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In this paper, we present a method for trajectory generation and adaptive full-state
feedback control to facilitate spacecraft formation flying near the Sun-Earth L. Lagrange
point. Specifically, the dynamics of a spacecraft in the neighborhood of a Halo orbit
reveals that there exist quasi-periodic orbits surrounding the Halo orbit. Thus, a spacecraft
formation is created by placing a leader spacecraft on a desired Halo orbit and placing
follower spacecraft on desired quasi-periodic orbits. To produce a formation maintenance
controller, we first develop the nonlinear dynamics of a follower spacecraft relative to the
leader spacecraft. We assume that the leader spacecraft is on a desired Halo orbit trajectory
and the follower spacecraft is to track a desired quasi-periodic orbit surrounding the Halo
orbit. Then, we design an adaptive, full-state feedback position tracking controller for
the follower spacecraft providing an adaptive compensation for the unknown mass of the
follower spacecraft. The proposed control law is simulated for the case of the leader and
follower spacecraft pair and is shown to yield global, asymptotic convergence of the relative
position tracking errors.

I. Introduction

The Lagrange points of the Sun-Earth system have been exploited as key locations for space-based
astronomical observation stations.’»? These locations are equilibrium positions in the restricted three body
problem (RTBP), see Figure 1(a) for details. The first three Lagrange points in the RTBP (labeled as Ly, Lo,
and Lg) are points that are collinear with the two primary masses (Sun and Earth). The last two Lagrange
points in the RTBP (labeled as Ly and Ls) are equilibrium points such that each of these points combined
with the two primary masses yields an equilateral triangle. Each of the five equilibrium positions can host
a spacecraft for an indefinite time period. A benefit of using a Lagrange point observation station is that
spacecraft near these points obtain nearly an unobstructed view of the galaxy. Furthermore, missions near
the Lagrange points are sufficiently far from the Earth, such that environmental effects (e.g., atmospheric
and geomagnetic forces) do not affect spacecraft dynamics.

Future space missions,? that intend to utilize the Ly Lagrange point as the location for deep-space
observations and/or interstellar communication have the advantage that solar influences on the spacecraft
are minimal and space observations can be conducted on a frequent basis. In contrast, spacecraft that are to
perform the same types of missions in either Sun-synchronous or low Earth orbits about the Earth are not
suitable because these orbits expose the spacecraft to harsh physical conditions (e.g., gravitational and/or
atmospheric disturbances, space debris, etc.).

Recently, the European Space Agency has proposed the Darwin space mission,* which is to be deployed
near the Lo Lagrange point where it will search for life in the universe and investigate the evolution of
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galaxies. Scheduled for launch in 2014, the Darwin space mission will utilize six spacecraft to cooperatively
work together in order to search nearby planets for traces of life, in the form of infrared radiation.

An emerging technology to enhance space-based imaging/interferometry missions is spacecraft formation
flying (SFF). SFF enhances space mission performance by distributing mission tasks, which are usually
conducted by a monolithic spacecraft, to many small spacecraft. Thus, future space missions near the Sun-
Earth Lagrange points can greatly benefit from SFF. However, to effectively utilize this new technology for
space missions near the Sun-Earth Lagrange points requires proper design of spacecraft formations and for
each spacecraft in the formation to be precisely controlled to maintain a meaningful baseline.

Current spacecraft trajectory designs near the Sun-Earth Lagrange points consist of computing periodic
trajectories in the form of Lyapunov and Halo orbits around a Lagrange point.® 7 Unfortunately, these
designs are used specifically to provide desired reference trajectories only for single spacecraft missions. In
the current literature for SFF near a Lagrange point, a leader spacecraft is placed on a periodic orbit, e.g., a
Halo orbit, around a Sun-Earth Lagrange point and a follower spacecraft is placed near this periodic orbit
and a reference trajectory of the follower spacecraft relative to the leader spacecraft is designed. In Ref. 8,
reference trajectories for follower spacecraft are computed using classical orbital elements, which result in
bounded orbits around the leader spacecraft on a periodic orbit. In Ref. 9, feedback control is utilized to
produce reference trajectories for follower spacecraft. In addition, Ref. 10 provides a method of generating
reference trajectories for follower spacecraft using a numerical method, where the resulting trajectories are
quasi-periodic.

In this paper, we develop a leader-follower spacecraft formation, where the leader spacecraft is on a
periodic, Halo orbit around the Lo Lagrange point in the Sun-Earth system and the follower spacecraft is
to track a desired relative trajectory. Specifically, we first develop the dynamics of the follower spacecraft
relative to the leader spacecraft. Next, in the spirit of Ref. 10, we design a desired quasi-periodic relative
trajectory for the follower spacecraft. In contrast to Ref. 10, our trajectory design exploits the analytical
properties of the quasi-periodic relative trajectories to characterize spacecraft formations using a set of
parameters. Finally, we develop an adaptive full-state feedback control algorithm to enable the follower
spacecraft to track this desired quasi-periodic relative trajectory.

This paper is organized as follows. Section IT develops the mathematical model for the follower spacecraft
relative to the leader spacecraft. Section III describes a method of generating follower spacecraft trajectories
relative to the leader spacecraft orbit to create a spacecraft formation. Section IV formulates a trajectory
tracking control problem. Section V uses a Lyapunov-based approach to design a full-state feedback con-
trol law and a parameter update algorithm, which facilitate the tracking of given reference trajectories in
the presence of unknown follower spacecraft mass. Illustrative simulations are included in Section VI to
demonstrate the efficacy of the proposed trajectory generation and control design schemes. Finally, some
concluding remarks are given in Section VII.

II. System Model

In this section, we develop a nonlinear model characterizing the position dynamics of the follower space-
craft relative to the leader spacecraft near the Lo Lagrange point in the Sun-Earth system. Referring to
Figure 1, we assume that the Earth and the Sun rotate in a circular orbit around the Sun-Earth system
barycenter (center of mass) with a constant angular speed w. In addition, we attach an inertial coordi-
nate system {X,Y, Z} to the Sun-Earth system barycenter and a rotating, right-handed coordinate frame
{Z1,,YL,, 2L, } to the Lo Lagrange point with the xy,,-axis pointing along the direction from the Sun to the
Earth, the z1,-axis pointing along the orbital angular momentum of the Sun-Earth system, and the yy,,-axis
being mutually perpendicular to the zr, and 21, axes, and pointing in the direction that completes the
right-handed coordinate frame.
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A. Dynamics of a Spacecraft Relative to the L, Lagrange Point

In order to describe the dynamics of a spacecraft formation near the Lo Lagrange point, we must first
describe the dynamics of a spacecraft relative to the Ly Lagrange point. To do so, let ¢(t)2 [z y z]T € R3
denote the position vector from the spacecraft to the Lo Lagrange point, expressed in the {zr,, yL,, 2L, }
coordinate frame. In addition, let Rg_s(t) € R? and Rg_s(t) € R? denote the position vectors from the Sun
and Earth, respectively, to the spacecraft. Finally, let Ry,, Ry, and Rgs denote the distances between the
Sun-Earth system barycenter and the Lo Lagrange point, the Earth, and the Sun, respectively. Then, the

mathematical model describing the position of a spacecraft relative to the Ly Lagrange point is given by'!

mg + Cq+ N(q,s) = u, (1)

0 —1 0
where m is the mass of the spacecraft, C' is a Coriolis-like matrix defined as C Ame[ 10 o ], N is a
0
nonlinear term consisting of gravitational effects and inertial forces
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and u(t) € R? is the thrust control input to the spacecraft. Furthermore, the constants ug and pus in the
definition of N are defined as pug 2GMg and us 2 GMsg, respectively, where G is the universal gravitational
constant, Mg is the mass of the Earth, and Mg is the mass of the Sun.

B. Halo Orbit Trajectory

In this subsection, we describe a method to generate thrust-free, periodic trajectories around the Lo
Lagrange point in the form of Halo orbits. We present a succinct overview of a numerical algorithm to
generate these periodic trajectories. Additional details on the generation of these periodic trajectories can
be found in Refs. 5-7.

One numerical method” of generating thrust-free periodic orbits around the Ly Lagrange point in the
Sun-Earth system involves finding a proper set of position and velocity initial conditions to propagate the
spacecraft dynamics of (1), with the control thrust u set to zero. First, the Poincaré-Lindstedt method is
used to find a high order analytic approximation to a periodic trajectory in the neighborhood of the Lq
Lagrange point. Next, the initial conditions, based on the Poincaré-Lindstedt method, are used as an initial
seed in a numerical algorithm to find a better set of initial conditions leading to a periodic trajectory. This
numerical algorithm applies a Taylor series expansion to the spacecraft states with respect to the initial
conditions and time and truncates higher order terms, such that for Halo orbits the result is a set of 3 linear
equations with 4 unknown variables. Families of orbits can be characterized by fixing one of the unknown
variables so that the result gives an equal number of equations to unknowns. Solving the aforementioned
linear matrix equation and using the result to update the previous set of initial conditions provide a new
initial condition guess.

The spacecraft dynamics are then propagated using the new updated set of initial conditions to verify
trajectory periodicity. If the trajectory is sufficiently close to being periodic, then the initial conditions can
be used for further simulation, else the above numerical algorithm is used to solve for a new set of initial
conditions. Since the collinear Lagrange points are inherently unstable,” long-term propagation of spacecraft
dynamics using the initial conditions obtained in the above manner is futile. However, by exploiting the
symmetry property of Halo orbits (see below), we can artificially obtain a periodic orbit by computing
trajectory information during half of a period and reusing this trajectory data throughout other simulations.
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Halo orbits are classified as periodic trajectories that are symmetric with respect to the {zr,, 21, } plane
(i.e., yL, = 0), and are not confined to be in the orbital plane of the Sun and Earth. Halo orbits have the
distinguishing characteristic that their projections on the {yr,,, 21, } plane are curves that resemble a Halo.
In this paper, we let qu(t) = [zu(t) yu(t) 2u(t)]? € R3 denote the position vector from a point on a Halo
orbit to the Lo Lagrange point, expressed in the {zr,,yr,, 21, } coordinate frame. An initial seed for the
numerical algorithm of Ref. 7 consists of a spacecraft starting on the {zr,, z1,} plane with a nonzero initial
yL, and zp, velocity (ie., gu(0) = [z(0) 0 2u(0)]" and u(0) = [0 ¢u(0) 24(0)]"). Updates to the
initial o1, position and y1,, velocity contribute to finding a closed periodic trajectory. In addition, the initial
21, position determines the size of the Halo orbit. Figure 1(b) shows a typical Halo orbit trajectory around
the Lo Lagrange point.

In this paper, we use Halo orbits as the reference trajectory for the leader spacecraft. The control design
framework of Ref. 11 can be employed to ensure that the spacecraft dynamics of (1) tracks a Halo orbit
reference trajectory. In a subsequent subsection, we will describe the dynamics of the follower spacecraft
relative to the leader spacecraft on the Halo orbit. Finally, we denote Rg_u(t) € R® and Rg_nu(t) € R? as
the position vectors from the Sun and the Earth, respectively, to the Halo orbit.

Remark I1.1 The Halo orbit trajectory satisfies the spacecraft dynamics of (1) under the condition that the
spacecraft control input is zero. Moreover, we express the leader spacecraft dynamics on the Halo orbit as

mdy + Cqu + N(qu,H) = 0. (2)

We note that the Halo orbit is a periodic trajectory with a frequency denoted as wy.

C. Follower Spacecraft Dynamics

In this subsection, we describe the dynamics of the follower spacecraft relative to the leader spacecraft
tracking a no-thrust, periodic Halo orbit trajectory gy without deviating from this orbit for all time. To
describe the dynamics of the follower spacecraft, we express the position vector of the follower spacecraft
relative to the Lo Lagrange point in the coordinate frame {z,,yL,, 21, } as Qty, (t) = [a:fL2 Yy, szJT €
R3. In addition, we denote Rs_, (t) € R® and Rg_(t) € R? as the position vectors from the Sun and
Earth, respectively, to the follower spacecraft. Using (1), the follower spacecraft dynamics relative to the Lq
Lagrange point can be expressed as

medey, + Cedry, + Ney, (8, »81) = ut, (3)

0 —1 0
where my is the mass of the follower spacecraft, Ct is a Coriolis-like matrix defined as Ct 2 2mw [ 10 o } ,
0 0 0

N, is a nonlinear term consisting of gravitational effects and inertial forces defined as Ny, Q%N (qty,, > 88)s
and ug(t) € R? is the thrust control input to the follower spacecraft.

Next, we define the relative position between the follower and the leader spacecraft g¢(t) € R? as ¢ ﬁqu2 —
qu- To obtain the dynamics of the follower spacecraft relative to the leader spacecraft, we differentiate g¢
with respect to time twice and multiply both sides of the resulting equation by ms to produce

meds = mede,, — MiGH- (4)

Next, we solve for ¢y in (2), multiply the resulting equation by m¢, and substitute the result into (4) to yield
miGe + Crgs + Ni(gr) = ur, (5)

where (3) has been used. Note that N¢ is a nonlinear term defined as Ng QN% (qu2 ,s¢) — Nu(qu, H), where

Ny is defined as Ny ﬁ%N(qH,H).
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Remark I1.2 The Coriolis matriz C; satisfies the skew symmetric property of x* Crx = 0, Va € R3.

Remark I1.3 The left-hand side of (5) produces an affine parameterization meGs + Cege + Ne(ge) =
Y (Gr, 4e, qr)me, where my is the unknown, constant mass of the follower spacecraft and Y(-) € R? is a
regression matriz defined as

i — 2wy —W2x ps(@s+azu+ R, +Rs) + pE(@steu+Ry, —Re)  ps(@atRi,+Rs)  pe(rn+Ri, —Re)
f £ f [ E TRE— s I° 1Rs_ul® IRE—ul®
A - Qwi 2 ks (ys+yn) HE (Y t+yH) HS YH HE YH
WIrs — W — _ .
Yo Yo+ 2wTe = WYt T R T TReoo 1P TRs—ul®  TEe—ul® (6)

~~ s (zetznH) HE(2et+2zH) HS ZH HE ZH
3 _ _
Pt Ths oo P T TRe P~ Ths—ul® — TRe nl®

III. Spacecraft Formation Design

In this section, we exploit Ref. 10 to develop a method of designing reference trajectories for the follower
spacecraft relative to the leader spacecraft on the Halo orbit trajectory. Specifically, we present a method of
designing quasi-periodic orbits around a nominal Halo orbit. These quasi-periodic orbits will be used as the
desired trajectories for the follower spacecraft. Furthermore, we will exploit special characteristics of these
quasi-periodic orbits to parameterize spacecraft formations about the leader spacecraft on the Halo orbit.

We begin by expressing the relative position dynamics of (5) in a state-space form, i.e., let x1(t) € R® be
defined as 1 £2¢¢ and z2(t) € R® be defined as x5 2¢¢. Then (5) can be written as

o (tl o 2
Xi = [ T ] N l —mf_l (Crxa + Ni(z1)) | "

where X¢(t) o [xlT a:QT]T € R® and we assume that u¢ = 0, ¥t > 0. Next, we linearize the nonlinear terms
on the right hand side of (7), in the neighborhood of Xt = 0, to obtain

X; = AX;, (8)

where A(t) € R6*6 is a time varying matrix with elements that are periodic with time. It is defined as

Aﬁ[ " aN o) 1_31 , where 03 is the 3 x 3 zero matrix, I3 is the 3 x 3 identity matrix, and

£ dzy J#1=0 ~™g Cf
M;T(fl)m:o is the 3 x 3 Jacobian matrix of N¢(x1) evaluated at 21 = 0. In addition, the period of oscillation

of A is the same as the period of the nominal Halo orbit, i.e., A is periodic with a frequency wy. Note that the
time dependence of A characterizes the dynamics resulting from the linearization of (7) as a nonautonomous,
linear differential equation with a periodic A matrix. Consequently, we employ Floquet theory'? to transform
(8) into an autonomous, linear differential equation so as to facilitate an explicit solution of (8).

We begin by introducing the notion of a fundamental matrix!? of (8) denoted as ¢(t) € R6%6. Next, we
denote the Halo orbit period as Ty. Using Floquet theory, we utilize the transformation

X;=PY:, Yi=P'X (9)

where Y;(t) € RS is a vector composed of the transformed state X¢ and P(t) € R%%6 is a matrix with elements
that are periodic with time,'? to transform the nonautonomous differential equation of (8) into

Y: = BY;, (10)

where B € R6%6 is a constant matrix. Following Ref. 12, the B matrix can be computed using ¢ and Ty as
follows B = ﬁ log (¢~ (0)¢(Tw)), where the log function denotes the logarithm of a matrix. Furthermore,
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the P matrix can be computed using ¢ and B as follows P(t) = ¢(t)e"B*. Note that the P matrix is
nonsingular V¢ € R, such that the transformation of (9) is unique.*?

The autonomous, linear differential equation of (10) is equivalent to (8) in the transformed set of coor-
dinates. Furthermore, the eigenvalues of the B matrix are denoted as the characteristic exponents,™® which
describe the stability characteristics of any trajectory that is sufficiently near the nominal Halo orbit. It
is observed in Ref. 9 that direct computation of the eigenvalues of B results in a pair of hyperbolic eigen-
values, a pair of zero eigenvalues, and a pair of nonzero, pure, imaginary eigenvalues. We denote the pair
of hyperbolic eigenvalues as A\p, and Ap, and the frequency corresponding to the nonzero, pure, imaginary
eigenvalues as wq. Next, we perform a coordinate transformation of the form

Y = TZ, (11)

where Z¢(t) € R® is a vector composed of the transformed state Y; and T € R®*% is a time independent,
linear transformation matrix, which transforms the B matrix into a modal matrix form, denoted by Q € R6*6

defined as 2 ﬁdiag 01 , 0 L ) 02 !
0 0 _)\h1>\h2 ()\hl + >\h2) _WQ 0

Zy = QZ;.
Now, it is trivial to obtain the following solution of Z; analytically

}. Then (10) is transformed into

— A, 2 Z 7. -7
Zp = |:Zf1 (0) + Zf2 (O)t Zf2 (0) )\}2 f3 (0) + 4y, (0) e’\hlt + /\h1 f3 (0) fq (0) Ahot

e
Ahy — Ahg Ahy — Ahg
—Any Zt5 (0) 4 Z1, (0 Ay Zi (0) — Zt, (0 g
b 215 (0) + Zia( )/\hle)‘hlt 4+ 2 1 (0) Al )/\h2e)‘h2t D cos(wqt + ¢) — Dwqsin(wqt + ¢) |, (12)
Ah; — Any Ah; — Ay
where Z,(0), i = 1,...,6, denotes the i*® initial condition of the vector Z; and D,¢ € R are parameters

that characterize size, location, and shape of the relative trajectory around the nominal Halo orbit. Eq.
(12) reveals that the general solution of Z¢ may not be periodic for arbitrary initial conditions. However,
by properly choosing the initial condition Z¢(0) the terms corresponding to the pair of zero eigenvalues and
the hyperbolic eigenvalues that produce unstable and/or asymptotically stable motion can be eliminated,
thus resulting in periodic motion for Z¢. The remaining periodic terms in (12) allow the trajectory designer
freedom to choose the parameters Z, (0), D, and ¢ to satisfy mission specifications.
To compute the follower spacecraft trajectory relative to the nominal Halo orbit requires transformation
from Z; — X in the form of
Xt = PTZ;, (13)

where (9) and (11) have been used. Note that the P matrix is composed of elements which are periodic with
respect to time, with frequency wy, whereas the solution to Zr is composed of elements which are periodic
with respect to time, with frequency wq. Consequently, the solution of X; is a trajectory with two frequency
components wy and wq. It is observed that these frequencies wq and wy are linearly independent, i.e., the
condition ajwq +agwny =0, a; € Z, i = 1,2, where Z is the set of integers, holds only for a; =0, i = 1,2 (see
Ref. 14 for details on linearly independent frequencies). Such a trajectory containing linearly independent
frequency components are termed as quasi-periodic trajectories (see Ref. 14 for details on quasi-periodic
functions). Thus, the X trajectory has the characteristic of being quasi-periodic. Finally, we utilize X as
the desired trajectory of the follower spacecraft relative to the Halo orbit gq,(t) € R3, i.e., [qgf q({f]T = X;.
Remark III.1 To facilitate subsequent illustrative examples, we approximate the Halo orbit and the P
matriz using Fourier series approximations. Since both qq and P are periodic with the same period, the
resulting Fourier series approrimations are convergent to the actual forms of qu and P. To compute the
time derivatives of qu and P, we analytically differentiate the Fourier series approzimations with respect to
time. Thus, it follows that qq, and its time derivatives, viz., dqa, and {a, or equivalently X¢, are computed
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using qu, P, and Zs, and their time derivatives, i.e.,
X; = PTZ + PTZ, (14)

where (13) has been used.

IV. Trajectory Tracking Problem Formulation

In this section, we formulate a control design problem such that the follower spacecraft relative position
gs tracks a desired relative position trajectory ¢q,, i.e., tlim gt (t) — qa, (t) = 0. The effectiveness of this control
— 00

objective is quantified through the definition of a position tracking error e(t) € R? as

e 2 g —qq. (15)
The goal is to construct a control algorithm that obtains the aforementioned tracking result in the
presence of the unknown constant follower spacecraft mass ms. We assume that the position and velocity
measurements (i.e., ¢r and ¢r) of the follower spacecraft relative to the leader spacecraft on a nominal Halo
orbit are available for feedback.
To facilitate the control development, we assume that the desired trajectory ¢q, and its first two time
derivatives are bounded functions of time. Next, we define the follower spacecraft mass estimation error
me(t) € R as

e 2 g — my, (16)

where 7¢(t) € R is the follower spacecraft mass estimate.

V. Adaptive Position Tracking Controller

In this section, we design an adaptive feedback control law that asymptotically tracks a pre-specified
follower spacecraft relative position trajectory, in the presence of the unknown constant follower spacecraft
mass m¢. In order to state the main result of this section, we define the following notation. A filter tracking
error variable r(t) € R3 is defined as

r 2 é+ae, (17)
where a € R3*3 is a constant, diagonal, positive-definite, control gain matrix. In addition, an augmented
error variable is defined as n(t) £ [r” eT]T € RS and a positive constant A is defined as A 2 min {\nin{K},
Amin {Kpa}t}, where Apin{-} denotes the minimum eigenvalue of a matrix and K, K, € R3*3 are constant,
diagonal, positive-definite matrices. Next, we solve for é in (17) to produce

é=1r—ae. (18)

Finally, we define a new regression matrix Y(-) € R3 as Y4(-) 2 Y (&1, &2, qr), where the linear parameteri-
zation of Remark I1.3 has been used with & = Gy, — aé and &2 = ¢q, — e, in the definition of (6).

Theorem V.1 Let K, K, € R3*3 be constant, diagonal, positive-definite matrices and I' € R be a positive
constant. Then, the adaptive control law

up = Yarng — Kpe — Kr, g = —TY{r, (19)
ensures global asymptotic convergence of the position and velocity tracking errors as delineated by tlim e(t),
— 00

é(t) = 0.
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Proof. We begin by rewriting the follower spacecraft relative position dynamics (5) in terms of the
filtered tracking error variable (17). To this end, differentiating (17) with respect to time, multiplying both
sides of the resulting equation by myg, using é = §r — ga, from (15), substituting for mg from (5), and
rearranging terms yield

mer = —mf((jdf — Oéé) — Ctgr — Nf(qf) + us. (20)

Next, we expand (17) by noting that é = ¢r — ¢q,. Then solving for ¢, substituting the result into (20), and
rearranging terms, we get

mer = —mg(a; — aé) — Ci(ga, — ae) — Ni(qe) — Cyr + up = —Yams — Cer + uy, (21)

where the definition of Yy has been used. Eq. (21) characterizes the open-loop dynamics of r. Now,
substituting us of (19) into (21) results in the following closed-loop dynamics for r

mer = Yamg — Kpe — Kr — Cyr, (22)

where the definition of (16) has been used. Finally, note that differentiating (16) with respect to time and
using ¢ of (19), produce the closed-loop dynamics for the spacecraft mass estimation error

e = —TY 7 (23)

Now, we utilize the error systems of (22) and (23) along with the positive-definite, candidate Lyapunov
function defined by V ﬁ%mfrTr + %eTer + %rh? , to prove the above stability result for the position and
velocity tracking errors. Specifically, differentiating V' with respect to time and substituting the closed-loop
dynamics of (18) and (22) into the result, we obtain

V=—TKr—el'Kyae < —\|n|* <0, (24)

where the property of Remark I1.2; (23), and the definitions of  and A have been used.

Since V' is a non-negative function and Vis a negative semi-definite function, V' is a non-increasing
function. Thus V(t) € L as described by V(r(t), e(t), me(t)) < V(r(0),e(0),me(0)), t > 0. Using standard
signal chasing arguments, all signals in the closed-loop system can now be shown to be bounded. Using (18)
and (22) along with the boundedness of all signals in the closed-loop system, we now conclude that 7 € L.

(o)
Solving the differential inequality of (24) results in V(0) — V(o0) > /\/ ln(t)]|?dt.
0

Since V (t) is bounded, t > 0, we conclude that n(t) € L () L2, t > 0. Finally, using Barbalat’s Lemma,!®
we conclude that tlim n(t) = 0. Using the definitions of r and 7, tlim n(t) = 0, and Lemma 1.6 of Ref. 15,

yield the result of Theorem V.1. [l

VI. Simulation Results

In this section, we present illustrative examples that incorporate the algorithms presented in Sections
IIT and V. Specifically, we provide details on computing the quasi-periodic trajectories described in Section
III. Next, we provide a simulation of the follower spacecraft relative dynamics (5), utilizing the control and
adaptation laws of (19) so that the follower spacecraft tracks a desired quasi-periodic trajectory relative to
a nominal Halo orbit.

In all simulations, we employ the Sun-Earth system circular orbit parameters:” 16 G = 6.671x 10711 m>

kg.s2’
w = 2.73774795629 x 10—3%, Mg = 1.9891 x 10%3%kg, Mg = 5.974 x10%*kg, 1 AU = 1.496 x 10%km, and
Ry, = 1.010033599267463 AU, where 1 AU stands for 1 Astronomical Unit denoting the distance between
the Sun and the Earth. Furthermore, we consider that the follower spacecraft has a mass of m¢ = 1000kg.

Finally, the distances Rs and Rg can be computed as Rg = MEMfEMS x 1AU and Rg = WAﬁJ\TS x 1AU.
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A. Quasi-Periodic Trajectory Generation

Applying the numerical algorithm presented in Subsection B results in a family of initial conditions for

the Halo orbit from which we have selected the following initial condition gg(0) = [—2.61921376240742 0
—0.13648677396294] x 10°km and ¢u(0) = [0 4.21353617291110 0] ><103(1i%1,. In addition, the Halo orbit

period is determined to be Ty = 1.135225027876099 x 103day. Figure 1(b) shows the Halo orbit relative to
the Ly Lagrange point and its projections onto the {zr,,yr, }, {%L,, 2L, }, and {yL,, 21, } planes. In addition,
we utilized 25 terms of a Fourier series to approximate the Halo orbit trajectory gg. The fundamental matrix
¢ described in Section III is numerically computed using A(t) as follows ¢ = A(t)p, ¢©(0) = I, V¢ € [0, Th].
Thus, using P(t) = ¢(t)e~ B!, P is numerically computed V¢ € [0,Tx]. Next, we compute a Fourier series
approximation of P, where we retain 25 terms of the series approximation. This, along with the analytic
expression for Zy is used to compute g4, and its time derivatives analytically from (14).

To show the resulting trajectories of gq,, given different numerical values for parameters Zg, (0), D, and
¢, we simulated g4, using a parameter set: Zf (0) = 0, D = 0.0001, and ¢ = 0 rad. By computing the
eigenvalues of the B matrix, we determined wq = 6.286301816644046 x 10’5d—;y. Figure 2(a) shows the
quasi-periodic trajectory relative to the nominal Halo orbit for parameter values of ¢ = 0, ¢ = 7, and
¢ = 5. Figure 2(a) illustrates that changes in ¢ denote changes in the initial position of the spacecraft along
a given quasi-periodic trajectory. Next, we simulated gq, using a parameter set: Z, (0) = 0, D = 0.0002,
and ¢ = 0 rad. Figure 2(b) shows the desired quasi-periodic trajectory relative to the nominal Halo orbit.
Note that the parameter D determines the size and shape of the desired quasi-periodic trajectory relative
to the nominal Halo orbit. We also simulated ¢q, using a parameter set: Z¢ (0) = 0.0001, D =0, and ¢ =0
rad. For this parameter set, Figure 2(c) shows a periodic trajectory relative to the nominal Halo orbit with
the same period as wy. Finally, we simulated ¢q, using a parameter set: Z (0) = 0.0001, D = 0.0001, and
¢ = 0 rad. For this parameter set, Figure 2(d) shows the quasi-periodic trajectory relative to the nominal
Halo orbit.

B. Adaptive Full-State Feedback Control of Follower Spacecraft

The adaptive control law of (19) was simulated for the follower spacecraft dynamics relative to the leader
spacecraft on a nominal Halo orbit (5). When tracking desired quasi-periodic trajectories, we initialized the
follower spacecraft with the set of initial conditions given as ¢r(0) = [—2.61921376240742 — 2.57780484325713

—0.13648677396294] x 10°km and ¢¢(0) = [—0.01469110370264 4.21353617291110 — 0.01469092330256] x
103(1:1{Tm' The control and adaptation gains are obtained through trial and error in order to obtain good

performance for the tracking error response. The following resulting gains were used in this simulation
K = diag(1,1,1) x 1.499 x 10, K, = diag(1,1,1) x 5.475 x 10%, o = diag(1,1,1) x 8.213 x 1072, and
I' = 8.888 x 10%. In addition, the follower spacecraft mass parameter estimate was initialized to m(0) = 600
kg. A simulation of the follower spacecraft tracking the desired quasi-periodic trajectory of Figure 2(a) is
performed. The trajectory ¢; is shown in Figures 2(e) and 2(f). Figure 3 shows the position tracking error
e and the velocity tracking error é. The control input us is shown in Figure 4(a). Finally, the follower
spacecraft mass estimate ¢ is shown in Figure 4(b).

VII. Conclusion

In this paper, we designed desired quasi-periodic trajectories for the follower spacecraft relative to the
leader spacecraft on the Halo orbit. The size, location, and shape of these trajectories were characterized by
a set of parameters. Illustrative simulations were performed to show these parameter characteristics. Next,
a Lyapunov design was used to develop an adaptive full-state feedback controller, which yielded global,
asymptotic convergence of the relative position tracking errors. Simulation results were presented to show
good trajectory tracking.
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10 of 12



= g
g5 S5
2 g5
£ £E
=8 To
23 =B
g2 §E
At [a =3
|® = |o z
& &
M\ x
=———\\
———\\
0 — ~ —~
7 e \ o]
= =
5 b
£ &
= >
S
g 8§ 8 ° 8 g 8~ g
& & S s & 8 %
() z
e
o®® z e
o g5 g8
oo o 88 23
gess g2 £5
s 5 z8
5555 38 S=
822 22 2£
Sege kS <E
-5556 3]
BOOO
§Ess = l® -
8EEE g €
| omx * *
.‘..\\
AE
R
(R
— —
L) Tl
N -
~ <
) ¥
B B
< <
= =
S
8
<

(uny) z (un) z

X (km)

: (a) Z¢ (0) =0,D

ing
(b) Zg, (0) = 0, D = 0.0002,¢ = 0, (c) Zg, (0) = 0.0001, D =0, ¢ = 0, (d)

t usi

1

in view

y (km)

11 of 12

X (km)

T
2

and ¢

™
4°

tory of the follower spacecraft relative to the nominal Halo orb

y (km)

Zg, (0) = 0.0001, D = 0.0001, ¢ = 0, (e) normal view, and (f) zoomed

Figure 2. Trajec
0.0001,¢ = 0, ¢



Error y (km) Error x (km)

Error z (km)

Control y (N) Control x (N)

Control z (N)

Velocity error y (km/day)  Velocity error x (km/day)

Velocity error z (km/day)

Mass parameter estimate (kg)

x 10
2
b i
2 | | | | |
0 500 1000 1500 2000 2500 3000
x 10"
2
1L i
ok
1 |
P | | | | |
0 500 1000 1500 2000 2500 3000
x 10"
2
1L |
0
b i
- ; ; | | |
0 500 1000 1500 2000 2500 3000
Time (days)
(a)
Figure 3. (a) Position tracking error
x10°
2
s i
ok
1Y i
2 | | | | |
0 500 1000 1500 2000 2500 3000
x10°
2
1L i
ok
b |
o | | | | |
0 500 1000 1500 2000 2500 3000
x10°
2
1L |
0
b i
- ; ; | | |
0 500 1000 1500 2000 2500 3000
time (days)
(a)
Figure 4.

Follower spacecraft (a) control input and (b)

400
200 q
0 W\/\—/w
-200 b
—400 I I I I i
[¢] 500 1000 1500 2000 2500 3000
400
200 q
ol
—200 - B
—400 I I I I I
0 500 1000 1500 2000 2500 3000
400
200 q
0
—200 B
—400 I I I I I
[¢] 500 1000 1500 2000 2500 3000
Time (days)
and (b) velocity tracking error
620
600 B
580 B
560 [| q
540 4
520 q
500 I I I I I
0 500 1000 1500 2000 2500 3000
time(days)

(b)

12 of 12

mass parameter estimate



UOISS9S 191S0]

700Z ‘9T-¥T Ioquajdeg
D ‘U0)SUIYSeAA
winisodwAg SulA]q uorjewrioq $00Z

T0ZIT AN ‘ufpjooig

AYSISATIU) OTUYIDIA[O]

e[idey] weasiA pue SUOA\ SUOH

[017U0)) Yoeqpas] 9rel1S-I[Ng aAlldepy
pue uorjerauax) A1ojdolely, :quroJ oasueiser]

¢ yprerf-ung JIeau SUIA[d uoljewao jjetdodedg

JNOH




s

eqidey] pue w:oy

UOIYRIPRI POIRIJUL JO WLIOJ O UL OJI[ JO sooer) 10] sjourld

AqIesu [pIesas 03 IopIo Ul 1939303 Iom AJearyerodood 0} jjerdooeds Xis soyerodioou]

SOIXB[RS JO UOII[OAD 9} 9JRSIJSOAUL PUR SSIDAIUN 93 UL S 10] UDIRIS 0} UOISSIUL ULMIR(] —

SISeq Juanbalj © U0 PIONPUOd 9 URd SUOIJRAIIS(O dordg *

[PUWIUIW oI€ }JeId0oRdS 91} UO SOOUDNJUI IR[OG *

TOTJRDTUNTUIIIOD TR[[9SIONUL 10 /PUe SUOIIRAISS(O dords-doop 10] uorssiu : [ GON —

utod oSuriger| ¢ 03 suolssiwu vords oInjnj owog e

SOTRUAD YJeroeoeds 100fe J0U Op ($9010] O13PUSRUW098 pue dLpydsourye 30)
S100J0 [RJUDWIUOIIAUD JRY) YONS (IR O} WOJ I} A[JUSIDIPNS oIe suolssiu jutod ogurise| e

AXeeS O} JO MOIA POJONLIJSqoUn

e AJIesl Urejo SUolye)s UOIJRAISS(O Jutod oSuRISR T JO ANUDIA 9} Ul Surjeiodo jjeiooordd e

SUOIjels UOIJeAIoS(O [eoltlou0.1Ise

pose(-0ords 10] SUOIIRIO] AdY SR PoO[dXo U9 9ARY WIDISAS [[}rer]-ung o1} jo sjyurod osurise| e

_mpﬁo& OSURISRT IedU SUOISSI[\ 90rdg UOIJRAIJOTN]

@Emoaahm SuiL[q uoryewrioq $00%g

[017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\ eqidey] pue m:oy

[OIJU0D UOIJRULIOJ SSIDAI] *

SUOIRULIOJ JJetdooeds Jo ugisop 1odolJ *

:soambal syutod oFurIge] YIeH-UNng o) Ieall SUOISSIW 92eds 10] ;S JO oSN SAI}DRYH —

jjeroooeds [rewrs Aueur 0} ‘yeiosords oryjrjouour ©

Aq pojonpuod Afensi ‘syse} UOISSIW Sunnquisip Aq ooururiorod uorssiur sords sooueyus] —

SUOISSTW ATJoW0I0JI0JUT /Surseul

poseq-ooeds ooueyue 0} AFo[oupe) Suldowe ue ((J]S) SUIAY uoneuno} jyemodedg e

SUIA]] UOIYRULIO }JrINo0RdG UOIYRAIIOIN

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\“ eqidey] pue w:oy

wyjLIoge ojepdn IojomwereJ —

AR [OIFUOD NOR(POD] 9YRIS-[[I] —

:sursn

ssewl Jyerooords Iomo[[0] uMOUNUN JO 9ouasaId oy} Ul SOLI0JD0[RI} 9OUSIOJOI POIISOD ORI, @

UOIRULIO) YJeIdodeds

B 9)RIID 0} JII0 3JeInodrds Iopral o) 0} OAIIR[OI SOLI0%99[RI] JJeIdodrds ToMO[[0] 9JRIOUIY) e

1Je1000Rds IopRI[ 9} 0} dAIIR[DI JJeIdoords JoMO[[0] 9} I0] Ppou [esrjewoyjetl do[Ad(] e

S[ROY)

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\“ eqidey] pue w:&

76, ‘09RUOJ\ puR OUIPIRIOGUIRIY) :suoljrqInimd se uorjou

prer]-ung peondi[e I0j SUIPUNOIOR J[IYM SOTURUAD IRSUIUOU SUIZI[IIN USISOP [0IJU0) —
CH, “BPIUId PUR [[OMO}] UOIOUN]
1500 ® FUIZIWIUIW AQ puR YoR(Pod] I0LID Sulsn pojelouds ore sindur [o1juod oasndu] —

98, “1p g9 owrg :sjutod oFurider]

Teall jjeroededs 10] AJI[Iqe)sul [eoued 03 sindur [0IjU0D SIO[Ie} [013U0D dpoul 3onbol] —

:syutod oSuRISRT [1Ie-UNgG Iedl [0IJU0D JrIdodRed] e

16, Ip "9 zowior) oIpoLiad-1senb ore sor10309[e1) SUI}Nsal o) o1oUyM ‘POYIOUW [RILIOWNU

® SUISN JJeIooords IoMmO[[0] I0] SOLI03od[RI) 00UdI0JOL SUIPRIOUIS JO POYIOUWL B POPIAOL] —
¢, “Ip 79 9IS

JJeI000RdS I9MO[[0] 10} SoL1030a[e1) 9oUaIojal 90npoId 0} PIZI[IIN SeM [OIFUOD NOR(PID —

¢(), ‘S9I99YDG pue ORIS[]
191q10 orpouad ' U0 jjeIdodeds IOprI[ 9Y) PUNOIR SHJI0 POPUNO( Ul SUIINSOI SJUUD[O

[B3QIO [eOISSeD Suisn ponduwod olom 3Jerdoords Iomo[[0] 10] SoLI0}09[RI} 9dUQIJOY —

utod oSurISer| ¢ Ieou SUsISop A10300[e1) S e

[DIRIS9Y] IOLI]

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




Ndm.

eqidey] pue m:oy

1

\ / TOJUDATRY]

NAM@

b

N\Hg

Jyero9oedg

yre

e

74

_mpﬁog osuRISRT [Ie]-ung jo uoryejuosordoy]

@Emoaahm SuiL[q uoryewrioq $00%g

[017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\% eridey] pue w:oy
1110 OTRH ®© UO ST jjerdooeds 1opes] uondunssy e

jutod oFueIge] ¢ oy} 01 oAIjR[al uorjisod jjeioooeds I0mo[[0] “p
ndur (013100 jjerdsoeds Tomo[0] In — ULI9) UOIJRIIARIS ”N&Z —
XLIYRU OYI[-SI[OLI0D 4 — ssewr jyerdsoeds 1omor[of Jut —
n = (3 “9D) YA + Wb + “Bhhw
st quiod oSueIge]
¢rT 9} 03 A1 JJeIoooeds ToMO[[0] o) JO uoIsod o) SUICLIDSOP [OPOUL [RIIJRUWDJRUL O ], @
ndur [01jU0d M —  ULIDY UOIJRYIARIS A\ —
XLIYRUW OYI[-SI[OLIOD /) —  sSeW jjeroooeds w —
n=(s‘b)N + b + bw

(€0, “enidey[ pue Suopy ) st jurod

OSURISR & 9y} 03 dAIe[aI Yradodeds e Jo uorysod o1 SUILIDSOP [OPOW [RIIJRWOYJRW oY ], @

[ 172 0000dg J0 OO SorrenA(]

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\ eqidey] pue w:&

0= (H ‘Hb)N + Hb + Hbw

AQ UOAIS ST 110 O[RH O} UO SOIWRUAD JJRIdodRds Iopeo] oy ], @

0197 ST Jndur (013100 JJerosords

oY} IR} UOIIPUOD 9} IopUN SOIURUAD JJerdooeds o) soysiyes A103090[er) y1I0 O[R[ 9y ], @
WILIOS[® 9} WO} PAUIe}(o SUOIIpuod
[enyur oy sursn jutod oFurISRT T oY} 0} OAIJR[OI SOIWRUAD JJriooords oyedodor ] —

orpotrod Ajreau st jey) A1ojooler) v 03 speoy 1Y} SUOI}IPUOD

[BIIUL JO 308 ® soplaoid 41 [IJUnl SUOIIPUOD [RIIUL 9)epdn 0} POyjoul S UOJMIN OZII}[) —

110110 D1poLIdd 991J-1SNIY) B JO UOIIPUOD [RIHIUL UR

0} SSOIS [RIHIUL UR UTR}(O 0} POYJOUL JPIJSPUIT-0IRIUIO] WOJ SOLI0JDd[RI) dIJATRUR ZII}[) —

jutod oFueIGe ¢ JO POOYIOqUSIOU ® ul A10300[er) orpotiod

901J-1SNIy) ' 03 suonjewxordde onAeue urejqo 0} poyjour ipaispur-oreouro Addy —

(08, ‘TOSPIRYPIY ) SPOYIOUT [ROLIDWINT SUISTL $31(I0 O[RH 9)RIIUIL) @

| torjeIouoy) 11q.I() ORH

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\ﬂ eqidey] pue w:&

Ok X (W) x

0

oOHX (wy) A OFX (wy) x
8 S0 0 g0- k- c 8 0 L- c- €

G0-

o
(w) A

S0

0l X O X

jutod oSurISe] ¢ oY) 0} SAIJR[OI JI(I0 O[R] @

| torjeIouoy) 11q.I() ORH

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




eqidey] pue m:oy

(b “3b 3b) x = (Ib)IN + DI + Ihhw

SOTRUAD IRIUIUOU JO UOIjeziIojotrered Ieoul| —

m%W@b/ ﬁOHQLQrNQ
Ky1odord A1jotIIAS-Ma¥S SoYSIJes XLIJeul S[[OLI0) —

sorprodord A9y e

(1 ‘Bb)HAT — (I8 ﬁNﬁSﬁZm I —

In = (I)IN + I + Ibiw

jyeIoords Iopes] oy} 03 dAlye[al uonisod jjernoords ITomo[[0] o) JO SOIURUA(] e

Hp — Nﬁ@m b se 1jeroooeds IopeI o) PUR IOMOT[0] O} UooM)d( UOIJISOd SATIR[II O} QUYI(] @

[OPOJN SOTWRUA(] 9AIYR[OY 1Je1ooordg Iomor[o]

@Emoaahm SuiL[q uoryewrioq $00%g

[017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




eqidey] pue m:oy

WOJISAS STIOWOUOINRUOU POZLIRIUI 9] JO XLIJRW [RIUSWRPUN] :(7)d) —

(Hz se pojousp) 3110 O[RH [euruou oIpotod o) se oures 7 Jo poLod *

SpuaWaTe DIpoLad TIM XLIjetl SUIATeA owy (1)) —

HH%
(fz)Inp

0 = 'z ye poyenyead (1z)in Jo XUIyeW URIqOdR[ ¢ X ¢ (0=

&Q hu— oHﬁ&ﬁ&‘NQ hu— B
I- (Le)InpT— = ‘ — ]
mH mo Vv d\ »XA\ vm

0= wvm JO (THYN °y3 ul sur1o} Iesuljuou oZLIeoul | e

e, tw b tr 0<IA0="n
(TZ)N + exlp) Jw—| | er _ iy
o Eu .

ULI0J ooeds-0ye)s ® Ul SOreUAp Uo1sod oAIyRRI o) Sso1dxX e

_QQE@N:@@EA TUSISO(] UOIYRULIO] 3Jeldooedq

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




wmb@& -

eqidey] pue m:oy

(Om Adbuenbagy yym) senpeausste Areurdewt ‘omd ‘0I0zZUOU JO IR *
SONRAUISIO 0I9Z JO IR *
“Iy pue My se pojousp son[eAusSIo ooqIodAT Jo IreJ *

:syuouodxo d1ISLIOIRIRYD Sk POJOUDD oI & JO SON[RAUISIH] —

(2)d se g pue ¢ Suisn ponduios sjuawae dIpoLd [Im XLjeur : (2)g —

AAmrvaXovT&v 301 % = g se Hy pue ¢ 3uisn poinduiod XLIjeul JURIsuod : g —

Y JO ogeys pouiojsuedy : (2)If —

g =
HAO

IeJUI] ‘SNOTWOUOINR 0} H(J() Ieaul] ‘SNoWouojNeuUOU Wolj I { J = Iy uoryeuriojsuriy jonboyj e

_\Go@g 1, 3onbo[ ] :uSIso(] uolyeulLio Jrioooedq

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\w eidesy] pue w:oy

11410 OfeH
[eurwou oY) punoe A10309er) oAre[oI oy} Jo odeys pur “UOIJRIO] OZIS OZLIJIRIRYD @ ‘(T —
J7 JO UOTJIPUOD RIIIUL 1,2 O} S9j0Up ‘¢ *** ‘T =1 ()7 —
- (¢ + 20m)urs Omey — -
(¢ + 20m)soo (7
z mr_/\IE,« I mr_/\IE,«
o Nz T X iz — J
Sy Ty Sy Ty = 7
7T moToo Tl @ 75 —7
P09z =(0)"z Y (0)Z2+(0) M7 T -
(0%
- 10)%7 + (0) 7 -
J7 30 uonnjos [eonARuy e
¢ 1 ¢ 1
0 Q=] [+ =] T0 0] g, o
I 0 1 0 T 0 TV

ULIOJ XLIJRUI [RPOUW OJUI POULIOJSURI} ST XLIJRW & @
XLIJRU UOIRULIOJSURI) “Juopuodoput owry : 7 — 3L 99e)s pouriojsuery ()37 —

riN = w\ﬂ WLIOJ 93 JO uorjeulLio}sue.d] o3eUIpIo0d © WIOLIO] @

UOTIN[OG [BIIJATRUY USISO(] UOTYRULIO Jjerdooedg

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\x eridey] pue m:oy
sor10300[e1y orpotrrod-1sen(y) —

( ¢

Z‘T=1t ‘0="'™ 10]Auospoy ‘gr=1t ‘7Z>' ‘)= Hmin4 Omip x
:Hm pue Om sopuonbory jyuopuadopur Apreour —
Om pue Hm sjuouoduion £ouonboty omy qimm A10300(e1) € St 3y e

ZId =X

Y «— 7 wolj uorneurojsues)

SoImbal J1I0 O[R[] [RUIWIOU dY)} 03 dAIR[aI A10300lel) jjerededs 1omof[o} oy} onduiod oJ, e
uorjow sipotd-uou [poued [m (())¥z Jo votop tedord —

SUOI}IPUOD

rerur Areajiqae 10y oporrod og jou Aewl UOIN[OS [RIOUDS oI JRYJ S[RIAAIL 7 JO UOIMN[OS e

_mmﬂopo@_,f T, OIPOLIS J-ISRN{() USISO(] UOIJRULIO] PrIdaoedg

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




eqidey] pue m:oy

€ Lt :d[qRLIRA 10110 POIUSTISIY @

&T 3

90 +9 o

A IOLIO SUPRI) 1[I @

OYRUITSO SSRUI JJRI00ords ToMO[[0] :(7)Iw *

Jws — Jwe o Jud 110110 UOTPRUIIYS) SSRUL 1RI1000RdS 10MOT[0] —

b — b o 9 10110 SUBIRI} UOIISO] —
OA1100[(O [01U00 AJTjuen(’) e
SSeU 3je1000Rds I0MO[[0] JO 9SPO[MOUY] ON —

SHUTRIISUO)) @

NqI0 OfR

O} 09 dATIR[OI JJeIdoORdS 10MO[[0] o1} JO A10990ler) vousIojor orportod-isenb potisop :*Ph —

oO«—1]

0= (2)’"h — (3)3bwr] € In [o13u0d USISO(] @

UOIJR[NULIO] W01 ] SUBPRIT, A10309[R1],

@Emoaahm SuiL[q uoryewrioq $00%g

[017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\a eidesy] pue m:oy

4 — A3 — 20y — JwPx = Jhw
sorureuAp doo[-pasord 10110 FUrspPel) 11 —
90 — & =2
sotureuAp doo[-posord 10110 SULORI], —
4 PAI— =T

sorureuAp doo[-pesod 10110 uolyewnse Jojourered sse]\ —
sotureudp doo[-posor) e
4P I— = Gvr.t :ave] 9yepdn 9jRUIISe SseUl JJeI10a0eds JoMO[[0,] e

(%0 90 — D 90 — Ph) X o (-)PA XLIJRUW UOISSOITOL MON —

IBAPO9] 0L UWOMISOd  ypeqpoo,] 10117 AJDO[PA-UOI}SO]  UOIpeldepy PIemIOf-poo]
— —_—— —

37— L] — kg = n

ndut [013U0)) e

_qmﬁm@Q [0I3U0)) SUIoRI], UOI}ISO] oAdepy

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




\a eidesy] pue m:oy

0«1

0=(2)2(2)2 w

MOUS 0} BUIWOT S,Je[e(Ie(] 95| ®

{7y jum oy lallv— > (DA

O[(RLIRA IOLID POJUOWISIIR OZII}[) @

oolsy o —uyf d— = (H)A

Kyrodord A1jotIiIAS-moys oZI[In pue sotureusp dooj-poso ojnisqng e

ul

Swhw= + 2% o+ w4 = (2)A
. Aﬁ .
O} 0} 300dSOI I 9)RIJUSIOYI(] @
ME% + mg%m + {:@m - @A

UOI}OUNJ OAIJRSOU-UOU B OUYO(] @

_mahmq< AIqess paseq-aoundeAr]

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




R eidesy] pue w:oy

SULIO) G, ATUO Sururejal suolsurdxo

SOLIOS IOLINOJ sursn pojewrrxordde ore Xujeuw J o) pur (IO O[RH oY} ‘SUOIJR[NWIS o) U] e
Aep -_ b
0T X 9F0FF99T]T0£9I8C 9 = Om
Lep 0T X 6609.8L2052¢CeT T = HT,
SY000T = w

‘s1ojteIred [RUOIIPPY

0T X 8888 = 1 AVT x DI = sy Ay x LIy

WTxepex (1T T )Sep =y ‘IVEIPLITE6SECO0TOT = “I 5. 0T X GZIC6LFLLELT = @

01 xg1esx (1T T )Sep =0 W[OT X 96F'T = NV 1 By 01 X FL6°G = T

01X 66T X (1 ‘T ‘T )Bep = “Be0T X 1686'T = S 0T X TL99 =9
:sures uoryejdepe pue [013U0)) ‘s1ojotered [lre-ung

SIoJoWRIR ] UOIJR[NUWIG

@Emoaahm SuiL[q uoryewrioq $00%g [017u0)) puUE uUoljeIoUdr) AI0jda(ed], :quiod @8ueile] ¢ yYjlie-ung Jeou h@




2004 Formation Flying Symposiu&

d Control

10on an

Trajectory Generati

@F near Sun-Earth L, Lagrange Point

I

1e5—

tori

Quasi-periodic Trajec

Simulation Results

e Trajectory of the follower spacecraft relative to the nominal Halo orbit using:
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