Derivative Analysis of AVIRIS Data for Crop Stress Detection

Spectral derivatives and band ratios based on AVIRIS image data were used to

identify nitrogen deficiency and drought stress in a Nebraska com field.
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Abstract

Low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral imagery of a cornfield in ‘Ne-brrasrka’ was used to determine whether
derivative analysis methods provided enhanced plant stress detection compared with
narrow-band ratios. The field was divided into 20 plots representing 4 replicates each of 5
nitrogen (N) fertilization treatments that ranged from 0 to 200 kg N/ha in 50 kg/ha

increments. The imagery yielded a 3 m ground pixel size for 224 spectral bands.
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Derivative analysis provided no advantage in stress detection compared with the
performance of narrow-band ratio indices derived from the literature. This result was

attributed to a high leaf area index at the time of overflight (LAl = 5 to 6) and the high

signal-to-noise character of the narrow AVIRIS bands.

Introduction

Historically, spectroscopists have used signal derivative and ratio computations to
remove background signals or noise that interferes with signals of interest (Butler and
Hopkins, 1970). Similar techniques are now being used in remote sensing. For example,
soil reflectance and its variability over a planted field can represent a noise source and
can interfere with attempts to estimate crop parameters in agricultural remote sensing (Li
et al., 1993). Demetriades-Shah et al. (1990) demonstrated that derivative analysis
minimized the influence of soil background in plant canopy spectra. This result was
enabled by the approximately linear dependence of soil reflectance on wavelength. In
contrast, vegetation spectra can be described by a cubic or higher-order polynomial.
Thus, within an image pixel, the contribution of soil background is minimized in a second
derivative of the spectral reflectance curve, whereas the spectral contribution from
vegetation remains (Demetriades-Shah et al., 1990). Consequently, derivative analysis
was superior to broadband ratio algorithms in plant stress detection. Similarly, second
derivatives in the red-edge spectrum have been used to remove background noise from

imagery of rangeland forage areas (Li et al., 1993). By applying derivative analysis, the



difference between the backgrounds of burned and unburned areas was significantly
reduced.

Penuelas et al. (1993) used derivatives to study spectral changes resulting from plant
stress. Leaf water status and reflectance in the 950 to 970 nm region was assessed using
derivative analysis and conventional band ratio reflectances. A Water Band Index (WBI)
and the first derivative minimum over the 900 to 970 nm spectral regions tracked the
relative water content of gerbera, pepper, and bean leaves. Penuelas et al. (1994)
developed indices based on derivative analysis and narrow band ratios that proved
successful in tracking diurnal changes in photosynthetic rate and seasonal changes in
chlorophyll and nitrogen in sunflower leaves. Adams et al. (1999) used derivative
analysis to derive a Yellowness Index (Y1) for plant chlorosis detection. The Ylis a
three-point approximation of the second spectral derivative using a finite divided
difference method and reflectances at 580, 624, and 668 nm.

The computation of a derivative spectrum is not difficult. Dividing the difference in
reflectance between successive wavebands by the corresponding wavelength interval
yields the approximate derivative spectrum. By repetition of this procedure, higher order
derivative spectra can be computed. However, derivative spectra are highly sensitive to
noise. Thus, smoothing must generally be done prior to derivative computati
Philpot (1998) used the methods of Savitzky-Golay (1964) and Kawata-Minami (1984),
along with a mean filter to smooth spectra prior to derivative analysis. Tsai and Philpot
suggested that when the spectral features of interest are relatively broad and noise occurs

at relatively high frequencies, there is little difference in results from the three methods.
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Adams et al. (1999) proposed that there is no reason why higher order derivatives cannot
be taken using points farther away from the central wavelength to provide an integrated
measure of spectral slope change. Using the finite divided difference in this manner
affects a smoothing that diminishes high frequency noise between the points used to
compute the derivative (Tsai and Philpot. 1998).

The objective of the present study was to use Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) hyperspectral imagery to determine whether high-resolution
derivative analysis methods provided enhanced capability of detecting nitrogen

deficiency in corn compared with simpler, narrow-band ratio approaches.

Methods

The Variable Rate (VRAT) Nitrogen (N) Application site established by the U.S.
Department of Agriculture, Agricultural Research Service (USDA ARS) at Shelton,
Nebraska, represented a well-studied quarter section that supported a corn crop. Four
replicate blocks, each containing five treatment plots, were established along a central
alleyway that ran from east to west (Figure 1b). N treatments, applied using anhydrous
ammonia and assigned randomly within each block, ranged from 0 to 200 kg N/ha in
50 kg N/ha increments. All N treatment plots were watered by a central pivot irrigation
system on a three-day period to avoid drought stress. Bare soil patches east and west of
the plots provided references for the soil spectrum and for calibration of AVIRIS data to
percent reflectance. At the time of overflight, some weeds had become established in the

eastern soil patch. Additionally, an arcuate water-stressed region at the north-central



margin of the field was established. This region was created by withholding irrigation as
the central pivot unit passed for 3 to 4 weeks prior to sensor overflight, enabling a
comparison between water and nutrient stress effects on selected reflectance indices. The
200 kg N/ha plots served as experimental controls for comparison with the less fertilized
plots. Visually, plots that received little (50 kg/ha) or no fertilizer could be discerned
from the control plots. However, the unaided eye could not distinguish among the 100,
150, and 200 kg N/ha plots.

AVIRIS data were acquired over the VRAT field on July 22, 1999. The AVIRIS
image cube consisted of 3 m ground sample distance pixels at 224 spectral bands per
pixel. Data from several flight lines were collected and returned to the Jet Propulsion
Laboratory in Pasadena, California, for georeferencing and radiometric calibration. These
data were then corrected for atmospheric effects using the ATmosphere REMoval, or
ATREM routine (Gao et al., 1992). The relative reflectance imagery produced by
ATREM was then scaled to correspond more closely to measured in-field crop
reflectance through the use of an empirical line function procedure. Ground spectral data
were acquired by portable spectroradiometers (model ASD-FS, Analytical Spectral
Devices, Boulder, Colorado, USA). Canopy spectra of each plot were recorded from a
cherry picker elevated to approximately 5 m above the ground. Average spec
obtained from repeated spectral measurements of each plot (Figure la).

For present purposes, the AVIRIS data were truncated to cover the 400 to 1035 nm
range. These image data were then used to compute various derivative and ratio-based

indices that were tested for their capability as indicators of N deficiency in corn. First and



second derivatives were computed at 12 band locations within the 495 to 1025 nm range
suggested by Thenkabail et al. (2000) for use in the detection of pigment and moisture
variation in crop canopies (Table 1). At least three points were needed to compute the
second derivative, so bands 5 and 6 as well as bands 6 and 7 were combined for the
analysis. Additionally, the derivative indices of Penuelas et al. (1994) and the Yellowness
Index of Adams et al. (1999) were computed as defined by the authors (Table 2). For
comparison with the derivative indices, narrow-band ratio indices including the
Normalized Difference Vegetation Index (NDVI), Normalized Pigments Chlorophyll
Ratio Index (NPCI) (Penuelas et al., 1994), Physiological Reflectance Index (PRI)
(Gamon et al., 1992), and Water Band Index (Penuelas et al., 1993) were computed.
Derivatives and derivative-based indices were compared among treatments to
determine statistically significant effects at p < 0.01. Using image-processing software,
Regions of Interest (ROIs) were defined for each plot. Extracted ROI data were entered
into a spreadsheet and a Kolmogorov-Smirnov normality test was applied. In general,
extracted ROI data were not normally distributed. Therefore, a non-parametric Kruskal-
Wallis Analysis of Variance (ANOVA) (Haber and Runyon, 1977) and the Dunn
Multiple Comparison test (Siegel, 1956) were employed to determine statistical
differences. The Dunn test output a two-by-two pairing that quantified whether paired

plots are distinguishable from one another and the controls for a given p-value.



Results and Discussion

First derivatives of AVIRIS reflectances computed at 495, 568, 682 and 696, 982, and
1025 nm (Thenkabail et al.. 2000) provided separation among all N treatments (Table 1).
Although d1 at 568 nm provided separation among all N treatments, it remained
insensitive to water stress. Also, 568 nm was the only band at which d2 identified all N
treatments and water stress (Table 1). This result was somewhat unexpected since d2
serves to minimize the influence of soil reflectance (Demetriades-Shah et al., 1990).
Nevertheless, leaf area index was high and approaching a maximum value when the
AVIRIS data were acquired in late July. Thus, it is unlikely that soil reflectance
influenced canopy reflectance significantly. It is also noteworthy that while providing
separation among N treatments, d1 and d2 at 568 nm exhibited opposite sensitivities to
water stress. First and second derivatives at the remaining Thenkabail et al. (2000) bands
were far less effective in distinguishing among the N treatments (Table 1).

The d1 minimum in the green spectrum (dg) and d1 maximum near the reflectance
red edge (dRE) provided treatment separation (Table 2) similar to the derivatives at the
first five bands listed in Table 1. This suggests that in tandem, derivatives in the green-
peak and red-edge spectral regions might provide a method to distinguish between water
and nutrient stress in corn.

These observations corroborate earlier findings that the green-peak and red-edge
spectral regions are generally critical for the detection of plant stress (e.g., Schepers et al.,
1996 Carter and Knapp, 2001). The d2 maximum near the red edge (ddRE) identified

only the 0, 50, and 100 kg N/ha treatments separately from the controls (Table 2), as did



several d2 listed in Table 1. A similar separation of test plot treatments was true also for
the d1 maximum in the green spectrum (dG), which additionally was sensitive to water
stress (Figure 1c). Derivative-based, normalized difference indices represented by the
EGFN (normalized difference between dRE and dG) and the GGFN (normalized
difference between dG and dg) did not separate N treatments as well as derivatives per se
(Table 2). Penuelas et al. (1994) found the GGFN to correlate closely with photosynthetic
efficiency, but it performed poorly in the present study because dg and dG were similar in
value. Likewise, the EGFN and YI yielded low ranges in value among pixels. Thus, these
indices separated only the untreated and 50 kg/ha treatments from the controls.

A narrow-band NDVI derived from the 680 and 850 nm AVIRIS bands performed as
well as any derivative index in the detection of N deficiency (Table 2). Conversely, the
NPCI based on the 430 nm and 680 nm bands, which compare the relative amount of
chlorophyll to the total amount of chlorophyll plus carotenoids (Penuelas et al., 1994),
provided no separation of treatments. Both chlorophyll and the carotenoids absorb
strongly in the 300 to 500 nm range, but carotenoids do not absorb strongly in the red
spectrum (Margalef, 1974). Thus, although nutrient stress may yield greater leaf
concentrations of carotenoids relative to chlorophyll (Young and Britton, 1990),
chlorophyll concentration can be estimated by comparing leaf reflectance betweer
spectral regions (Penuelas et al., 1994). In an earlier analysis of the present data that did
not involve reflectance-based indices, AVIRIS reflectance was most sensitive to N
treatment at 711 nm (Carter and Estep, 2002). Consequently, a modified NPCI

(NPCImod) derived from reflectances at 500 nm and 711 nm provided separation among



all N treatments with no sensitivity to water stress (Table 2). This heightened sensitivity
to N deficiency translated to an increased visual contrast among treatments in the
NPCImod image (Figure 1d). The brighter areas in the image depict N deficiency. while
the water stressed area is not seen.

The ratio of reflectances at 970 nm and 900 nm (WBI) separated the 0, 50, and
100 kgN/ha treatments from the controls and indicated water stress (Table 2). However,
d1 at the 982 nm and 1025 nm bands recommended by Thenkabail et al. (2000)
distinguished among all N treatments in addition to the water stressed area (Table 1).
Penuelas et al. (1993) found that the first derivative minimum in the 900 to 970 nm
region tracked the relative water content of leaves, as did the WBI. Although leaf water
content seemed to be the primary influence on reflectance in this near-infrared region,
leaf internal structure appeared to have some effect on reflectance, as noted also by others
(e.g., Maas and Dunlap, 1989; Aldakheel and Danson, 1997). This influence of leaf
internal structure on reflectance might be explained by a stress-induced increase in
intercellular air space. If nutrient or water stress effectively increased the amount of
intercellular air space in the corn leaves, the observed increase in near-infrared

reflectance would be explained (Gates et al., 1965). Even so, near-infrared reflectance has
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Conclusions

Derivative and band ratio indices derived from AVIRIS imagery acquired at 3 m

spatial resolution over the USDA ARS VRAT site at Shelton, Nebraska, were tested for



their capability to discriminate N deficiency and water stress in corn. Focusing upon
recommended band sets (Thenkabail et al., 2000) and derivative-based indices (Adams et
al., 1999; Penuelas et al., 1994), it was determined that the green. red edge. and near-
infrared spectra were especially important in discriminating among N fertilization
treatments and between nutrient and water stress. Relatively simple narrow-band indices,
such as an NDVI based on the 680 nm and 850 nm bands or a modified NPCI
incorporating the 500 nm and 711 nm bands, performed as well as any derivative index in
discriminating among all N treatments and in separating nutrient stress from water stress
(Table 2).

A prime motivation behind the use of derivative indices is their effectiveness in
minimizing the influence of soil background reflectance (Demetriades-Shah et al., 1990).
In the present study, this capability was muted by high leaf area indices within the
experimental plots. Nevertheless, derivative indices might also be useful in tracking
spectral shifts that occur in the far red spectrum when one moves from leaf to canopy
reflectances (Zhumar, 1993; Carter and Estep, 2002). These displacements in spectral
absorption features arise because of multiple radiation transfer among canopy leaves,

which serve to enhance absorption and move the red edge position toward longer

4

wavelengths in the far-red portion of the spectruim.
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Table and Figure Captions

Table 1

Separability of N treatments resulting from statistical analysis of AVIRIS image data®.

Table 2

Separation of N fertilization treatments in corn by selected reflectance-derivative and

narrow-band ratio indices derived from AVIRIS imagery®.

Figure 1
(a) Soil spectrum vice spectra of untreated and control plots, (b) USDA ARS VRAT field

with test plots and water stress area, (¢) dG image, and (d) modified NPCI result.
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Table 1

N Treatment Separation

Band Center Bandwidth N Treatment Separation

(nm) (nm) by dl by d2
568 10 0, 50, 100, 150 0, 50, 100, 150, W
495 30 0, 50, 100, 150, W 0, 50, 100
682 and 696 4 and 4 0, 50, 100, 150, W 0, 50, 100
982 30 0, 50, 100, 150, W 0, 50, 100, W
1025 10 0, 50, 100, 150, W 0, W
550 20 0, 50, 100 0, 50, 100
525 20 0,50, 100, W 0, 50, 100
668 and 682 4 and 4 0,50, 100, W 0, 50, 100
720 10 0, 50, 100, W 0,50, 150, W
920 20 0, 50,100, W none
845 70 0, 50,150, W W

? Capabilities of spectral reflectance curve derivatives to separate N treatments at

p <0.0001 (detection of water stress indicated by W). Cases where nutrient stress was

detected but water stress was not suggest that the tested algorithm is capable of

discerning between nutrient and water stress in corn.
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Table 2

Index Definition N Treatments Separated
Derivative
dg d1l minimum, green 0, 50, 100, 150
dRE d1 maximum, red edge 0, 50, 100, 150, W
ddRE d2 maximum, red edge 0, 50, 100
dG dlmaximum, green 0, 50, 100, W
EGFN (dRE-dG)/(dRE+dG) 0, 50
YI d2 0, 50
GGFN (dG-dg)/(dG+dg) none
Reflectance Ratio
NDVI (R850-R680)/(R850+R680) 0, 50, 100, 150
NPClImod (R711-R500)/(R711+R500) 0, 50, 100, 150
WBI R970/R900 0, 50, 100, W
PRI (R550-R530)/(R550+R530) 0, 50, 150
NPCI (R680-R430)/(R680+R430) none

* Capabilities of spectral reflectance curve derivatives or ratios to separate N treatments at
p <0.0001 (detection of water stress indicated by W). Cases where nutrient stress was

detected but water stress was not suggest that the tested algorithm is capable of

discerning between nutrient and water stress in corn.

16



Figure 1
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