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Abstract. The field of Software Product Lines (SPL) emphasizes build- 
ing a core architecture for a family of software products from which 
concrete products can be derived rapidly. This helps to reduce time- 
to-market, costs, etc., and can result in improved software quality and 
safety. Current AOSE methodologies are concerned with developing a 
single Multiagent System. We propose an initial approach to developing 
the core architecture of a Multiagent Systems Product Line (MAS-PL), 
exemplifying our approach with reference to a concept NASA mission 
based on multiagent technology. 

1 Introduction and Motivation 

Many organizations, and software companies in particular, develop a range of 
products over periods of time that exhibit many of the same properties and 
features. The multiagent systems community exhibits similar tends. However, 
the community has not as yet developed the infrastructure to develop a core 
multiagent system (hereafter, MAS) from which concrete (substantially similar) 
products can be derived. 

The software product line paradigm (hereafter, SPL) augurs the potential of 
developing a core architecture from which customized products can be rapidly 
generated, reducing time-to-market, costs, etc. (21, while simultaneously improv- 
ing quality, by making greater effort in design, implementation and test more 
financially viable, as this effort can be amortized over several products. The 
feasibility of building MASS product lines is presented in [E], but no specific 
methodology is proposed. In this paper, we propose an approach for perform- 
ing the first stages in the lifecycle of building a multiagent system product line 

One of the first steps is to identify a core architecture for the family of 
software products. Unfortunately, there is no AOSE methodology that demon- 
strates haw to do this for MAS-PLs. Our approach is based on the Methodology 
fragment for analysing Complex Multiagent Systems (MaCMAS) [17], an AOSE 
methodology fragment focused on dealing with complexity, which uses UML as 

(MAS-PL). 



a modeling language and builds on our current research and development expe- 
rience in the field of SPLs. 

We use goal-oriented requirement documents, role models, and traceability 
diagrams in order to build a first model of the system. Later, we use information 
on variability and commonalities throughout the products to propose a trans- 
formation of the prior models that represent the core architecture of the family. 

2 

The field of software product lies covers the entire software lifecycle needed 
to develop a family of products where the derivation of concrete products is 
achieved systematically or even automatically when possible. Its software pro- 
cess is usually divided in two main stages: Domain Engineering and Application 
Engineering. The former is responsible for providing the reusable core assets that 
are exploited during application engineering when assembling or customizing in- 
dividual applications [5]. Entering into details, we might say that, generally, both 
stages can be further divided into requirements, analysis, design, and implemen- 
tation (a typical software development lifecycle). 

The domain requirements phase describes the requirements of the complete 
family of products, highlighting both the common and variable features across 
the family. In this phase, commonality analysis is of great importance for aiding 
in determining which are the commonalities and variabilities. The models used 
in this phase for specifying features show when a feature is optional, mandatory 
or alternative in the family. One of the most accepted models here are feature 
models [3]. A feature is a characteristic of the system that is observable by 
the end user [7]. As can be seen, features represent a concept quite similar to 
system goals and the models used to represent them present a correlation with 
hierarchical system goals requirement documents [15]. Our approach is based on 
this correlation. 

The domain analysis phase produces architecture-independent models that 
define the features of the family and the domain of application. Many approaches 
have been discussed in the literature to perform this modeling. Some of these 
approaches use role models to represent the interfaces and interactions needed 
to cover certain functionality independently (a feature or a set of features). The 
most representative are [6,19], but similar approaches have appeared in the 00 
field, for example [4,18]. We build on this correlation using agent-based role 
models at the acquaintance organization to represent features independently. 

Then, in the domain design phase, a core architecture of the family is pro- 
duced adding mechanisms such as components that can be customized, or frame- 
works for these components, in order to enable the rapid derivation of prod- 
ucts. In SPL, role models are composed to produce the core architecture. Here, 
component-based models are used where each component is assigned a set of in- 
terfaces and a set of connectors to specify interactions among them. Again, this 
is similar approach to the approach of some AOSE methodologies in building 
the structural organization, e.g. [20]. 

Background on product lines and related work 



3 Preliminaries 

Before presenting our approach, we must show the main concepts needed to 
contextualize it. 

3.1 

The organizational metaphor has been proven to be one of the most appropriate 
tools for engineering a MAS. And has been successfully applied, e.g., [10,12,20]. 
It shows that a MAS organization can be observed from two viewpoints [20]: 

Acquaintance point of view: shows the organization as the set of interac- 
tion relationships between the roles played by agents. 

Structural point of view: shows agents as artifacts that belong to sub-organi- 
zations, groups, teams. In this view agents are also structured into hierar- 
chical structures showing the social structure of the system. 

Both views are intimately related, but they show the organization from rad- 
ically different viewpoints. Since any structural organization must include in- 
teractions between their agents in order to function, it is safe to say that the 
acquaintance organization is always contained in the structural organization. 
Therefore, a natural map is formed between the acquaintance organization and 
the corresponding structural organization. This is the process of assigning roles 
to agents [20]. Then, we can conclude that any acquaintance organization can 
be modeled orthogonally to its structural organization [8]. 

Acquaintance Organization 'us. Structural Organization 

3.2 Overview of MaCMAS/UML 

MaCMAS is the AOSE methodology fragment that we use for our approach 
[1711. It is specially tailored to model complex acquaintance organizations [16]. 

We have adopted this approach for several reasons. First, after applying it we 
obtain a hierarchical diagram, the traceability diagram, that is quite close to a 
feature model. Second, it matches well with product lines, since it also produces 
a set of role models that represent the materialization of each system goal at 
the analysis level. Third, it provides UML-based models which are the de-facto 
standard in modeling, and which will decrease the learning-curve for engineers. 
Fourth, it provides techniques to compose acquaintance models, which is needed 
for building the structural organization of the system, allowing us to group such 
system goals that are common for all the products in the product line, an thus 
helping us to build the feature model. 

For the purposes of this paper we only need to know a few features of MaC- 
MAS, mainly the models it uses. Although a process for building these models is 
also needed, we do not address this in this paper, and refer the interested reader 
to the literature on this methodology fragment. From the models it provides, we 
are interested in the following: 

See www.tdg-seville.info/members/joaquinp/macmas/ for details and case studies 
of this methodology 



a )  Static Acquaintance Organization View: This shows the static interac- 
tion relationships between roles in the system and the knowledge processed 
by them. In this category, we can find models for representing the ontology 
managed by agents, models for representing their dependencies, and role 
models. For the purposes of this paper we only need to detail role models: 
Role Models: show an acquaintance sub-organization as a set of roles col- 

laborating by means of several multi-Role Interaction (mRI) [14]. mRIs 
are used to abstract the acquaintance relationships amongst roles in the 
system. As mRIs allow abstract representation of interactions, we can 
use these models at whatever level of abstraction we desire. 

b) Behavior of Acquaintance Organization View: The behavioral aspect 
of an organization shows the sequencing of mRIs in a particular role model. 
It is represented by two equivalent models: 
Plan of a role: separately represents the plan of each role in a role model 

showing how the mRIs of the role sequence. It is represented using UML 
2.0 ProtocolStateMachines [ll, p. 4221. It is used to focus on a certain 
role, while ignoring others. 

Plan of a role model: represents the order of mRJs in a role model with 
a centralized description. It is represented using UML 2.0 StateMachines 
[ll, p. 4461. It is used to facilitate easy understanding of the whole be- 
havior of a sub-organization. 

c)  Traceability view: This model shows how models in different abstraction 
layers relate. It shows how mMs are abstracted, composed or decomposed 
by means of classification, aggregation, generalization or redefinition. Notice 
that we usually show only the relations between interactions because they 
are the focus of modeling, but all the elements that compose an mRI can also 
be related. Finally, since an mRI presents a direct correlation with system 
goals, traceability models clearly show how a certain requirement system 
goal is refined and materialized 

4 A NASA case study 

There has been significant NASA research on the subject of agent technology, 
with a view to greater exploitation of such technologies in future missions. 

The ANTS (Autonomous Nan0 Technology Swarm) concept mission,2 for ex- 
ample, will be based on a grouping of agents that work jointly and autonomously 
to achieve mission goals, analogous to a swarm in nature. 

Lander Amorphous Rover Antenna (LARA) is a submission, envisaged for 
the 2015-2020 timeframe, that will use a highly reconfigurable-in-form rover 
artifact. Tens of these rovers, behaving as a swarm, will be used to explore the 
Lunar and Martian surfaces. Each of these “vehicles” or rovers will have the 
ability to change its form from a snakelike form, to a cylinder, or to an antenna 
which will provide them with a wide range of functional possibilities. They are 
envisaged as possible building materials for future human lunar bases. 

http://ants.gsfc.nasa.gov/ 
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Fig. 1. Features model of our case study 

Prospecting Asteroid Mission (PAM) is a concept sub-mission based on the 
ANTS concepts that will be dedicated to exploring the asteroid belt. A thousand 
pico-spacecraft (less than lkg each) may be launched in space forming swarms, 
sub-swarms and teams, and deployed to study asteroids of interest in the asteroid 
belt. Saturn Autonomous Ring Array (SARA) is also a future mission similar to 
PAM whose goal is analyzing the Rings of Saturn. 

Although based on mainly the same concepts, these submissions differ. For 
example, in PAM, spacecraft should be able to protect themselves from solar 
storms, while in SARA as a higher gravitational force exists, and there is no risk 
of solar storms, the spacecraft should be capable of avoiding collisions with par- 
ticles of the rings and with other spacecraft, without caring about solar storms. 

ANTS represents a number of submissions, each with common features, but 
with a wide range of applicability, and hence several products. It lends itself 
naturally to an SPL approach. 

5 From requirements to traceability diagrams, its 
acquaintance organization and the feature model 

After applying MaCMAS, as we were building a MAS that covers the function- 
ality of all products in the family, we obtain a model of the acquaintance orga- 
nization of the system: role models, plan models and a traceability model. Once 
we have built the acquaintance organization, we have to modify the traceability 
diagram to add the information on variability and commonalities, as shown in 
Figure 1, to obtain a feature model of the family. We do not detail this process 
since it relies only on taking each node of the traceability diagram and deter- 
mining if it is mandatory, optional, alternative, or-exclusive, or if it depends on 
other(s), as shown in the figure. 



Fig. 2. Role model/features relationship 

’ MaCMAS guides this entire process using hierarchical goal-oriented require- 
ment documents from which all of the models are produced. Thus, there is a 
direct traceability between system goals and role models. When a system goal 
is complex enough to require more than one agent in order to be fulfilled, it 
requires a group of agents to work together. Hence, a role model shows a set of 
agents, represented by the role they play, that join to achieve a certain system 
goal (whether by contention or cooperation). MaCMAS represents all required 
joint processes that are carried out amongst roles to fulfil the system goal of the 
role model using mRIs, which also pursue system sub-goals as shown in Figure 2, 
where we can see the correlation between these elements and the feature model 
obtained from the traceability diagram. Note that the role model of this figure 
can be also seen in Figure 3. 

6 Our approach for building the core architecture 

To build the core architecture of the system we must include those features 
(that are linked with role models) that are common for all products and whose 
probability of appearing in a product is high. Once we have determined these 
features, we must compose their role models to build the structural organization 
of our core architecture. In the following, we detail how to select the features 
and how to compose them. 



6.1 Commonality analysis 

To perform commonality analysis, that is to say, to obtain the probability that 
a feature is common to all products in the family, we use the definition given 
in [l], which proposed a transformation of the feature model into a Constraint 
Satisfaction Problem (CSP) over which we apply the following definition for 
commonality: 

Definition 1 (Commonality). Let $M be a CSP representing a feature model 
and F the feature we want to know its commonality. 

cardinaE@lter($M, F = true)) 
cardinal ($M ) commonalitg($M, F )  = 

Where cardinal(filter($M, F = true)) gives us the number of products that 
contain the feature and cardinal($M) gives us the total number of products, 
deriving the probability of a feature being present in a product. 

When we derive a 1, this means that this feature, and consequently its role 
model, must be used to build the core architecture. When we obtain a value 
less than 1, we take into account only those features for which we obtain a 
commonality greater than a threshold that must be determined empirically for 
each domain. 

Once we have determined the set of features, and thus, the set of role models 
to be taken into account for the core architecture, we must compose them as 
described in the following section. 

6.2 Composing role models 

We have to take into account that when composing several role models, we can 
find emergent roles and mRIs, artifacts that appear in the composition yet they 
do not belong to any of the initial role models; composed roles and mRIs, the 
roles and mRIs in the resultant models that represent several initial roles or 
mRIs as a single element; and, unchanged roles and mRIs, those that are left 
unchanged and imported directly from the initial role models. 

Once those role models to be used for the core architecture have been de- 
termined, we must complete the core architecture by composing role models. 
Importing an mRI or a role requires only adding it to the composite role model. 
The following shows how to compose roles and plans. 

When several roles are merged in a composite role model, their elements must 
be also merged as follows: 

Goal of the role: The new goal of the role is a new goal that abstracts 
all the role goals of the role to be composed. This information can be found in 
requirements hierarchical goal diagrams or we can add it as the and (conjunction) 
of the goals to be composed. In addition, the role goal for each mRI can be 
obtained from the goal of the initial roles for that mlU. 

Cardinality of the role: It is the same as in the initial role for the corre- 
sponding mRI. 
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A) Plan Model 

B) Role Model 

Fig. 3. Self-protection from solar storms autonomic property model 

Initiator(s) role(s): If mFU composition is not performed, as in our case, 
this feature does not change. 

Interface of a role: All elements in the interfaces of roles to be merged must 
be added to the composite interface. Notice that there may be common services 
and knowledge in these interfaces. When this happens, they must be included 
only once in the composite interface, or renamed, depending on the composition 
of their ontologies. 

Guard of a role/rnItI: The new guards are the and (conjunction) of the 
corresponding guards in initial role models if roles composed participate in the 
same mRI. Otherwise, guards remain unchanged. 

The composition of plans consists of setting the order of execution of mRIs in 
the composite model, using the role model plan or role plans. We provide several 
algorithms to assist in this task extraction of a role plan from the role model 
plan and vice versa, and aggregation of several role plans; see [13] for further 
details of these algorithms. 

Thanks to these algorithms, we can keep both plan views consistent auto- 
matically. Depending on the number of roles that have to be merged we can base 
the composition of the plan of the composite role model on the plan of roles or 
on the plan of the role model. Several types of plan composition can be used for 
role plans and for role model plans: 

Sequential: The plan is executed atomically in sequence with others. The 
final state of each state machine is superimposed with the initial state of the 
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B) Role Model 

Fig. 4. Orbiting and measuring an asteroid autonomous property 

state machine that represents the plan that must be executed, except the initial 
plan that maintains the initial state unchanged and the final plan that maintains 
the final state unchanged. 

Parallel: The plan of each model is executed in pardel. It can be docu- 
mented by using concurrent orthogonal regions of state machines (cf. [ll, p. 
4351). 

Interleaving: To interleave several plans, we must build a new state ma- 
chine where all mRIs in all plans are taken into account. Notice that we must 
usually preserve the order of execution of each plan to be composed. We can 
use algorithms to check behavior inheritance to ensure that this constraint is 
preserved, since to ensure this property, the composed plan must inherit from 
all the initial plans [9]. 

The composition of role model plans has to be performed following one of the 
plan composition techniques described previously. Later, we are interested in the 
plan of one of the composed roles, as it is needed to assign the new plan to the 
composed roles; we can extract it using the algorithms mentioned previously. 

We can also perform a composition of role plans following one of the tech- 
niques to compose plans described previously. Later, if we are interested in the 
plan of the composite role model, for example for testing, we can obtain it using 
the algorithms mentioned previously. 
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Fig. 5. Composed Role Model and plan model 

7 Example of how to build part of the core architecture 
of our case study 

We use the following fictitious scenario to document our example: We have real- 
ized that the commonality for the features for self-protection from a solar storm, 
whose role model is shown in Figure 3, and for orbiting, whose role model is 
shown in Figure 4, is sufficient to add them to the core architecture, since they 
appear in all the possible flying missions. 

As these features are related, since if a spacecraft is orbiting and measuring 
and it determines that there exists a risk of a solar storm, the spacecraft must 
first escape the orbit and later power down subsystems or use its sail as a shield 
to avoid crashing, we axe forced to compose them to model their dependencies 



and provide agents with all the roles needed to safely protect from solar storms 
in any situation. Notice that we have limited our example to two role models to 
simplify the example, but in the real world we must also take into account the 
rest of the related features. 

As a result, we must compose both models and their plans. The composition 
of both role models is shown in Figure 5. As we can see, the roles Orbiter and 
SelfPmtectSC have been composed into a single role called SelfPmtectingOrbiter 
following the prescription shown in the previous section. We can observe that the 
rest of roles have been left unchanged and that all mRIs have been also added 
without changes. 

In addition, as the self protection must be taken into account during the 
whole process of orbiting and measuring, and not in a concrete state, we must 
perform a parallel composition of their plans, as is shown in Figure 5. 

8 Conclusions 

The field of software product lines offers many advantages to organizations pro- 
ducing a range of similar software systems. Reported benefits of the approach 
include reduced time-to-market, reduced costs, and reduced complexity. Simul- 
taneously, the ability to spread development costs over a range of products, has 
enabled adopters to invest more significantly in software quality. 

Multiagent systems have a wide field of applicability, across a whole plethora 
of domains. However, many key features, including communication, planning, 
replication, security mechanisms, to name but a few, are likely to be very similar 
across all MAS, particularly in a given domain. 

Key to the development of MAS-PLs is the identification of the core MAS 
from which a family of concrete products may be derived. We have described 
an initial approach to building this part of the infrastructure needed to enable 
a product line approach in MAS. 

The approach matches well with existing AOSE methodologies and promises 
to open a field of research and development that may make MAS and MAS-based 
systems more practical in an industrial context. We are continuing to investigate 
the use of such an approach in current and future NASA missions. Initial results 
are promising and over time we envisage significant benefits from employing a 
product line approach to such missions. 
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