analysis of the CUSP scheme are given in Ref. 24. We note that these are all upwind type schemes. The
original JST algorithm?® used a scalar dissipation which behaves more as a central difference scheme.

RK /Implicit Scheme
Define the update for the qth stage of a RK scheme as

W@ =wO 4 sw@ (16)
where At
sW@ = w@ — w©O) — _aq7£ w1 = (WD) (17)

and £ is the complete difference operator given in Eq. (6). To extend the support of the difference scheme
we consider implicit residual smoothing. Then, we have the following:
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Li oW =W, (18)
where £; is an implicit operator. By approximately inverting the operator £; we obtain

W = _aq%P.cW(q*l), (19)

where P is a preconditioner defined by the approximate inverse EN; ! The change 6W is used to replace the
explicit update appearing in Eq. (16). Thus each stage in the RK scheme is preconditioned by an implicit
operator.

Unlike the standard scheme, which uses a diffusion operator for £;, we consider a fully implicit operator.
A first order upwind approximation based on the Roe Scheme is used for the spatial derivatives in the implicit
operator. To derive this operator one treats the spatial discretization terms in Eq. (10) implicitly and applies
linearization. For a detailed derivation see Rossow.!” Substituting for the implicit operator in Eq. (18), we
obtain for the gth stage of the RK scheme

At — At _
_ (@-1) g — Rl
I+ > Anslaw_ a5 > B g=R0Y, (20)

all faces all faces

where the matrix A,, is the flux Jacobian associated with the normal flux density vector F,, at a cell face,
and R(?~1 represents the residual function for the (¢ — 1)th stage. The matrix A,, can be decomposed into
Al and A, , which are defined by

1 _ 1
A:zr = 5 (An + |An|)a An = 5 (An - |An|) (21)

If we substitute for A,, in Eq. (20) using the definitions of Eq. (21), then (including the grid indices for the
purpose of discussion) the implicit scheme can be written as

V 1,5,k

all faces

42t S Af s] SW,,x =R % S A TWap S, (22)
all faces

where the indices (4, j, k) indicate the cell of interest, and NB refers to all the direct neighbors of the cell being
considered. As discussed by Rossow,!'” the quantity A, dW represents the flux density change associated
with waves having a negative wave speed (i.e., waves that enter the cell (4,7, k) from outside). Only the
neighbor cells NB can contribute to these changes in flux density. Similarly, the quantity AW represents
flux density changes associated with positive wave speeds (i.e., waves that leave the cell (4, j, k)). These flux
density changes are determined only by information from within the cell (4, j, k).

To solve Eq. (22) for the changes in conservative variables §W ; &, the 5 x 5 matrix (a 4 x 4 matrix in two
dimensions) on the left-hand side of Eq. (22) must be inverted. It is sufficient to approximate the inverse
of the implicit operator. An adequate approximate inverse is obtained with three symmetric Gauss-Seidel
sweeps. Alternative iterative methods such as red-black Gauss-Seidel could also be used (see Ref. 26), which
would allow the RK/implicit scheme to be applied on unstructured grids.

To efficiently evaluate the Jacobian matrices At and A, we rely upon their forms when expressed in
terms of the cell interface Mach number M. For simplification, we transform Eq. (20) to the set of primitive
variables [p p u v w]?. Thus,

— ou At
5U = —ﬁaqv Z Fglq_l) S, (23)

all faces

At
I+ > P,S

all faces

where the matrix P,,, which is the analog of the normal flux Jacobian expressed in primitive variables, is
given by
ou oW  0U oW
=—A,—=-—(ATH+A)=——=P' +P_. 24
aw A ou ~ ow (A T AL G = Pu Py 24)
Note that the Jacobian OU/OW on the right-hand side of Eq. (23) must multiply the conservative flux
balance in order to ensure conservation. Using the definitions of Eq. (21) and the dissipation matrix in
terms of the Mach number defined in the Appendix, one can determine the matrices P;" and P, which are

P,
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also given in the Appendix. The resulting matrices can easily be recomputed, only requiring storage for the
normal velocity magnitude and the Mach number M. The contributions of the viscous flux Jacobians can
be included in a straightforward manner using the definitions presented in Ref. 27 for primitive variables.

Due to the upwind approximation used for the implicit operator, the coefficients for the RK scheme are
also based on an upwind scheme. Unless indicated otherwise, a (5,5) RK scheme (numerical dissipation
evaluated on all stages) is employed for all dissipation formulations considered for the residual function, and
the RK coefficients are given by

[ar, -, a5] = [0.0695, 0.1602, 0.2898, 0.5060, 1.0].

These coeflicients were obtained from Ref. 31.

A summary of the implementation of the RK/implicit is as follows. In the first step, the explicitly
evaluated residuals for a RK stage are transformed to residuals in primitive variables to form the right-hand
side of Eq. (23). Next, we approximately invert the implicit operator with symmetric Gauss-Seidel. This
approximate inversion yields new residuals in primitive variables, which must be transformed to conservative
variables. As the final step, the new residuals (i.e., new changes) are used in the RK stage to update the
conservative variables.

Numerical Results

The RK/implicit scheme described previously was used to compute turbulent, viscous flow over the RAE
2822 airfoil and the ONERA M6 wing. The effects of turbulence were included by applying the Baldwin-
Lomax model.3? In this section the airfoil solutions are compared with the experimental data of Cook,
McDonald and Firmin.?® The cases considered are as follows: Case 1, Case 9, Case 10. The flow conditions
for these cases are given in Table 1. For Case 1 the flow is primarily subsonic with a relatively small region
of supersonic flow. With Case 9, one of the most frequently used cases in evaluating computational methods,
there is a fairly strong shock occurring on the upper surface of the airfoil. For Case 10 a stronger shock
occurs on the upper surface, resulting in substantial separation behind the shock that nearly merges with the
trailing edge separation. This case often causes numerical oscillations that result in a significant deterioration
in convergence rate. For the wing flow the calculated solution is compared with the experimental data of
Schmitt and Charpin.?? This particular case is a supercritical flow, and the free-stream Mach number M
is 0.84, the angle of attack « is 3.06 degrees, and the Reynolds number Re is 11.7 x 10°. For this case a A
shock occurs on the upper surface of the wing, due to the double shock at the inboard stations merging with
a much stronger single shock at the outboard stations.

For computing solutions to the three RAE 2822 cases a structured C-type mesh with 64 cells in the
normal direction and 320 cells around the airfoil (256 cells on the airfoil) was used. The normal spacing of
this mesh at the airfoil surface is 1.0 x 10~?, and the maximum cell aspect ratio occurring at the surface is
2,413. In order to investigate the performance of the RK/implicit scheme for a range of Reynolds numbers
(between 5.7 x 10% and 100.0 x 10°) a family of C-type meshes was generated.?’ These meshes are adapted
to the Reynolds number of the flow, and the resulting cell aspect ratios vary from about 3000 to over 50,000.
Each mesh has 368 cells around the airfoil (312 cells on the airfoil) and 88 cells normal to the airfoil. For
these meshes the normal spacing varies from 3.7 x 1075 to 2.3 x 10~7. For the multigrid algorithm coarse
meshes were created by eliminating every other mesh line in each coordinate direction (i.e., full coarsening).
A four-level W-cycle (2-D) and a three-level V-cycle (3-D) were employed to execute the multigrid. All 2-D
calculations were performed on a Linux workstation with a pentium 4 and a dual 3.0 GHz processor.

In all the 2-D applications being considered the same boundary conditions were imposed. On the surface
the no-slip condition was applied. At the outer boundary Riemann invariants were used to apply the
boundary conditions. A far-field vortex effect was included to specify the velocity for an inflow condition at
the outer boundary. A detailed discussion of the boundary conditions is given in Ref. 19. For the 3-D case
the boundary conditions were essentially the same except the far-field vortex effect was not included. In
all the calculations that start on the desired solution grid, the initial solution was given as the free-stream
conditions. When a full multigrid process was applied, the initial solution on a given level of refinement was
obtained from a coarser level.
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Two-Dimensional Results

In Figs. 1-3 the surface pressure distributions obtained for the three test cases are displayed. The computed
lift and drag coeflicients are presented in Table 2. These results were calculated using the Roe scheme dissi-
pation for both the implicit operator and the residual function (right-hand side). The pressure distributions
of Case 1 and Case 9 agree fairly well with the experimental data. For Case 10 the well-known inadequacy
of the Baldwin-Lomax turbulence model in predicting the data is evident. Solutions for these cases obtained
using the matrix dissipation formulation and also the HCUSP scheme (a form of the CUSP scheme) for
evaluating the residual function are similar to those shown (for a direct comparison see Ref. 24). In the
subsequent discussion on the RAE cases we focus on the performance of the RK/implicit scheme with the
three dissipation forms.

Figures 4-6 compare the convergence histories of the standard RK and RK/implicit schemes for the
Roe scheme dissipation. In each case the residuals are normalized by the corresponding residual of the
first iteration. Throughout the paper the number after RK indicates the number of stages. These histories
indicate the behavior of the Ly norm of the residual of the continuity equation with multigrid cycles. Unless
indicated otherwise, the calculations were started on the finest grid for the 2-D results. For the RK/standard
scheme the numerical dissipation operator for the residual function is defined by matrix dissipation, and for
the RK/implicit scheme the dissipation operator is based on the Roe Scheme. In the calculations with the
RK/implicit scheme the CFL number is 16 during the first 8 multigrid cycles; and then, it is increased to
160. From the figures one can see that the RK/implicit scheme requires more than a factor of 13 fewer
multigrid cycles than the standard scheme to reduce the residual 13 orders of magnitude. The convergence
rates for the standard scheme exceed 0.98 (see Tables 3-5). Here, and subsequently, convergence rate means
average rate of reduction of the residual. Even for the more difficult Case 10 the convergence rate for the
RK/implicit scheme is below 0.83. With respect to computational effort, the RK/implicit scheme is about
2 times faster than the standard scheme.

In Figs. 7-8 the convergence histories for the RK/implicit scheme with matrix and HCUSP dissipation
are shown for all the cases. For these forms of dissipation the cycle reduction factor is between 11 and 12, and
the convergence rates are similar. As indicated in Tables 3-5, with the two dissipation forms the RK /implicit
is roughly between 1.6 and 1.9 times faster in computer time than the standard scheme. The computational
savings with the Roe scheme dissipation is only somewhat better than it is with the matrix dissipation.
This is because the matrix dissipation does not have the additional expense of evaluating a limiter for each
characteristic field. Nevertheless, the convergence rates exhibited with the RK/implicit scheme using the
dissipation of the Roe scheme are noticeably faster.

The results presented thus far were obtained on a grid with moderately high aspect ratio cells. In order
to investigate how the RK/implicit scheme alleviates stiffness associated with high aspect ratio cells, we
now consider calculations that were performed when the Reynolds number was varied by more than an
order of magnitude. The computational meshes, which were described previously, are the same as those
used by Fafibender3® to examine the effects of Reynolds number variation on turbulence modeling. To avoid
difficulties, such as convergence stall, that can occur due to limiter functions, the flow conditions (M,
«) for an essentially subsonic case (Case 1) were used for the calculations. In Figs. 9 and 10 convergence
histories are presented for Re = 5.7 x 105 to Re = 100.0 x 10%. The maximum surface grid cell aspect ratio
varies from 3,949 to 50,260. From the dashed line convergence curves in Fig. 9 we see that the number of
multigrid cycles only increases by a factor less than 2.5 over the Re range. In addition, we see the improved
convergence indicated by the solid lines when the low-speed preconditioning speed of sound (denoted by ¢’)
is introduced into the numerical dissipation of the implicit operator. If the same ¢’ is used in determining the
dissipation in the residual function, then the scheme with Roe dissipation can be applied with comparable
efficiency to low Mach number (M < 0.1) flows. For further discussion of this modification (i.e., scaling)
of the dissipation see Appendix and Ref. 33. This scaling of the dissipation allowed the CFL number to be
increased from 160 to 1000. The convergence rates and computing times for these calculations are displayed
in Tables 6—9. Results annotated with prec indicate that the numerical dissipation is scaled appropriately
by ¢’. For the higher Re values the convergence rate with the standard scheme exceeds 0.995. Using the
Roe scheme dissipation, the RK/implicit scheme converges at a rates between 0.88 and 0.9 for the higher Re
values (i.e., at higher cell aspect ratios). The corresponding reduction in computational expense is about a
factor of 4 relative to the standard scheme.

Before proceeding we need to discuss further the use of ¢’ in the implicit operator, which allowed a much
larger CFL number. For most of the present work we could not explain why such a modification in the
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implicit operator allowed an increase in the CFL number, especially since the ¢’ and the standard speed of
sound are nearly the same for transonic flows. Thus, there should not have been any special benefit from
introducing ¢’ in the implicit operator. Only more recently, through the work of Rossow,?? did we discover
that this behavior is a consequence of using a different initialization for calculating the approximate inverse
of the implicit operator when the ¢’ scaling is used. In particular, we set the initial guess in updating
the residual function to zero when using this scaling. Otherwise, we initialized with the explicit residual
function. If, instead, we always apply the zero initialization, then the scheme without ¢’ works at CFL =
1000. However, by using the formulation with ¢/, and modifying the numerical dissipation of the explicit
(right-hand side) residual function of Eq. (22) in the same manner, we derive the additional benefit of being
able to also compute low-speed flows accurately and efficiently when Roe dissipation is used.3? If other forms
of dissipation are used, appropriate modifications of the right-hand side should be possible, allowing those
forms to also be used for efficiently computing low-speed flows.

There are several alternative ways to make the gains in computational savings significantly greater. One
approach is to reduce the number of stages in the RK scheme. With such an approach one would expect
almost no loss in numerical efficiency (even though reducing the number of stages reduces the allowable
time step), since it should be possible to use a CFL number of 1000. Calculations were performed for
Cases 1, 9, and 10 with the RK/implicit scheme using 3 stages, CFL = 1000, and the ¢’ scaling of the
dissipation. The RK coefficients for the 3-stage scheme are [0.15, 0.40, 1.0]. Solutions were determined
with the same (moderately high aspect ratio) 320 x 64 grid used for the results presented in Figs. 4-6.
Figures 11 and 12 show the convergence histories with Roe and matrix dissipation, respectively. As indicated
in Tables 3-9 the convergence rates with the 5-stage and 3-stage schemes are nearly the same. In addition, the
RK/implicit scheme with Roe and matrix dissipation is about 4-6.5 and 3.5-5.5 times faster, respectively,
(depending on the Reynolds number) than the RK/standard scheme. Further savings in computational
expense are anticipated by reducing the number of RK stage evaluations of the numerical dissipation and/or
by reducing the number of symmetric G-S sweeps for approximately inverting the implicit operator. For
example, Rossow?3 demonstrates that even with the convergence rate penalty produced by performing only
one G-S sweep rather than three sweeps there is more than a 25% reduction in the computational time.

Convergence of the solution (to the approximate level of the truncation error) can be accelerated by
implementing full multigrid (FMG). The residual and lift coefficient convergence histories for the 3-stage
RK/implicit scheme with Roe dissipation and FMG are shown in Figs. 13 and 14. The calculation was done
for Case 9 with the 320 x 64 grid using 4 levels of refinement, which contain 1, 2, 3, and 4 grids. After
performing just 10 iterations on the single grid, multigrid was executed on each successive level for 100
cycles. This procedure allows the CFL number to be 1000 for levels 2—4. With 4 cycles on the final level
the lift coefficent is obtained to within 1% of the converged value. Only 10 cycles are required to get the lift
and drag coefficients to 3 significant figures. As seen in Figs. 15 and 16 the surface pressure and skin-friction
distributions are nearly identical to the corresponding distributions at 100 cycles.

Three-Dimensional Results

For the 3-D computation a C-O mesh topology was used. Computations were performed on a single block
mesh containing a total of 192x 48 x 32 cells (streamwise, normal, and spanwise directions). Matrix dissipation
was used with the RK/implicit schemes. In Figs. 17 and 18 the computed pressure distributions at four
spanwise locations are compared with experimental data. There is fairly good agreement with the data using
the Baldwin-Lomax turbulence model. Figs. 19 and 20 show the residual and lift coefficient (C,) histories for
calculations with the standard and both 5-stage and 3-stage RK/implicit schemes. All results were obtained
without FMG. There is a dramatic improvement in the residual convergence using the RK/implicit scheme.
For the RK5/implicit and RK3/implicit schemes the residual is reduced 12 orders of magnitude in 284 and
280 cycles, respectively (convergence rate of about 0.92), whereas the standard scheme requires 5,448 cycles
(convergence rate of 0.995). With the RK3/implicit scheme the lift and drag coefficients are converged to
3 significant digits in 30 cycles, but this can be significantly improved by applying FMG. The resulting
computational savings for the 5-stage RK/implicit scheme is a factor of 2.5, and for the 3-stage scheme it is
a factor of 4.2.

Solutions were also obtained with FMG, which contained 3 levels of refinement, with the first level being
a single grid. On each level 100 iterations (or cycles) were done. Figures 21 and 22 show the residual and lift
coefficient histories. The RK5/standard scheme requires 324 cycles on the fine grid to reduce the residual 4
orders of magnitude, and 607 cycles for a 5 orders reduction. With the RK/implicit schemes the residual is
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decreased 4 orders in only 22 cycles and 5 orders in 37 cycles. In addition, both the lift and drag coefficients
are converged to within 0.1% in just 20 cycles on the fine grid.

Concluding Remarks

A Runge-Kutta scheme preconditioned with a fully implicit operator has been implemented as a smoother
for multigrid. The implicit operator allows the problem of geometric stiffness to be addressed and extends
the stability limit of the RK scheme. By appropriate initialization of the Gauss-Seidel iterative process for
approximating the inverse of the implicit operator, the allowable CFL number has been increased to 1000.
This RK/implicit scheme has been applied with different dissipation operators, such as the Roe scheme,
matrix formulation, and the CUSP scheme. The amenability of the scheme to different forms of dissipation
is quite important since many existing computer codes for solving the Euler and Navier-Stokes equations
use RK schemes accelerated by implicit residual smoothing and multigrid. The RK/implicit scheme can be
easily implemented in these codes by replacing the scalar implicit operator with the fully implicit operator.

The performance of the RK/implicit scheme with different numerical dissipation formulations has been
evaluated by solving the 2-D, Reynolds-Averaged Navier-Stokes (RANS) equations for three AGARD tur-
bulent airfoil flow test cases, including a difficult transonic case with significant separation. Both 5-stage
and 3-stage schemes have been considered. In addition, the effect of mesh aspect ratio on convergence has
been investigated. With the Roe dissipation the 3-stage RK/implicit scheme is 4-6.5 times faster (depend-
ing on the Reynolds number) than a RK/standard scheme, which is a well tuned 5-stage RK scheme with
multigrid and implicit residual smoothing. It should be emphasized that the RK/standard scheme has only
3 evaluations of the dissipation, all the characteristic fields are limited in the same way, and the residual
smoothing is a scalar procedure. The RK3/implicit scheme with matrix dissipation is 3.5-5.5 times faster
than the RK5/standard scheme.

The RK/implicit scheme has also been used to solve the 3-D RANS equations for turbulent transonic
flow over the ONERA M6 wing. Using matrix dissipation the RK3/implicit scheme is 4.2 times faster than
the RK5/standard scheme.

At this point, in an effort to minimize the additional storage for the flux Jacobians of the RK/implicit
scheme, especially for 3-D applications, we have not attempted to reduce the computational time at the
expense of additional storage.
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Appendix

The flux difference splitting dissipation expressed in terms of Mach number can be written as

AF, Ap
AFpE Ap
AF,, |=8D| Au
AF,, Av
AF 5 Aw

with A indicating the difference between left and right states, and

[ Janl clay p Mon p Mon, p Mon.. |
3@l s5lanl + e Har planl + gnpcarna  plan| + anpcainy - plan| + gnpcarn.
+QnMO +pHM0nm +PHM0nu +pHM0nz
ulgn] ¢ luar + Mong  plan| + puMon, puMon, puMon.
D= +pcaingng +pcaingny +pcaingn, )
V|G| ctvay + Mon,, pvMon, plan| + pvMon, pvMon.,
+pcainyng +pcainyny +pcainyn,
wlgn| ¢ tway + Mon., pwMon, pwMon, plan| + pwMon.
L +pcainng +pca1nzny +pcain;n, _

where ~ is the specific heat ratio, H is the specific total enthalpy, ¢ is the speed of sound, and a3 = 1 —|Mp.
The normal velocity ¢, = nzu+nyv+n,w, where the (ng, n,, n.) are the components of the outward facing
unit normal at a cell face. The cell face normal is scaled by 3.

The positive and negative contributions to the matrix P are given by

1

0 ca pasng pazny pasn,
0 hclar qpasny, ypasny, pasny
PTJ’L_ = (qn + |qn|)I + 0 p71a3nm Ca1NxNy  CA1NZTNy  CA1NLT, ’
0 p_lagny CAINYNy  CaNyNy  CAINYN,
0 plasn, cainng Cainzny Ccainn,
0 —c'ag P a2y P azmny P asN,
0 —hc g Yp agny Y Gany VP aany
P; = (qn - |q7l|)I + 0 p71a2nm —Ca1NgNge —CA1NgNy  —CA1NZN, ’
0 p_lagny —CaiNyNg —CaiMyNy —CainNyn,
0 plasn, —cain.,ng —c ainny —Cainzn,

where ao = 1 — My, and a3 = 1 + My. When scaling the numerical dissipation for low-speed flows, the
speed of sound ¢ appearing in the matrices P;; and P,, is replaced by the low-speed preconditioning speed

of sound C/, where
/
C =4/ Oézq2 + M12AC2,

with ¢ denoting the flow speed, and M, representing the reference Mach number, which is defined as
1 2 2
a:§(1—Mf), M? = min [max (%,k%), 1].

The parameter k is taken to be unity, and the subscript co denotes free-stream condition.
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Cases M a (deg.) Re,. Ty /C

Case 1 0.676 1.93 5.7 x 106 0.11
Case 9 0.730 2.79 6.5 x 106 0.03
Case 10 0.750 2.81 6.2 x 106 0.03

Table 1. Free-stream conditions for RAE 2822 airfoil.

Cases C Cy (Ca)p (Ca)w

Case 1 0.6101 0.008315 0.002528 0.005787
Case 9 0.8530 0.01783 0.01232 0.005506
Case 10 0.8480 0.02885 0.02342 0.005409

Table 2. Computed lift and drag coefficients for RAE 2822 airfoil. Numerical dissipation from Roe scheme.
Weak grid clustering in neighborhood of shock wave.

Scheme Dissipation | CPU Time (sec.) | MG Cycles | Reduction/Cycle
RK5/standard matrix 481 1792 0.983
RKS5/implicit Roe 232 128 0.791

RKS5/implicit (prec) Roe 180 98 0.736
RK3/implicit Roe 147 130 0.794
RK3/implicit (prec) Roe 111 97 0.733
RK5/implicit matrix 271 165 0.834
RKS5/implicit (prec) matrix 204 124 0.785
RK3/implicit matrix 179 175 0.843
RK3/implicit (prec) matrix 136 132 0.797
RKS5/implicit HCUSP 299 167 0.836

Table 3. Computational effort required for Case 1, 320 x 64 grid.
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Scheme Dissipation | CPU Time (sec.) | MG Cycles | Reduction/Cycle
RKS5/standard matrix 509 1891 0.984
RK5 /implicit Roe 257 142 0.810
RK5/implicit (prec) Roe 201 110 0.761
RK3/implicit Roe 161 141 0.809
RK3/implicit (prec) Roe 126 110 0.761
RK5 /implicit matrix 286 175 0.843
RK5/implicit (prec) matrix 210 128 0.791
RK3/implicit matrix 182 178 0.845
RK3/implicit (prec) matrix 144 140 0.807
RK5 /implicit HCUSP 312 174 0.842
Table 4. Computational effort required for Case 9, 320 x 64 grid.
Scheme Dissipation | CPU Time (sec.) | MG Cycles | Reduction/Cycle
RKS5/standard matrix 680 2519 0.988
RK5 /implicit Roe 336 186 0.851
RK5/implicit (prec) Roe 260 143 0.811
RK3/implicit Roe 209 184 0.850
RK3/implicit (prec) Roe 161 141 0.808
RK5 /implicit matrix 351 215 0.870
RK5/implicit (prec) matrix 266 162 0.831
RK3/implicit matrix 221 217 0.871
RK3/implicit (prec) matrix 168 164 0.833
RKS5 /implicit HCUSP 367 205 0.864

Table 5. Computational effort required for Case 10, 320 x 64 grid.
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Scheme Dissipation | CPU Time (sec.) | MG Cycles | Reduction/Cycle
RK5/standard matrix 1105 2516 0.988
RKS5/implicit (prec) Roe 371 128 0.791
RK3/implicit (prec) Roe 230 126 0.788
RKS5/implicit (prec) matrix 368 140 0.807
RK3/implicit (prec) matrix 230 141 0.809

Table 6. Computational effort required for Case 1, 368 x 88 grid, Re = 5.7 x 10%, AR = 3,949.

Scheme Dissipation | CPU Time (sec.) | MG Cycles | Reduction/Cycle
RKS5/standard matrix 1817 4123 0.993
RK5 /implicit (prec) Roe 511 176 0.844
RK3/implicit (prec) Roe 317 174 0.842
RKS5/implicit (prec) matrix 562 213 0.869
RK3/implicit (prec) matrix 354 216 0.871

Table 7. Computational effort required for Case 1, 368 x 88 grid, Re = 20.0 x 10%, AR = 11,057.

Scheme Dissipation | CPU Time (sec.) | MG Cycles | Reduction/Cycle
RKS5/standard matrix 2739 6238 0.995
RK5/implicit (prec) Roe 701 242 0.884
RK3/implicit (prec) Roe 435 239 0.882
RK5/implicit (prec) matrix 834 318 0.910
RK3/implicit (prec) matrix 517 317 0.910

Table 8. Computational effort required for Case 1, 368 x 88 grid, Re = 57.0 x 10%, AR = 30,714.

Scheme

Dissipation | CPU Time (sec.) | MG Cycles | Reduction/Cycle
RK5/standard matrix 3458 7865 0.996
RK5/implicit (prec) Roe 841 291 0.902
RK3/implicit (prec) Roe 521 286 0.901
RKS5/implicit (prec) matrix 1014 386 0.925
RK3/implicit (prec) matrix 633 387 0.926

Table 9. Computational effort required for Case 1, 368 x 88 grid, Re = 100.0 x 106, AR = 50,260.
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Case1l, M=0.676, a=1.93°, Re =5.7 x 10°, 320 x 64
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Figure 1. Surface pressure distribution for Case 1.

Case 9, M=0.73, a=2.79°, Re=6.5x10°%, 320 x 64

_1:_
0.5}
- f
O of
05F
3 [} experiment
[ computation
ir
[ TN EETRTR SRR BT SR
0 0.2 0.4 0.6 0.8 1
x/c

Figure 2. Surface pressure distribution for Case 9.

Case 10, M=0.75, a =2.81°, Re = 6.2 x 10°, 320 x 64
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Figure 3. Surface pressure distribution for Case 10.
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Figure 5. Convergence histories for Case 9.
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Figure 6. Convergence histories for Case 10.
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Figure 12. Convergence histories, matrix dissipation,
3 stages, CFL = 1000.
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15 Case 9,M=0.73, a =2.79°, Re =6.5x 10° 320 x 64
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Figure 15. Surface pressure distribution at 10 and 100 cycles (Case 9, 320 x 64).
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Figure 16. Surface skin-friction distribution at 10 and 100 cycles (Case 9, 320 x 64).
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Figure 17. Surface pressure distribution for ONERA M6 wing, 2y/B = 0.20, 0.44.
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Figure 18. Surface pressure distribution for ONERA M6 wing, 2y/B = 0.65, 0.90.
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