
Diagnosing a Failed Proof in
Fault-Tolerance: A Disproving

Challenge Problem?

Lee Pike1, Paul Miner2, and Wilfredo
Torres-Pomales2

1 Galois Connections
Beaverton, Oregon, USA
leepike@galois.com

2 NASA Langley Research Center
Hampton, VA, USA

{p.s.miner, w.torres-pomales}@larc.nasa.gov

Abstract. This paper proposes a chal-
lenge problem in disproving. We de-
scribe a fault-tolerant distributed pro-
tocol designed at NASA for use in a
fly-by-wire system for next-generation
commercial aircraft. An early design of
the protocol contains a subtle bug that
is highly unlikely to be caught in fault-
injection testing. We describe a failed
proof of the protocol’s correctness in a
mechanical theorem prover (PVS) with
a complex unfinished proof conjecture.
We use a model checking suite (SAL)
to generate a concrete counterexample
to the unproven conjecture to demon-
strate the existence of a bug. However,
we argue that the effort required in our
approach is too high and propose what
conditions a better solution would sat-
isfy. We carefully describe the protocol
and bug to provide a challenging but
feasible case study for disproving re-
search.

1 Introduction

Although rarely discussed in the archival litera-
ture, many attempts to prove conjectures using
interactive mechanical theorem proving fail. Pro-
vided the theorem prover is sound and the conjec-
ture is not both true and unprovable – a possibility
in mathematics – there are two possible reasons
for a failed proof attempt. First, the conjecture
? This research was supported, in part, by Research

Cooperative Agreement No. NCC-1-02043 awarded
to the National Institute of Aerospace while the first
author was a visitor. Additional support came from
NASA’s Vehicle Systems Program. This paper is a
revised extended abstract of an (unrefereed) NASA
technical memorandum [1].

may be true, but the user lacks the resources or
insight to prove it. Second, the conjecture may
be false. It can be difficult to determine which of
these is the case.

When mathematicians cannot complete a proof
of a conjecture, they begin to seek a counterex-
ample to it. Mechanical theorem proving can ex-
acerbate this difficult task. The difficulty is partly
due to theorem provers often being used to rea-
son about algorithms and protocols. Proofs of cor-
rectness in this domain often involve nested case-
analysis. A proof obligation that cannot be com-
pleted is often deep within the proof, where intu-
ition about the system behavior – and what would
constitute a counterexample – wanes. The diffi-
culty is also due to the nature of mechanical theo-
rem proving. The proof steps issued in such a sys-
tem are fine-grained. Formal specifications make
explicit much of the detail that is suppressed in
informal models. The detail and formality of the
specification and proof makes the discovery of a
counterexample more difficult.

We present a case study that highlights this dif-
ficulty. We describe the formal verification of a
distributed fault-tolerant protocol in the mechan-
ical theorem prover PVS [2]. A conjecture about
the protocol is partially verified by case-analysis,
leaving a single unproven case. The case involves
a complex set of fault statuses and system invari-
ants.

In particular, the protocol investigated is an
interactive consistency protocol for use in the
Reliable Optical Bus (ROBUS), a state-of-the-
art ultra-reliable communications bus under de-
velopment at the NASA Langley Research Cen-
ter and the National Institute of Aerospace.
It is being developed as part of the Scalable
Processor-Independent Design for Extended Reli-
ability (SPIDER) project [3, 4]. SPIDER is a fam-
ily of ultra-reliable architectures built upon the
ROBUS. Currently, ROBUS implementations in-
clude a FPGA-based prototype.

The counterexample was initially discovered by
the third author through “engineering insight.”
The bug in the protocol design occurs only when
there are two simultaneous Byzantine faults [5, 6].
As described in greater detail later in the paper,
the bug arises from the interaction between the
system’s fault assumptions and the local diagnoses
made by nodes in the system. Local diagnoses are
used in a fault-tolerant system to increase reliabil-
ity and to maintain group membership, a group of
mutually-trusted non-faulty nodes [7]. In a sense,
the bug is due to the interplay of system operation
(i.e., executing the protocol) and system survival

(i.e., maintaining group membership). These con-
cerns apply to variety of fault-tolerant embedded
systems [8].

The protocol is designed to tolerate such a fault
scenario. However, the subtlety of the scenario
means it is extremely unlikely the bug would be
caught during fault-injection testing [9]. Neverthe-
less, safety-critical systems like SPIDER that are
designed for use in commercial aircraft must have
a failure rate no higher than 10−9 to 10−12 per
hour of operation [8, 10]. A design error that es-
capes testing could adversely affect a system’s re-
liability. We believe that if the bug had not been
caught by insightful inspection, the only other way
it would be caught is through formal analysis.

In the paper, we describe our approach to for-
mally uncover the bug.3 Specifically, we model the
failed proof obligation in a model checker, and at-
tempt to prove it holds in a model in which param-
eters have been interpreted with small constants.
Using the counterexample generated by the model
checker, one can quickly determine that the proto-
col is incorrect. Furthermore, the counterexample
suggests the appropriate modification to correct
the bug.

Motivation Unfortunately, we feel our approach is
inadequate for the following reasons:

– The approach is too interactive and onerous.
It requires manually specifying the protocol
and failed conjecture in a model checker and
manually correcting the specification in the
theorem prover.

– The approach depends on the counterexample
arising by instantiating the parameters with
small finite values.

– Indeed, we would like a more automated ap-
proach to verify the parameterized protocol
specification in the first place than is possible
using mechanical theorem proving alone.

Therefore, we offer this case study as a challenge
problem to the disproving community. We believe
researchers will find this problem of interest for
the following reasons:

– The protocol is industrially-relevant, and the
bug is genuine.

– The protocol can be described in English in
just a few paragraphs (as is done in this pa-
per), but the behavior of the protocol itself is
subtle.

3 The associated files can be retrieved at
〈http://www.cs.indiana.edu/∼lepike/
pub pages/unproven.html〉.

– While we believe our approach is unsatisfac-
tory, we also believe it approximates the best
contemporary approach for disproving prob-
lems like the one presented (a purpose of this
paper is to solicit evidence to the contrary).

– Formal specifications of the protocol in both
a mechanical theorem prover and a model
checker accompany this paper for reference.

Organization We describe the ROBUS Interactive
Consistency (IC) Protocol as well as the architec-
ture on which it is intended to execute in Sec-
tion 2. In Section 3, we describe the kinds and
number of faults under which the ROBUS IC Pro-
tocol should correctly execute. Section 4 states
the correctness requirements for the protocol as
well as the state invariants that must hold for
the ROBUS IC Protocol to satisfy them. In Sec-
tion 5, we informally describe the counterexam-
ple, discuss its origins, and provide a “fix” for it.
In Section 6 we describe the conjecture attempted
in PVS and then our generation of a counterex-
ample using the Symbolic Analysis Laboratory
(SAL) [11]. Section 7 outlines the specific chal-
lenge and describes some metrics for success. Con-
cluding remarks are in Section 8.

2 A ROBUS IC Protocol

We begin by describing the background of the
family of protocols from which the ROBUS IC
Protocol comes. Then after describing the archi-
tecture of the ROBUS, we describe the protocol’s
behavior itself.

Background Protocols like the one described in
this paper are fault-tolerant consensus algorithms
and are known as “interactive consistency” or
“oral messages” protocols. The protocol presented
here is based on a protocol designed by Davies and
Wakerly [12]. Lynch’s textbook provides an intro-
duction to these sort of protocols as well as point-
ers into the literature [13]. Many of these proto-
cols have been formally verified, both by theorem
proving [14–16] and by model checking [17].

Architecture The architecture of the ROBUS is
a fully-connected bipartite graph of two sets of
nodes, Bus Interface Units (BIUs) and Redun-
dancy Management Units (RMUs). BIUs provide
the interface between the bus and hosts running
applications that communicate over the bus. The
RMUs provide redundancy. The architecture for
the special case of three BIUs and three RMUs is
shown in Figure 1. There must be a minimum of

2

one BIU and one RMU, and there need not be an
equal number of BIUs and RMUs.

BIUs RMUs

Fig. 1: The ROBUS Architecture

Diagnostic Data Understanding the protocol be-
havior requires a preliminary understanding of the
diagnostic data collected by nodes. The protocol
has a greater chance of succeeding if good nodes
ignore faulty ones. Consequently, nodes maintain
diagnoses against other nodes. These diagnoses re-
sult from mechanisms to monitor the messages re-
ceived during protocol execution. Diagnostic data
is accumulated over multiple protocol executions.

Each node maintains a diagnostic function as-
signing each node (including itself) to one of
the following three classifications: trusted, accused,
and declared. Every (non-faulty) node assigns ev-
ery other node to exactly one class. We call the
node being labeled the defendant. If a node la-
bels a defendant as trusted, then the node has
insufficient evidence that the defendant is faulty.
If it labels a defendant as accused, then it has lo-
cal evidence that the defendant is faulty, but does
not know whether other good nodes have similar
evidence. Once a defendant is declared, all good
nodes know that they share the declaration.

Periodically, the RMUs and BIUs execute a Dis-
tributed Diagnosis Protocol in which the nodes
submit the diagnoses accumulated thus far [7]. If
enough good nodes have accused a defendant, then
the defendant is declared. The Distributed Diag-
nosis Protocol ensures that all good nodes agree
on which nodes have been declared.

2.1 Protocol Description

We distinguish one BIU as the General. The
ROBUS IC Protocol is a synchronous protocol de-
signed to reliably transmit the General’s message
despite faults in the system (the formal require-
ments are provided in Section 4). In the follow-
ing, a benign message is one that all nonfaulty
nodes can detect came from a faulty node (see
Section 3). The ROBUS IC Protocol is as follows

(the message-passing events of the protocol are il-
lustrated in Figure 2):

1. The General, G, broadcasts its message, v, to
all RMUs.

2. For each RMU, if it receives a benign message
from G, then it broadcasts the special message
source error to all BIUs. Otherwise it relays
the message it received.

3. For each BIU b, if b has declared G, then b
outputs the special message source error. Oth-
erwise, if b received a benign message from an
RMU, then that RMU is accused. b performs
a majority vote over the values received from
those RMUs it trusts. If no majority exists,
source error is the result; otherwise, the ma-
jority value is the result.

3 Faults

Fault Classifications Faults result from innu-
merable occurrences including physical damage,
electromagnetic interference, and “slightly-out-of-
spec” communication [5]. We collect these fault
occurrences into fault types according to their ef-
fects in the system.

We adopt the hybrid fault model of Thambidu-
rai and Park [18]. All non-faulty nodes are also
said to be good. A node is called benign, or man-
ifest, if it sends only benign messages. Benign
messages abstract various sorts of misbehavior. A
message that is sufficiently garbled during trans-
mission may be caught by an error-checking code
and deemed benign. In synchronized systems with
global communication schedules, they also ab-
stract messages not sent (i.e., a message is ex-
pected by a receiver but is absent on a commu-
nication channel) or messages that arrive at un-
scheduled times. A node is called symmetric if it
sends every receiver the same message, but these
messages may be incorrect. A node is called asym-
metric, or Byzantine [6], if it arbitrarily sends dif-
ferent messages to different receivers.

Fault Assumption A fault-tolerant protocol is de-
signed to tolerate a certain number of faults of
each fault type. For a protocol, this is specified by
its maximum fault assumption (MFA). A proof of
correctness of a protocol is of the form, “If the
MFA holds, then the protocol satisfies property
P,” where P is a correctness condition for the pro-
tocol. The probability that a MFA holds is deter-
mined by reliability analysis [19].

We call the MFA for the ROBUS IC Protocol
the Interactive Consistency Dynamic Maximum

3

Fault Assumption (IC DMFA). ‘Dynamic’ empha-
sizes that the fault assumption is parameterized
by the local diagnoses of nodes, which change over
time.

Definition 1 (IC DMFA). Let GB, SB, and
AB denote the sets of BIUs that are good,
symmetrically-faulty, and asymmetrically-faulty,
respectively. Let GR, SR, and AR represent the
corresponding sets of RMUs, respectively. For
good BIU b, let Tb denote the set of RMUs b trusts.
This is b’s trusted set. Define Tr similarly – it is
the set of BIUs that RMU r trusts. The following
formulas together make up the IC DMFA. G is the
General. For all good BIUs b and good RMUs r,

1. |GR ∩ Tb| > |SR ∩ Tb|+ |AR ∩ Tb| ;
2. G ∈ AB ∩ Tr implies |AR ∩ Tb| = 0 .

The first clause ensures that a good BIU b
contains strictly more good RMUs in Tb than
it does symmetrically-faulty or asymmetrically-
faulty RMUs. The second clause ensures that ei-
ther no good RMU r trusts an asymmetrically-
faulty General, or no good BIU b trusts an
asymmetrically-faulty RMU.

4 The ROBUS IC Protocol
Correctness

We begin by stating the requirements for the
ROBUS IC Protocol. We then state invariants
that must hold in a system executing the ROBUS
IC Protocol in order for it to meet these require-
ments.

Requirements Two requirements must hold.

Definition 2 (Agreement). All good BIUs
compute the same value.

Definition 3 (Validity). If the General is good
and broadcasts message v, then the value computed
by a good BIU is v.

Diagnostic Assumptions In addition to constrain-
ing the number of and kind of faults, the cor-
rectness of the ROBUS IC Protocol depends on
the diagnostic mechanisms satisfying certain con-
straints. Let b1 and b2 be good BIUs, let r1 be a
good RMU, and let n be either a BIU or RMU of
any fault classification.

Definition 4 (Good Trusted). b1 trusts n if n
is good.

Definition 5 (Symmetric Agreement). If n
is not asymmetrically-faulty, b1 accuses n if and
only if b2 accuses n.

Definition 6 (Conviction Agreement). b1

declares n if and only if r1 declares n.

These properties similarly hold for any two good
RMUs with respect to a defendant n.

Intuitively, Good Trusted ensures that diagnos-
tic mechanisms never lead a good node to ac-
cuse another good node. Symmetric Agreement
ensures that all good nodes that receive the same
data make the same diagnosis. Note, however, that
Symmetric Agreement allows a good BIU and a
good RMU to make different diagnoses about a
node that is asymmetrically-faulty. Finally, Con-
viction Agreement is a correctness requirement of
the Distributed Diagnosis Protocol [7], and it is
a precondition for the correctness of the protocol
under investigation in this paper. Together, these
three assumptions are called the Diagnostic As-
sumptions.

5 The Counterexample

We describe the counterexample informally and
briefly describe its origins. We then describe a pro-
tocol that does not suffer from the flaw.

Counterexample The following instance of the
ROBUS IC Protocol violates Agreement. Con-
sider an architecture containing three BIUs, G,
b1, and b2, and three RMUs r1, r2, and r3. Let
the General be asymmetrically-faulty. Let RMU
r1 be asymmetrically-faulty, too, and let all other
nodes be good. Suppose b1 and b2 either accuse
or trust G (it does not matter which), and they
trust all RMUs. Furthermore, suppose b1 and b2

trust r1, but no good RMU trusts G. These hy-
potheses satisfy the IC DMFA and the Diagnostic
Assumptions. Agreement is violated if the follow-
ing instance of the ROBUS IC Protocol transpires,
as illustrated in Figure 2.

1. G sends message v to r1 and r2, and it sends
message u to r3, where v 6= u.

2. r1 sends message v to b1 and u to b2. r2 sends
message v to both b1 and b2. r3 sends message
u to both b1 and b2.

3. b1 outputs v whereas b2 outputs u.

Origins of the Flaw The flaw in the ROBUS IC
Protocol was introduced when an earlier version
of the protocol was amended to allow for the rein-
tegration of transiently-faulty nodes [20]. A node
becomes transiently-faulty when its state is dis-
rupted (due, e.g., to exposure to high-intensity
radiation), but the node is not permanently dam-
aged. A node that suffers a transient fault has the

4

result = u

asymmetric

good

BIUs RMUs BIUs

good

asymmetric asymmetric

good

good

G 1

2

3

1

2

1

2

G
v

v

u

v

u

v

v

u

u

asymmetric

result = v

Fig. 2: An Instance of the ROBUS IC Protocol
Violating Agreement

potential to reintegrate with the good nodes in the
system by restoring consistent state with them.

In the earlier version of the ROBUS IC Pro-
tocol, an RMU would only relay a message from
the General if it trusted the General. Otherwise,
the source error message was relayed. To allow
for reintegration, the messages from a previously-
declared General needed to be relayed by RMUs
so that the BIUs can determine whether it is fit
for reintegration. However, the flaw in the ROBUS
IC Protocol arose when the earlier protocol was
changed so that RMUs relayed the message from
the General regardless of its diagnostic status, so
long as it did not send a benign message.

A New ROBUS IC Protocol In retrospect, a fix to
the protocol is simple. Step 2 of the protocol de-
scription in Section 2.1 is changed so that an RMU
r relays the message source error if it receives a
benign message or if r accuses the General. If the
General is declared, its message is relayed to allow
BIUs to gather diagnostic data about the General.
An accused General implies that the General re-
cently suffered a fault (assuming the accuser is
good), so there is no need to relay its message
for reintegration purposes. The correctness of the
protocol, proved in PVS, is described by Miner et
al. [21].

6 Formally Deriving the
Counterexample

In this section, we describe the unfinished proof
obligation generated in our attempt to formally
prove a conjecture about the ROBUS IC Protocol.
We then describe our use of a model checker to
derive a counterexample to the conjecture.

6.1 Generating the Proof Obligation

In our approach, we use the PVS theorem prov-
ing system developed by SRI International [2].

We have used PVS to specify and verify other
ROBUS protocols [21, 7]. The specification lan-
guage of PVS is a strongly-typed higher-order
logic, and the proof system is the classical sequent
calculus.

Various details about the construction of the
underlying theories used to model the algorithm
and ROBUS are irrelevant.4 A general discussion
of the abstractions used in the model is provided
elsewhere [22]. The following notation is used in
the formal statements of the Agreement Conjec-
ture and the unproved sequent in Figure 3 and
Figure 4.

Variables and Parameters The parameters B and
R are uninterpreted natural numbers. The set of
BIUs and RMUs are indexed from 0 to B - 1 and
0 to R - 1, and these sets of indicies are denoted
below(B) and below(R), respectively. Thus, the
PVS specification is parameterized by the num-
ber of BIUs and RMUs, and a proof of correct-
ness holds for any instantiation of these parame-
ters that satisfy the hypotheses of the proof. Let
b1, b2, G ∈ below(B), where G is used to designate
the General. F is a variable over the set of records
(i.e., named tuples [23]) that contain all of the
diagnoses in the system. The ‘ operator provides
record access. Thus, F‘RB denotes the collection of
the BIUs’ diagnoses against the RMUs, F‘BB de-
notes the BIUs’ diagnoses against the BIUs, and
similarly for F‘RB and F‘RR. F‘RB(b1)(r) denotes
b1’s diagnosis of r, and similarly for the other
diagnoses. F‘RB(b1)(r) yields a value from the
set {trusted, accused, declared}. The function
b status is a function mapping BIUs to some
fault class – one of good, benign, symmetric, and
asymmetric, and similarly, r status maps RMUs
to a fault class. Finally, msg is an arbitrary mes-
sage being broadcast by the General.

Functions and Relations The following functions
and relations appear in the sequent.

– good? is a predicate that takes the fault status
of a node and is true if the status is good.
benign?, symmetric?, and asymmetric? are
similarly defined.

– IC DMFA is a formal statement of the IC DMFA
described in Section 3.

– all correct accs? is a predicate formally
stating the Diagnostic Assumptions defined in
Section 4.

4 The PVS models are more abstract than needed to
model this protocol since the many of the same the-
ories are generalized to model other ROBUS proto-
cols [21].

5

– declared? is a predicate that takes the diag-
nosis made by one node against a defendant
node and is true if the defendant is declared.
Similarly, trusted? is true if the defendant is
trusted.

– robus ic is a higher-order function that func-
tionally models the ROBUS IC Protocol, as
described in Section 2.1. It takes as arguments
the fault statuses of the BIUs and RMUs, the
diagnoses a BIU makes of G, as well as the set
of its other diagnoses. It returns another func-
tion that takes the General’s identifier, the
message it sends, and a BIU identifier. The
function returns the message the BIU outputs
after the execution of the ROBUS IC Proto-
col. The function is essentially the composi-
tion of two functions modeling the two rounds
of message passing (recall that we are model-
ing the protocol in the synchronous domain,
so the rounds of message passing is the gran-
ularity at which time is modeled).

It is the convention of PVS to denote skolem con-
stants with a trailing “!n,” where n is some inte-
ger.

The Sequent The conjecture to be proved is shown
in Figure 3. Assuming that b1 and b2 are both
good, that the Diagnoses Assumptions hold, and
that the IC DMFA holds, we attempt to prove that
the result of robus ic is the same when applied
to b1 and b2.

Agreement: CONJECTURE
good?(b_status(b1)) AND
good?(b_status(b2)) AND
all_correct_accs?(b_status, r_status, F) AND
IC_DMFA(b_status, r_status, F)

=>
robus_ic(b_status, r_status, F‘BB(b1)(G), F‘RB(b1))

(G, msg, b1) =
robus_ic(b_status, r_status, F‘BB(b2)(G), F‘RB(b2))

(G, msg, b2)

Fig. 3: The Agreement Conjecture in PVS

Every branch of the conjecture in Figure 3 is
discharged except for the branch ending in the sin-
gle sequent in Figure 4 (irrelevant formulas have
been omitted). PVS labels the formulas in the an-
tecedent with negative integers, while those in the
consequent are labeled with positive integers.

6.2 Model Checking the Sequent

We use the Symbolic Analysis Laboratory
(SAL) [24, 11], also developed by SRI Interna-
tional, to model check the protocol against the
undischarged sequent. SAL is a family of model
checkers that includes symbolic, bounded, and

[-1] good?(r_status!1(r!1))
[-2] asymmetric?(b_status!1(G!1))
[-3] IC_DMFA(b_status!1, r_status!1, F!1)
[-4] all_correct_accs?(b_status!1, r_status!1, F!1)

|-------
[1] trusted?(F!1‘BR(r!1)(G!1))
[2] declared?(F!1‘BB(b2!1)(G!1))
{3} (FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b1!1)(p_1)) =>
NOT asymmetric?(r_status!1(p_1))))

&
(FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b2!1)(p_1)) =>
NOT asymmetric?(r_status!1(p_1))))

[4] declared?(F!1‘BB(b1!1)(G!1))
[5] robus_ic(b_status!1, r_status!1,

F!1‘BB(b1!1)(G!1), F!1‘RB(b1!1))
(G!1, msg!1, b1!1)

=
robus_ic(b_status!1, r_status!1,

F!1‘BB(b2!1)(G!1), F!1‘RB(b2!1))
(G!1, msg!1, b2!1)

Fig. 4: The Unproven PVS Sequent

explicit-state model checkers, among other tools.
The SAL language includes constructs such as re-
cursive function definition, synchronous and asyn-
chronous composition operators, and quantifiers
over finite types. We particularly exploit the quan-
tifier, recursive function, and synchronous compo-
sition constructs.

Our SAL model builds on the model of Oral
Messages that is explained in detail in Rushby’s
SAL tutorial [17]. Our model differs slightly as
we must represent the local diagnoses data of
each node, the Diagnosis Assumptions, and the
IC DMFA, which is parametrized by the local di-
agnoses. Furthermore, we state these constraints
explicitly rather than embedding them into the
system model. We found this makes our model
more perspicuous.

A sequent can be read as stating that if the
conjunction of the antecedent statements is true,
then the disjunction of the consequent statements
is true. That is, if A is the set of antecedents and
C is the set of consequents, a sequent is equivalent
to the conditional∧

A =⇒
∨

C . (1)

This formulation is used to express the sequent
in SAL and appears in Figure 5. There, SYSTEM
denotes the model of the ROBUS IC Protocol de-
veloped in the model checker, the symbol |- de-
notes the purported satisfaction relation between
the model and G is the global-state operator of
LTL (not to be confused with the denotation of
the General).

SAL has an imperative language, so some of
the predicates in the PVS sequent have been ex-
pressed equationally. Some of the functions of PVS
have been converted to arrays in SAL, giving rise
to the bracket notation.

6

counterex: THEOREM SYSTEM |-
G((pc = 4 AND

r_status[1] = good AND
G_status = asymmetric AND
IC_DMFA(r_status, F_RB, F_BR, G_status) AND
all_correct_accs(r_status, F_RB,

G_status, F_BR, F_BB))
=>

(F_BR[1] = trusted OR
F_BB[2] = declared OR
(FORALL (r: RMUs): F_RB[1][r] = trusted =>

r_status[r] /= asymmetric AND
FORALL (r: RMUs): F_RB[2][r] = trusted =>

r_status[r] /= asymmetric) OR
F_BB[1] = declared OR
robus_ic[1] = robus_ic[2]));

Fig. 5: The SAL Formulation of the Undischarged
Sequent

Two additional statements in the LTL formu-
lation are artifacts of how the protocol is mod-
eled in the model checker, both of which come
from Rushby’s original formulation. First, there
is a program counter pc that represents which
round of the protocol is currently executing. These
rounds correspond to the three rounds described
in Section 2.1. When pc = 4, the last round has
completed. The second artifact is the imperative
definition of the result of the ROBUS IC Protocol
using the array called robus ic.

Thus, the conjecture in Figure 5 can be read
as stating that in every state reachable from the
initial state of SYSTEM, the formulation of the un-
proven sequent described above is true.

A counterexample to the formula in Figure 5
is a reachable state in which the formula is false.
As mentioned, that formula is derived from the
conditional interpretation of a sequent in (1). The
negation of (1) is equivalent to∧

(A ∪
−
C) , (2)

where
−
C denotes the negation of each formula in

C. A counterexample is therefore a reachable state
in which (2) is true. Such a state matches the in-
formal description of the counterexample in Sec-
tion 5.

Using SAL’s symbolic model checker on a sys-
tem with one gigabyte of memory and an AMD
Athlon 2000+ processor, a counterexample like
the one described in Section 5 is discovered in
about 16 seconds for three RMUs and three BIUs,
including the General. One may wonder whether
this counterexample arises from the system hav-
ing too few RMUs to relay messages. Increasing
the number of RMUs quickly overwhelms the sym-
bolic model checker. However, we obtain a simi-
lar counterexample using SAL’s bounded model
checker for seven RMUs in a little over two min-
utes on the same system.

These concrete counterexamples demonstrate
that the unproved sequent cannot be discharged
because the protocol itself has an error. Changing
the PVS and SAL models to include the fix sug-
gested in Section 5 allows the Agreement proof to
be completed [21], and SAL verifies the formula
in Figure 5 in a model using the same number of
BIUs and RMUs as used to find the counterexam-
ple (the fix is included as commented code in the
SAL model available on-line3).

6.3 Remarks on our Approach

In our approach, we manually model the protocol
and the requirements both in PVS and SAL. This
is simultaneously advantageous and disadvanta-
geous. Having to model the protocol and require-
ments in distinct languages provides an additional
guard against modeling errors in each language.
In particular, we wish to guard against false neg-
atives, which are particularly easy to generate in
model checkers.

A disadvantage is the additional work required
to model the protocol and requirements twice.
This approach is not feasible to check numerous
failed proof conjectures in a proof attempt.

Some limitations of this approach are inherent
to the limitations of symbolic model checking, in
general. A model checker is useful when the sys-
tem can be modeled as a finite-state state ma-
chine, and the requirements to be proved can be
modeled in a temporal logic. As well, a counterex-
ample may exist, but be beyond the computa-
tional limits of the model checker and the com-
puter on which it executes.

Despite these limitations, we believe this ap-
proach approximates the current state-of-the-art
to verify and discover bugs for a protocol like the
one described.

Related Work Much previous work that inte-
grates model checking and interactive theorem
proving has focused on using model checking to
automate proving rather than on disproving [25,
26]. Some theorem provers have embedded model
checkers (both PVS and ACL2 contain embed-
ded µ-calculus model checkers [27, 28]). Most re-
lated to our work is a study in which resolution-
based theorem proving and model checking are
used to discover counterexamples to proof obli-
gations [29]. Our work differs in that we present a
reasonably intricate protocol whereas a small illus-
trative example is presented therein. As well, the
focus therein is on automated theorem proving;
our focus is on using model checking to facilitate
interactive theorem proving.

7

7 The Challenge

The challenge is as follows:

From a parameterized specification of the
protocol (from which a general proof can
be obtained), provide a concrete instance
of the bug in a way that requires as little
effort from the user as possible.

This section describes how our approach could be
improved as well as speculation about other ap-
proaches.

Specification Languages In our specific case, the
specification languages of PVS and SAL are sim-
ilar, and it is a goal of SRI to develop translators
between them [30]. Building a translator between
the languages is not trivial as the languages over-
lap, but neither is a subset of the other. The lack
of a translator required us to model the protocol
twice.

More generally, efficient disproving requires bet-
ter integration between proving tools (e.g., the-
orem provers) and disproving tools (e.g., model
checkers) [31, 32] regardless of the theorem prover
or model checker choice made. As noted in Sec-
tion 6, some theorem-provers contain model-
checkers, but it is not clear that these model
checkers can handle this case study.

Parameter Interpretation Even if a translator ex-
isted, the parameterized PVS specification is not
immediately amenable to finite-state model check-
ing: the parameters must be interpreted. For a sys-
tem with many parameters or a large specification,
the interpretation is tedious if done manually. The
tedium is compounded by the need to find param-
eters small enough to make model checking feasi-
ble yet large enough to expose the counterexam-
ple.

A quickcheck approach, like the one that ap-
pears in Isabelle [33], may be sufficient to demon-
strate a counterexample. However, doing so re-
quires a reformulation of the problem since our
formulation in PVS uses non-executable con-
structs (e.g., quantifiers and Hilbert’s choice op-
erator). How this could be done for a parame-
terized specification of the protocol that is not
implementation-specific is unknown to the au-
thors.

Proof Calculus Translation A minor but relevant
task in our approach is the translation of a failed
conjecture in the sequent calculus into an LTL for-
mula. We hope for this task to be automated, too
(for whatever proof calculus and temporal logic is
used).

Proving and Disproving Ideally, both proving and
disproving would be automatic. Automated dis-
proving appears to be an easier challenge to meet
than proving. That said, recent advances in satis-
fiability modulo theories (SMT) provers [34] hold
promise. Fault-tolerant protocols have generally
been good candidates for mechanical theorem
proving given their criticality and complexity, but
SMT technology may provide a more automated
approach. Currently, SMT provers are not capable
of proving a fully-parameterized specification of
the protocol presented, but recent applications of
SMT to verifying fault-tolerant and real-time pro-
tocols are promising [35, 20]. For these sort of ver-
ifications, SMT is particularly useful when com-
bined with bounded-model checking to do highly-
automated induction proofs of safety properties
over infinite-state systems [36]. We hope the SMT
community also takes up the protocol presented
as a challenge problem in parameterized proof as
well as counterexample generation.

We do not believe that automated first-order
theorem provers alone can prove the correctness
of the SPDIER IC Protocol. The protocol’s proof
of correctness is parameterized in the number
of BIUs and RMUs. Furthermore, the proof of
correctness depends on reasoning about nontriv-
ial mathematical facts (e.g., the IC DMFA). A
first-order theorem prover could possibly be used
to derive a counterexample for a fixed specifica-
tion, replacing the model checker in our approach.
Nonetheless, a similar interactive consistency pro-
tocol has been specified and verified in ACL2, an
interactive first-order theorem prover [14]. Some
initial work has been done to translate the PVS
specification of the SPIDER IC Protocol into a
form suitable for SAT solving [37].

Effort Requirements Given the criticality of the
correct design of SPIDER and similar safety-
critical embedded systems, their designers are
willing to invest a great deal of effort to gain high
assurance of their correctness. Therefore, the ac-
ceptable level of effort required to obtain coun-
terexamples is relatively high, as evidenced by
the use of interactive theorem proving in the first
place. Certainly the upper bound on the accept-
able level of effort to uncover a counterexample is
the time it takes a user to diagnose the error in the
failed proof attempt in the theorem prover. This
effort varies according to experience with the the-
orem prover, expertise in the domain, the proof
infrastructure, and the specific reason the proof
has failed.

8

8 Conclusion

We have presented a subtly-flawed fault-tolerant
protocol, its attempted verification by theorem
proving, and our use of a model checker to demon-
strate that a bug in the protocol prevents us from
completing the verification. As noted, we believe
our approach approximates the best possible with
today’s technology.

More generally, a variety of real-time fault-
tolerant protocols have been designed for SPIDER
and are described in detail [4]. Most of these pro-
tocols have been verified using theorem proving
and model checking with SMT [38, 21, 20]. These
protocols are all suitable case studies to demon-
strate novel verification tools and techniques.

Acknowledgments

The PVS and SAL tools used were developed
by SRI International. We used PVS theories
developed by members of the NASA Langley
Formal Methods Group and the National Insti-
tute of Aerospace; in particular, we thank Al-
fons Geser and Jeffrey Maddalon. We thank our
anonymous reviewers of the DISPROVING Work-
shop for their helpful and detailed comments. As
noted, the SAL model was adopted from work by
Rushby [17].

References

1. Pike, L., Miner, P., Torres, W.: Model check-
ing failed conjectures in theorem proving: a
case study. Technical Report NASA/TM–
2004–213278, NASA Langley Research Center
(2004) Available at http://www.cs.indiana.

edu/∼lepike/pub pages/unproven.html.

2. Owre, S., Rusby, J., Shankar, N., von Henke,
F.: Formal verification for fault-tolerant architec-
tures: Prolegomena to the design of pvs. IEEE
Transactions on Software Engineering 21 (1995)
107–125

3. NASA Formal Methods Group: SPIDER home-
page. Website (2004) Available at http://

shemesh.larc.nasa.gov/fm/spider/.

4. Torres-Pomales, W., Malekpour, M.R., Miner, P.:
ROBUS-2: A fault-tolerant broadcast communi-
cation system. Technical Report NASA/TM-
2005-213540, NASA Langley Research Center
(2005)

5. Driscoll, K., Hall, B., Sivencrona, H., Zumsteg, P.:
Byzantine fault tolerance, from theory to reality.
In Goos, G., Hartmanis, J., van Leeuwen, J., eds.:

Computer Safety, Reliability, and Security. Lec-
ture Notes in Computer Science, The 22nd Inter-
national Conference on Computer Safety, Relia-
bility and Security SAFECOMP, Springer-Verlag
Heidelberg (2003) 235–248

6. Pease, M., Shostak, R., Lamport, L.: Reaching
agreement in the presence of faults. Journal of of
the ACM 27 (1980) 228–234

7. Geser, A., Miner, P.: A formal correctness proof of
the SPIDER diagnosis protocol. Technical Report
NASA/CP-2002-211736, NASA Langley Research
Center, Hampton, Virginia (2002) Technical Re-
port contains the Track B proceedings from Theo-
rem Proving in Higher Order Logics (TPHOLSs).

8. Rushby, J.: Bus architectures for safety-critical
embedded systems. In Henzinger, T., Kirsch, C.,
eds.: EMSOFT 2001: Proceedings of the First
Workshop on Embedded Software. Volume 2211 of
Lecture Notes in Computer Science., Lake Tahoe,
CA, Springer-Verlag (2001) 306–323

9. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault in-
jection techniques and tools. IEEE Computer
30 (1997) 75–82 Available at citeseer.ist.psu.
edu/hsueh97fault.html.

10. Kopetz, H.: Real-Time Systems. Kluwer Aca-
demic Publishers (1997)

11. de Moura, L., Owre, S., Rueß, H., Rushby, J.,
Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In
Alur, R., Peled, D., eds.: Computer-Aided Verifi-
cation, CAV 2004. Volume 3114 of Lecture Notes
in Computer Science., Boston, MA, Springer-
Verlag (2004) 496–500

12. Davies, D., Wakerly, J.F.: Synchronization and
matching in redundant systems. IEEE Transac-
tions on Computers 27 (1978) 531–539

13. Lynch, N.A.: Distributed Algorithms. Morgan
Kaufmann (1996)

14. Young, W.D.: Comparing verification systems: In-
teractive consistency in ACL2. IEEE Transactions
on Software Engineering 23 (1997) 214–223

15. Bevier, W., Young, W.: The proof of correct-
ness of a fault-tolerant circuit design. In: Second
IFIP Conference on Dependable Computing For
Critical Applications. (1991) Available at http:

//citeseer.ist.psu.edu/bevier91proof.html.
16. Lincoln, P., Rushby, J.: Formal verification

of an interactive consistency algorithm for the
Draper FTP architecture under a hybrid fault
model. In: Compass ’94 (Proceedings of the
Ninth Annual Conference on Computer Assur-
ance), Gaithersburg, MD, IEEE Washington Sec-
tion (1994) 107–120 Available at http://www.

csl.sri.com/papers/compass94/.
17. Rushby, J.: SAL tutorial: Analyzing the fault-

tolerant algorithm OM(1). Technical Report CSL
Technical Note, SRI International (2004) Avail-
able at http://www.csl.sri.com/users/rushby/
abstracts/om1.

18. Thambidurai, P., Park, Y.K.: Interactive consis-
tency with multiple failure modes. In: 7th Reliable
Distributed Systems Symposium. (1988) 93–100

9

19. Butler, R.W.: The SURE approach to reliabil-
ity analysis. IEEE Transactions on Reliability 41
(1992) 210–218

20. Pike, L., Johnson, S.D.: The formal verifica-
tion of a reintegration protocol. In: EMSOFT
’05: Proceedings of the 5th ACM international
conference on Embedded software, New York,
NY, USA, ACM Press (2005) 286–289 Avail-
able at http://www.cs.indiana.edu/∼lepike/

pub pages/emsoft.html.
21. Miner, P., Geser, A., Pike, L., Maddalon, J.: A

unified fault-tolerance protocol. In Lakhnech, Y.,
Yovine, S., eds.: Formal Techniques, Modeling and
Analysis of Timed and Fault-Tolerant Systems
(FORMATS-FTRTFT). Volume 3253 of Lecture
Notes in Computer Science., Springer (2004) 167–
182 Available at http://www.cs.indiana.edu/
∼lepike/pub pages/unified.html.

22. Pike, L., Maddalon, J., Miner, P., Geser, A.:
Abstractions for fault-tolerant distributed system
verification. In Slind, K., Bunker, A., Gopalakr-
ishnan, G., eds.: Theorem Proving in Higher Or-
der Logics (TPHOLs). Volume 3223 of Lecture
Notes in Computer Science., Springer (2004) 257–
270 Available at http://www.cs.indiana.edu/
∼lepike/pub pages/abstractions.html.

23. Owre, S., Shankar, N., Rushby, J.M., Stringer-
Calvert, D.W.J.: PVS Language Reference. SRI
International. Version 2.4 edn. (2001) Available at
http://pvs.csl.sri.com/manuals.html.

24. SRI International: Symbolic analysis laboratory
SAL (2004) Available at http://sal.csl.sri.

com/.
25. Rushby, J.: Integrated formal verification: Us-

ing model checking with automated abstraction,
invariant generation, and theorem proving. In
Dams, D., Gerth, R., Leue, S., Massink, M.,
eds.: Theoretical and Practical Aspects of SPIN
Model Checking: 5th and 6th International SPIN
Workshops. Volume 1680 of Lecture Notes in
Computer Science., Trento, Italy, and Toulouse,
France, Springer-Verlag (1999) Available at http:
//www.csl.sri.com/papers/spin99/.

26. Havelund, K., Shankar, N.: Experiements in theo-
rem proving and model checking for protocol ver-
ification. In: Proceedings of Formal Methods Eu-
rope FME’96. Lecture Notes in Computer Science,
Springer (1996)

27. Shankar, N., Owre, S., Rushby, J.M., Stringer-
Calvert, D.W.J.: PVS Prover Guide. SRI In-
ternational. Version 2.4 edn. (2001) Available at
http://pvs.csl.sri.com/manuals.html.

28. Manolios, P.: Chapter 7: Mu-Calculus Model-
Checking. In: Computer Aided Reasoning: ACL2
Case Studies. Self-Published (2002)

29. Bicarregui, J.C., Matthews, B.M.: Proof and refu-
tation in formal software development. In: 3rd
Irish Workshop on Formal Methods (IWFM’99).
(1999)

30. SRI Computer Science Laboratory: Formal meth-
ods roadmap: PVS, ICS, and SAL. Technical

Report SRI-CSL-03-05, SRI International, Menlo
Park, CA 94025 (2003)

31. Johnson, S.D.: View from the fringe of the fringe.
In Margaria, T., Melham, T., eds.: 11th Ad-
vanced Research Working Conference on Correct
Hardware Design and Verification Methods. Vol-
ume 2144 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 1–12

32. de Moura, L., Owre, S., Ruess, H., Rushby, J.,
Shankar, N.: Integrating verification components.
In: Verified Software: Theories, Tools, Experi-
ments. (2005)

33. Nipkow, S.B.T.: Random testing in Isabelle/HOL.
In Cuellar, J., Liu, Z., eds.: Software Engineering
and Formal Methods (SEFM 2004), IEEE Com-
puter Society (2004) 230–239

34. Barrett, C., de Moura, L., Stump, A.: SMT-
COMP: Satisfiability Modulo Theories Competi-
tion. In Etessami, K., Rajamani, S., eds.: 17th
International Conference on Computer Aided Ver-
ification, Springer (2005) 20–23

35. Dutertre, B., Sorea, M.: Modeling and verifica-
tion of a fault-tolerant real-time startup proto-
col using calendar automata. In: Formal Tech-
niques in Real-Time and Fault-Tolerant Systems.
Volume 3253 of Lecture Notes in Computer Sci-
ence., Grenoble, France, Springer-Verlag (2004)
199–214 Available at http://fm.csl.sri.com/

doc/abstracts/ftrtft04.
36. de Moura, L., Rueß, H., Sorea, M.: Bounded

model checking and induction: From refutation
to verification. In Voronkov, A., ed.: Computer-
Aided Verification, CAV 2003. Volume 2725 of
Lecture Notes in Computer Science., Springer-
Verlag (2003) 14–26

37. Sinz, C.: Propositional translation of PVS
specifications. Talk slides (2004) Talk held at
the National Institute of Aerospace/NASA
Langley Research Center. Available at
http://www-sr.informatik.uni-tuebingen.

de/∼sinz/pdf/prop trans.pdf.
38. Pike, L.: Formal Verification of Time-Triggered

Systems. PhD thesis, Indiana University
(2006) Available at http://www.cs.indiana.

edu/∼lepike/phd.html.

10

