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Abstract

It is well known that electronics placement in large-scale human-rated
systems provides opportunity to optimize electronics shielding through
materials choice and geometric arrangement. For example, several
hundred single event upsets (SEUs) occur within the Shuttle avionic
computers during a typical mission. An order of magnitude larger SEU
rate would occur without careful placement in the Shuttle design. These
results used basic physics models (linear energy transfer (LET), track
structure, Auger recombination) combined with limited SEU cross section
measurements allowing accurate evaluation of target fragment
contributions to Shuttle avionics memory upsets. Electronics shielding
design on human-rated systems provides opportunity to minimize
radiation impact on critical and non-critical electronic systems.
Implementation of shielding design tools requires adequate methods for
evaluation of design layouts, guiding qualification testing, and an adequate
follow-up on final design evaluation including results from a
systems/device testing program tailored to meet design requirements.

Introduction

Improved spacecraft shield design requires early entry of radiation constraints into
the design process to maximize performance and minimize costs. As a result, we have
been investigating computational procedures to allow shield analysis starting with
preliminary design concepts through high-fidelity final design models (Wilson et al.
2003). Of particular importance is the need to implement probabilistic models to account
for design uncertainties (Wilson et al. 2004) in the context of optimal design processes
(Qualls et al. 2003). These requirements need supporting tools with high computational
efficiency to enable appropriate design methods. Only the HZETRN code of the National
Aeronautical and Space Administration (NASA) has so far been identified for this
purpose within the NASA STD-3000 (2005) document. As a result, Wilson et al. (2005)
have prepared a review of past HZETRN code development, verification, and validation.
In addition, there has been renewed interest in incremental improvements of the
HZETRN code to assure the timely development of improved efficient computational
procedures to support new design processes.
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As NASA’s newly defined technology development spirals are now progressing,
there is a need to provide design tools for the early spiral processes for return to and
further exploration of the moon (development of a Crew Exploration Vehicle, CEV) in
preparation for going on to Mars. Provision of such design methods is critical to the use
of low-cost commercial-off-the-shelf (COTS) electronic devices and systems with their,
often, high radiation sensitivity and manufacture variability. A similar shield design tool
development activity for human protection under the Constellation Program already
includes evaluation of the natural and induced environments mapped throughout the
modeled vehicle to assure astronaut safety, thus providing most of the software
framework required for electronics shield design and evaluation including charge buildup
in dielectric components. Preliminary software has likewise been prepared for JPL’s
Team X multidisciplinary design environment. The present project would prepare
modified software tools for use in electronics shield design with appropriate NASA
mandated verification and validation processes using Shuttle and International Space
Station (ISS) flight data. This provides a well-validated tool for use in Crew Exploration
Vehicle design and first flight in low Earth orbit (LEO) validation. User-friendly design
engineering interfaces for use in multidisciplinary design processes allowing optimization
and  reliability  design
methods supported by high-
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autonomous  optimiza-
tion methods for placement of augmentation materials (Qualls et al. 2003). The
autonomous optimization methods are well-suited for the Multidiscplinary Optimization
(MDO) procedures in the bottom tier of Fig. 1. Clearly, such methods require an
infrastructure of high-performance computational technology and efficient computational
procedures. Consequently, the dose maps used to locate radiation hot spots within the
spacecraft design as shown in Fig. 2 can be generated in a few minutes and directional
dose patterns used to examine the shielding around an exposure location can be generated
at arbitrary locations in several seconds (VerHage et al. 2002). Full collaborative
capability was demonstrated for the ISS simulation between the Langley Research Center
CAVE and the Glenn Research Center RAVE facilities using the ISS simulation models
and avatars representing members in the distal facility.

The development environment for the web-based applications is shown in Fig. 3.
The user/developer interface is handled by a Wiki through which process functionality is
controlled for the user and version control is implemented for the developers. The
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functionality and testing is facilitated by interface with a vast array of computational
infrastructure for development, testing, and applications as noted in the figure. The entire
system is regularly backed up through a mass storage device (DMSS) housed at the
Langley Research Center.

Version control is part of the verification and validation process mandated as
NASA standard practice for engineering software development (NASA Procedure
Requirement NPR 7150.2). It also coordinates the work of several people working on
different pieces or versions of the same code or codes. It also facilitates automated
testing of components and integrated software systems for verification and validation. It
allows a project-wide undo button back to a specific date to interrogate functionality
before a specific feature was added or modified allowing debugging of code error and
verification. It also supports release of special versions (e.g., a version for the recent
Exploration Systems Architecture Study--ESAS) with continued updating of original
versions. It functions as a project time machine to track new methods and retrace to old
methods for comparisons and verification.

Version control is implemented in the context of a repository structure shown in
Fig. 4. The heart of design processes lies in environmental models, transport methods,
and supporting cross section datasets. Response functions depend on the material being
protected and human geometry and response functions are those currently modeled in the
system along with detector response functions used for flight validation. The monolithic
portion of the chart is the contact point with final research codes to be transitioned into
the engineering framework providing the interface with the research groups developing
new verified and validated methodologies (Wilson et al. 2006a, 2006b).

Enabling Technology

The development of such a system is enabled by high-performance computational
methods based on direct solution of the Boltzmann transport equation.  This
multidimensional system of partial integral-differential equations defined over three
position variables and three motion variables describe all of the processes by which
ionizing radiation (in this context radiation refers to waves and energetic particles)
interact with bulk materials including molecular, atomic, and nuclear processes. The
Boltzmann equation describes the radiation flux of type j particles ¢(x,©2,E) (including

photons) as
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solar minimum conditions incident on aluminum of varying thickness as shown in Fig. 5
(Tweed et al. 2006). It is clear that the two solution methods are hardly distinguishable.
A second verification method is to compare the marching procedure (HZETRN) with a
full 3D Monte Carlo simulation (HETC). Such a comparison for the calculation of dose
equivalent in 30-cm of water shielded by 20 g/cm® of iron is shown in Fig. 6. A major
difference is in the computation time of the two codes. The HZETRN values are ready in
about 3 seconds for both the solar particle event and the full 1977 GCR spectra evaluated
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in parallel using a MicroVax Alpha machine while the HETC requires tens of hours for
the solar particle event alone while the GCR spectrum is expected to require orders of
magnitude more computational time. The Boltzmann equation can also be solved for an
incoming electron flux present at the material boundary. Again, high-performance
solution methods are developed and verified using Monte Carlo comparisons. The dose
in water from penetrating electrons and secondary photons is shown in Fig. 7 for the
Langley derived ELTRN code and the TIGER Monte Carlo code. Again, there are many
orders of magnitude differences in time required to get results with TIGER taking tens of
hours to complete.
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Boltzmann  equation the trapped particles in the SAA are anisotropic as seen by the
solution as was used ascending/descending differences in the lower graphs.

also in the verification
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process in Fig. 5. Such validation requires a detailed understanding of the response of
the detector systems. In this comparison, the large peak to the right is from the
penetrating iron ions and iron produced fragments. The width of this peak is determined
by fluctuations in the molecular/atomic collision processes. The next peak to the left is
due to manganese fragments produced in the breakup of the iron ions in nuclear collisions
and the width of this peak is determined by specific nuclear dynamics in the collision
process. Remaining peaks to the left are fragments produced with lesser charge.
The second valid-

ation method is through il e
flight measurements involv- PN - = cale
ing specific flight platforms. o STH N
Unlike the laboratory valid- A /{ : \
ation where the radiation ‘
source and material geo-
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§pacecraft, and uncertainty Fig. 10. Dose rate measured on a single descending passage
in detector response. In through the heart of the SAA compared to computational model
order to effectively use results.

flight measurements, one

must provide detailed analysis to isolate the cause of differences in flight data and
computational models. Some examples of this process are shown in Fig. 9. Two types of
datasets are available: time integrated and rate data shown in the upper and lower tiers of
Fig. 9 respectively. The time integrated response registered in thermo-luminescent
detectors located at standard locations within the ISS Service Module were generally in
good agreement with computational results from the omni-directional radiation models
available at the time of analysis as seen in the upper left of Fig. 9. Detector SM-6 located
in a thin pressure adapter section however was out of line with the remaining
measurements (Hugger et al. 2003). The directional dependence of the trapped radiation
in passage through the South Atlantic Anomaly was examined in an immersive virtual
reality environment as seen in the upper right of the figure and subsequently modeled for
the simulations giving a satisfactory explanation of the differences in the SM-6
measurements. The original omni-directional assumption allowed overestimation of
penetration of the thin pressure adaptor wall where in reality little of the trapped particles
enter this way but are intersected by thicker portions of the Service Module when
anisotropies are better accounted for in the models (Hugger et al. 2003). Anisotropies are
now a general feature of current LEO environmental models (Wilson et al. 2006a).

An example set of rate data measured by the Liulin-094 detector system in the US
Laboratory and Node 1 of ISS during 27 June-4 July 2001 (Dachev et al. 2006) is shown
in the lower tier of Fig. 9. One advantage of such a measurement is the clear separation
between the trapped component and the GCR background component. As seen on the
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lower left, there are great differences in dose rate for passages through the SAA
depending on location of the ascending and descending node lines. These differences in
ascending and descending passages are even better quantified when correlated with
invariant latitude (a geomagnetic related coordinate). A single pass through the SAA
along a descending phase trajectory is shown in Fig. 10 in comparison to the current
modeled values (Wilson et al. 2007).

A critical experiment was performed by Badhwar et al. (1995) using the PHIDE
instrument examining secondary particle spectra produced by GCR at high latitudes in
Shuttle orbit. In this experiment, the Shuttle geometry and materials as well as the GCR
environment with the geomagnetic cutoff are well understood. The detector was a well-
calibrated particle telescope so that the uncertainties usually associated with flight
experiments were minimized in this study. The measured and calculated secondary
protons produced by GCR penetration of the Shuttle hull are shown in Fig. 11. It is clear
that the secondary proton s gy ‘ '
production and transport - P G
processes in the current compu- & T /RS R
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Carlo values. The distribution of shielding about the detector is not clearly specified.

Guided by the comment that the shielding
about the detectors varied from 20-40 g/cm”
we have evaluated the LEO neutron spectra
from all environmental components (GCR,
trapped protons, albedo neutrons) in
aluminum spheres of thicknesses of 20, 30,
and 40 g/cm® for comparison to measured
results as shown in the figure.  The
preliminary results of recent computational
procedures are encouraging but require
further study.

Electronic Response Models

The computational models with
verification and  validation  processes
discussed to this point are common to any
shield design problem whether it is for
protecting astronauts, various materials, or
electronic devices. Specific shield design
application is through the specification of
responses and mission design requirements.
Similar to the case of human protection,
response functions are driven by basic
physical processes through which energy is
handed over to sensitive materials or tissues.
There are two main processes by which
energy is transferred to sensitive materials,
first is the transfer to the orbital electrons
leading to direct ionization and the second is
the displacement of atoms from well ordered
lattice sites on which the device function
depends.

The transfer of energy from a passing
energetic ion to orbital electrons provides a
local electron flux propagating from the ion
path into the material producing additional
ionization and excitation. Aside from the
addition of dose to the bulk material, these
electrons produce a current if local electric
fields are present and initiate chemical
change in materials through ionization and
excitation processes. Such energy deposition
events are studied in low-pressure gas filled
proportional counters and correlated with
theory as shown in Fig. 13. The high-energy
density in electronic devices provide high
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electron-hole pair densities near the central track of the ion path resulting in Auger
recombination effects limiting the response of electronic devices depending on the exact
nature of the energy deposit and the charge collection time of the device. Such effects
are seen in a CCD array (Charge Coupled Device) exposed to 2.4 MeV protons as shown
in Fig. 14. The total linear energy transfer (LET) from the ionization per distance
traveled related to the initial electron density within a pixel is shown in the figure. The
collected electrons are limited by Auger recombination as also shown in the figure and
are in good agreement with experimental measurements. Recombination chemistry is
also affected by the free radical density that similarly varies as a function of distance
from the ion path. These effects are seen in the chemically etched ion tracks where
etched track radii assumed proportional to the — :
LET in CR-39 nuclear track detectors as shown | Table 1. Validation of Shuttle shield
in Fig. 15. The experimental CR-39 LET model and memory SEU model
distribution ~ with  its limitations from — (SEU/C(?mp uter-day).

S . Mission Flight data Model
recombination chemistry and the modeled CR- STS51 > 13 152
39 response are shown with the modeled LET |~o7g75¢ 6.05 585
distribution where the main differences are for
low-energy target fragmentation event contributions which register more poorly in the
CR-39 detectors.

Auger recombination effects for low-energy target fragments within electronic devices is
demonstrated in the Shuttle computers (Shinn et al. 1995) with results of SEU rate
(SEU/computer-day) for STS-51 at low orbit inclination and STS-56 at high inclination shown in
Table 1. The SEU from target fragments produced mainly by protons and neutrons colliding
with the Si nuclei of the memory chips is grossly overestimated if the Auger processes
are ignored (Shinn et al. 1995).
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and electrons of energy E MeV. Also shown is the average energy transfer to the initially
displaced atom in units of eV and used to estimate the total number of displacements per
unit volume of material. The effects of thresholds due to lattice binding are clearly
displayed in these displacement functions. These functions were applied to analysis of

Langley developed GaAs shallow
junction solar cell short circuit current
experiments using low-energy proton and
electron beams as shown in Fig. 17. On
the basis of these studies, Wilson et al.
(1982) predicted that the equivalent 1
MeV electron damage coefficient, D(E),
would be dependent on the level of
reduction of the short circuit current as
shown in Fig. 18 for 20 and 80 percent
short circuit reduction levels.
Experimental confirmation of these
results was reported by Anspaugh and
Downing (1984). It is clear that physics
based response models are useful
approaches  for understanding the
response of materials to radiation insult.
From these models, one can design a
testing program to simulate the processes
affecting the material as a combination of
LET, dose, and displacement damage
effects.

Spacecraft Analysis Method

It is instructive to go through a
specific design process to see how the
above processes are brought together to
accomplish an end design product. The
SAGE-III instrument (Fig. 19) samples
light from the Earth’s atmosphere and
passes it down an optical bench to a
quartz grating which is focused on a CCD
array to quantify the optical frequency
distribution. The CCD is sensitive to
displacement damage in its active layers.
It was anticipated that energetic trapped
electrons would be a major limiting factor
in the performance of the device and a
tantalum shield was planned because of
the efficient multiple scattering limiting
electron penetration. A detailed shielding
model was developed as shown in Fig. 19
for the analysis. Although the electron
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induced displacements were indeed the major contributor to CCD degradation as
expected, it was neutrons produced in the tantalum shield that also contributed to driving
the CCD beyond requirements. An aluminum detector shield was designed to adequately
limit electron penetration and reduce the neutron component as shown in Fig. 20.

Concluding Remarks

The Constellation Program requires verified/validated/standardized analysis,
design, and testing procedures for quality assurance of future hardware. This involves
the improvement and validation of environmental models and computational procedures
for Constellation design teams. From a hardware perspective, environment and shielding
design tools will be coupled to hardware specific damage functions of which the first
level is evaluation of basic physics models for total ionization, displacement damage, and
linear energy transfer spectra. These basic quantities then couple to specific device
response models with shielding analysis and shield materials optimization. The output of
such analysis would include design specific testing protocols for qualification that assures
the proper mix of basic physical processes (dose, dose rate, displacement damage, and
LET spectral contributions) to be matched to available accelerator capabilities (electrons,
protons, high energy heavy ions). The design tool software can then be run in a design
validation to qualify with test-flight data in low Earth orbit for design prediction
validation mode for Lunar and Mars mission design validation. Developing design tools
plays a central role in the above processes and at minimum added costs when leveraged
out of the human protection program.
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