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ABSTRACT

Marshall Space Flight Center’s Natural Environments Branch has developed Global
Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system
destinations. Mars-GRAM has been widely used for engineering applications including
systems design, performance analysis, and operations planning for aerobraking, entry
descent and landing, and aerocapture. Preliminary results are presented, comparing
Mars-GRAM with measurements from Mars Reconnaissance Orbiter during its
aerobraking in Mars’ thermosphere. Venus-GRAM is based on the COSPAR Venus
International Reference Atmosphere (VIRA), and is suitable for similar engineering
applications in the thermosphere or other altitude regions of the atmosphere of Venus.
Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall
Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In
addition to including an updated version of MET, it now includes an option to use the
Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended
Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and
results from Venus-GRAM and Earth-GRAM thermospheres are also presented.
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Marshall Space Flight Center’s Natural Environments Branch has developed Global
Reference Atmospheric Models (GRAMSs) for Mars, Venus, Earth, and other solar system
destinations. Mars-GRAM has been widely used for engineering applications including
systems design, performance analysis, and operations planning for aerobraking, entry
descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-
GRAM with measurements from Mars Reconnaissance Orbiter (MRQO) during its
aerobraking in Mars’ thermosphere. Venus-GRAM is based on the Committee
on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is
suitable for similar engineering applications in the thermosphere or other altitude regions of
the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been
represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has
recently been revised. In addition to including an updated version of MET, it now includes
an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter
Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some
characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also
presented.

I. Introduction

arshall Space Flight Center’s Natural Environments Branch has developed Global Reference Atmospheric

Models (GRAMs) for Mars, Venus, Earth, and other Solar system destinations'®. Mars-GRAM has been
widely used for engineering applications including systems design, performance analysis, and operations planning
for aerobraking, entry descent and landing, and aerocapture. The thermosphere section of Mars-GRAM is based on
output data sets from the University of Michigan Mars Thermospheric General Circulation Model (MTGCM)’.
Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference
Atmosphere (VIRA)®, and is suitable for similar engineering applications in the thermosphere or other altitude
regions of the atmosphere of Venus. For Venus-GRAM, the thermospheric section has been extended to higher
altitudes by using a simple constant-temperature, diffusive separation model. Until recently, the thermosphere in
Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model*. Earth-GRAM has
recently been revised. In addition to including an updated version of MET, it now includes an option to use the
Naval Research Laboratory Mass Spectrometer Incoherent Scatter (MSIS) Radar Extended Model (NRLMSISE—O())
as an alternate thermospheric model.

! Flight Vehicle Atmospheric Environments, Natural Environments Branch, EV13.
2 Senior Principal Scientist, Natural Environments Branch, EV13/Morgan Research Corporation, Senior Member.
* Flight Vehicle Atmospheric Environments, Natural Environments Branch, EV13, Member.
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As illustrated by Fig. 1, thermospheric densities for Venus, Earth, and Mars are quite similar, compared to

thermospheric densities for other planets,
exemplified by Titan and Neptune profiles
in this figure.

Preliminary results are presented,
comparing Mars-GRAM thermospheric
densities with accelerometer-measured
density from Mars Reconnaissance Orbiter
(MRO) during its aerobraking in Mars’
thermosphere. Some characteristics and
results from Venus-GRAM and Earth-
GRAM thermospheres are also presented.

II. Mars-GRAM Thermosphere

A major application for the
thermospheric part of Mars-GRAM has
been in support of aerobraking planning
and operations at Mars. Aerobraking
involves multi-orbit passes through the
atmosphere, using density-drag to
gradually circularize a high-eccentricity
(captured) orbit into a more -circular
operations (science) orbit. This contrasts
with aerocapture, which uses a single drag
pass through the atmosphere to get into a
captured orbit from interplanetary transfer
orbit. Typical altitudes and atmospheric
densities for aerobraking and aerocapture
at Mars, or other destinations, are shown in

Fig. 1.
Mars Reconnaissance Orbiter (MRO) is
currently performing aerobraking

operations at Mars. Figure 2 shows
preliminary results comparing Mars-
GRAM density with MRO accelerometer-
derived density®. A height offset of +5 km
was used for Mars-GRAM. The range of
altitudes and latitudes encountered during
this observation period are given in the
figure labels. Since MRO is in a Sun-
synchronous orbit, each periapsis pass
occurs at the same local time, but at a
different longitude. The large observed
orbit-to-orbit variation in periapsis density
(about 21% standard deviation in Fig. 2) is
due to longitude-and-altitude-varying
waves near periapsis (a  possible
combination of stationary or traveling
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Figure 1. Comparison of typical profiles of atmospheric density
for Venus, Earth, Mars and other planets. Typical altitudes and
densities for aerocapture or aerobraking are indicated by the
vertical dashed lines.
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Figure 2. Preliminary data for density ratio
(accelerometer/Mars-GRAM) ~ from Mars Reconnaissance
Orbiter (MRO) aerobraking operations.

planetary-scale waves plus local, large-scale gravity waves). Mars-GRAM values used for the ratios in Fig. 2 are for
the mean atmosphere only (not including ‘wave-perturbation effects).
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HI. Venus-GRAM Thermosphere

Below 250 km altitude, Venus-GRAM is based on the Venus International Reference Atmosphere (VIRA)®
model. The Venus-GRAM thermosphere has been extended to an altitude of 1000 km, by a model based on the

following assumptions:

e VIRA conditions and constituents at 250 km are used as lower boundary values
¢ Constant (exospheric) temperature is assumed above 250 km (exospheric temperature = local VIRA

temperature at 250 km)

e Hydrostatic conditions are computed separately for each constituent (diffusive separation)
o Total pressure is computed from constituent partial pressures
e  Mass density is computed from constituent number densities

Figure 3 shows a plot of typical Venus-
GRAM exospheric temperature versus time
of day, together with altitude-time contours
of Venus-GRAM thermospheric density.
As expected, exospheric temperature is
highest (about 300 K) for a few hours on
either side of solar noon. Normally,
hydrostatic conditions mean that densities
at high altitudes are larger for higher
exospheric temperatures (density increases

as the entire atmospheric column expands,.

because of larger temperatures). However,
Fig. 3 shows that, above about 300 km
altitude, density is at a relative minimum
near solar noon, despite the higher values
of exospheric temperature at this time of
day. This apparent anomaly can be
explained from information in Fig. 4 and
Fig. 5, which show (respectively) contours
of mean molecular weight (M) and density
scale height (H) versus altitude and local
time. H is proportional to T / M, where T is
temperature. Higher exospheric
temperature near noon (Fig. 3) would tend

to make H larger near this time of day.
However, higher values of M near noon
(Fig. 4) would tend to make H smaller near
this time of day. For conditions of Fig. 3 -
Fig. 5, the M effect dominates, making H
smaller near noon (Fig. 5). Since density
varies with altitude z as Exp(-z/H), smaller
H near noon means that density falls off
more rapidly near noon than in morning or
afternoon. Hence smaller density values
are seen near noon above about 300 km in
Fig. 3.

IV. Earth-GRAM Thermosphere

The thermosphere in Earth-GRAM has
been represented by the Marshall
Engineering Thermosphere (MET) model*.
For an anticipated release in late 2006,
Earth-GRAM has been revised, to
including an updated version of MET, plus
an option to use the Naval Research
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Figure 3. Contours of Venus thermospheric density versus
altitude and time of day, and a plot 'of exospheric temperature
(un-pumbered line) versus time of day, at Latitude=0, Ls=0
(Spring equinox). Density contours are labeled in umits of Log
base-10 of density in kg/m’.
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Figure 4. Contours on Venus mean molecular weight (M) versus
altitude and time of day, at same conditions as in Figure 3.
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Laboratory Mass Spectrometer Incoherent

Scatter (MSIS) Radar Extended Model -

as an alternate

(NRLMSISE-00)’
thermospheric model.

A sample comparison of MET and MSIS
density values is given in Fig. 6, which plots
contours of MET/MSIS ratio versus altitude
and latitude for January at 13 hours local
time, for solar activity conditions given in the
figure caption. Figure 6 shows MET/MSIS
density ratios near 1, except at high northern
(winter) latitudes greater than about 60
degrees, and altitudes either above about 600
km or below about 150 km.
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