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Over the next twenty years, a wave of change is occurring in the space-based scientific
remote sensing community. While the fundamental limits in the spatial and angular resolu-
tion achievable in spacecraft have been reached, based on today’s technology, an expansive
new technology base has appeared over the past decade in the area of Distributed Space
Systems (DSS). A key subset of the DSS technology area is that which covers precision
formation flying of space vehicles. Through precision formation flying, the baselines, pre-
viously defined by the largest monolithic structure which could fit in the largest launch
vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond
X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying
challenges to achieve unprecedented baselines for high resolution, extended-scene, inter-
ferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the
feasibility for the formation control of the MAXIM mission. MAXIM formation flying
requirements are on the order of microns, while Stellar Imager mission requirements are
on the order of nanometers. This paper specifically addresses: (1) high-level science re-
quirements for these missions and how they evolve into engineering requirements; and (2)
the development of linearized equations of relative motion for a formation operating in an
n-body gravitational field. Linearized equations of motion provide the ground work for
linear formation control designs.

Nomenclature

A(t) = Dynamics matrix for linearized equations of motion
r∗ = Position vectors, subscripts depicted in figures
uthrust,F = External control force applied to Follower spacecraft
u

thrust,L
= External control force applied to Leader spacecraft

x = Position of Follower referenced to Leader position
I

v = Superscript designating inertial (I) frame
µi = Gravitational parameter for ith body of n-body system
||x|| = The 2-norm of the vector x
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I. Introduction

Formation flying and DSS missions are becoming the wave of the future for the National Aeronautics and
Space Administration and the United States Department of Defense (DoD). Dozens of missions have been
formulated, exploiting DSS technologies to enable higher resolution imagery and interferometry, robust and
redundant fault-tolerant architectures, and complex networks dispersed over clusters of satellites in space.

One of the most stressing subsets of the proposed collection of DSS missions are those involving precision
formation flying, where relative separation and pointing must be maintained (specifically, controlled) to
very tight tolerances. A major characteristic in the development of such missions is that the science and
engineering elements of the mission design are intertwined in such a way that neither can be performed in an
independent or mutually exclusive way. In fact these missions tend to employ formations of ”sciencecraft”
where each spacecraft is itself a science instrument or a component of a much larger and distributed science
instrument, containing a minimum amount of common spacecraft overhead ”bus” function. This paper
explores the details of developing a control strategy based on mission science requirements with specific
reference to the Micro-Arcsecond X-ray Imaging Mission (MAXIM).1,2

II. Science to Engineering Requirements Flow Down Process

The seed for a mission concept is a fundamental science goal. The approach to performing the systems
engineering is to identify the most fundamental science goal from which some level of engineering can be
performed, establish the requirements, allocate the requirements to a general mission architecture, and
break these requirements down into basic component level requirements. For example, MAXIM has the
most fundamental goal of studying physics in the extreme environment around a black hole - the ultimate
endpoint of matter. This provides no information needed to engineer the system. However, a derived
requirement is the need to directly image the event horizon around a massive black hole. This can be used to
quantify the system requirements. This involves establishing a “resolution” requirement, sizing an aperture

Figure 1. MAXIM Requirements Process Flow
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Figure 2. Transition from Science Objectives to High-level Technology Requirements

or system of apertures to meet that requirement, performing a sensitivity analysis to determine tolerances
which define performance bounds, and allocating the requirements among the elements of the formation.
Also, out of this process falls a formation flying architecture. The requirements at each element must then
be allocated to the local systems of the supporting spacecraft or sciencecraft. The requirements should be
mapped from the ranges among the loose cluster of spacecraft released from the launch vehicle down to the
finest telescope alignment tolerances driven by science. The design process for the formation flying element is
a matter of defining a series of sensor and actuator stages with overlapping resolutions and dynamic ranges,
including potential stages that account for geometric measurements that are ambiguous when solely using
ranging data. For the MAXIM example, the logic flow, partially depicted in Figures 1 and 2, becomes:

1. Science objective: Directly image the event horizon of a black hole
2. Generally, consider the image angular resolution requirement: θ = 0.3 µarcsecond at several mega-

parsecs, and from this use the common (approximate) diffraction relationship, θ = 1.22λ/D, defined by the
Airy disk. For MAXIM, the angular resolution is selected based on the size of the black hole, θ = 2M8/D,
where M8 is 108 solar mass and D is the aperture size. The wavelength, λ, is in the X-Ray band from .2 - 5
nm.

3. The aperture can then be sized accordingly, based on D. For MAXIM, D turns out to be approximately
one kilometer, larger than feasible with a monolithic aperture or long booms. If substantial distortion in
the aperture were acceptable (e.g., for long wavelengths), then other approaches, such as booms, inflatable
membranes, etc., could be considered. A subaperture configuration must be selected.

4. The resolution and field of view requirements fundamentally define the detector size, but qualitatively
select a larger size to simplify the problem of finding the target as well as to relieve the formation flying
requirements on the detector.

5. The detector area is defined by requirements to
a) collect enough photons to take 10 different snapshots of matter going around the black hole near the

Schwartzchild Radius, Rs, such that the integration time t = Rs/c where c is the speed of light (t ∼ 1 hour),
and

b) collect enough photons from an individual element to assist in the overall alignment within a reasonable
time scale that avoids engineering problems such as thermal creep, ping, drift, and formation flying issues.

6. Combining the constraints in step 5 above, and starting with a proposed configuration based on previous
studies, an optical sensitivity analysis is performed to provide the error budget for each subaperture element
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Figure 3. MAXIM requirements

in fractions of a wavelength. Iterations are performed on the subaperture configuration until one is selected
which minimizes the control requirements for the individual segments. At the subatomic distances required
for X-ray imaging, independent guidance, navigation and control (GN&C) sensors and actuators cannot
provide the measurement and control to meet the instrument requirements. The only option is to use direct
information from the detector to determine the errors to correct the image, in the form of wavefront error
sensing. The challenges in wavefront sensing for MAXIM will be to collect enough photons to correct the
image. Using the dynamic range of the best capability for wavefront control in the X-ray bands, identify
a maximum limiting wavefront error that must be achieved from an independent (i.e., not dependent on
information from the science instrument) metrology system.

7. The sensitivity analysis from step 6 can also be used to determine a transformation between the
wavefront error and the subaperture errors in all six degrees of freedom. The transformation is employed
to determine the formation flying requirements that must be met by the independent GN&C system. In
conjunction with the aperture configuration (specifically the range between spacecraft), size a laser ranging
system based on the requirements above.

8. The laser ranging system can be used for high bandwidth communications as well by modulating
information onto the ranging code. However, the dynamic range is very limited, and the system will not be
capable of capturing from the initial ”lost-in-space” problem, recovering from a large perturbation, not to
mention resolving all of the geometric ambiguities of a large formation.

9. The capture range of the laser ranging system defines the performance required of the next sensor,
which must also be able to resolve the geometric ambiguities, positioning the spacecraft into shape, at least
in a loose form. The concept for this sensor, based on previous efforts in ”vision-based navigation” involves
placement of a modified star tracker (or simply a charge couple device (CCD) array or active pixel sensor)
on a distant detector spacecraft in conjunction with several laser beacons on all of the remaining spacecraft
in the formation. This sensor provides relative position (and possibly orientation) measurements of all of the
spacecraft as well as the geometric configuration. The dynamic range of this sensor is defined by the size of
the CCD array and the focal distance.

10. A coarse radio frequency (RF) system is defined for operations between the worst case, lost-in-space
condition and the field-of-view of the CCD formation sensor. Additionally, this system is required for general
constellation housekeeping, failure recovery, and collision avoidance.

The requirements for MAXIM are summarized in figure 3.
The requirements flow process implies an inherent sensing and metrology concept for similar large aperture

imaging formations. Associated with each of the matches in sensor dynamic ranges and resolutions above
is an analogous series of actuation systems, which in combination define the formation flying architecture.
Because the suite of actuators is not as diverse as the suite of sensors, the details will not be addressed
in this paper, other than to say that for many of the precision formation flying missions, they will consist
of a nested series of low-thrust, high specific impulse (Isp) devices with overlapping dynamic ranges and
resolutions.
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Figure 4. Two Spacecraft Orbiting in the Earth/Moon - Sun Rotating Frame

III. Formation Control

A. Prior Work

Achieving the precision formation flying requirements for the MAXIM mission poses significant technical
challenges within the areas of metrology and control law design. In particular, the requirement for 10 micron
control in the radial direction provides immense design challenges in the metrology, the control actuators,
and the control algorithms. Each of these issues presents unique challenges. Earlier works explored nonlinear
control strategies to address the problem.3,4 This paper focuses on the issue of control design, specifically
linear control strategies. Development of a linear controller requires a linearized form of the relative dynamics
of a spacecraft relative to a reference trajectory. Figure 4 depicts a spacecraft operating in the vicinity of
the L2 point of Earth/Moon-Sun libration point. Modelling the Earth/Moon as a single mass, the linearized
dynamics of a Follower spacecraft relative to a Leader are expressed in inertial coordinates as5

ξ̇ =
I

A(t) ξ + B (u
thrust,F

− u
thrust,L

) (1)

Where:

ξ =

[
x

ẋ

]
;

I

A(t) =

[
0 I3
I

Ξ(t) 0

]
; B =

[
0
I3

]
I

Ξ(t) =
{
−(c1 + c2) I3 + 3 c1 [̊r

EL
(t) r̊

EL
(t)T] + 3 c2 [̊r

SL
(t) r̊

SL
(t)T]

}
c1 = µem||rEL ||−3

c2 = µs||rSL
||−3

This expression does not require the formation to be in the vicinity of a libration point. In the remainder
of this paper the linearized dynamics are generalized for the n-body problem.

5 of 9



Figure 5. Two Spacecraft Under the Gravitational Influence of n-Bodies

B. Dynamics of Relative Motion for the n-Body Problem

The n-body problem examines the behavior of an infinitesimal mass in the combined gravitational field of
’n’ finite masses orbiting their common center of mass. A typical two spacecraft formation operating in the
gravitational field of n-bodies as shown in figure 5

Treating each body as a point mass, the equation of motion for the Leader and Follower spacecraft are
Leader:

r̈L = −µ1
r1L

||r1L ||3
− µ2

r2L

||r2L ||3
− ...− µi

r
iL

||riL ||3
− ...− µn

r
nL

||rnL ||3
+ uthrust,L (2)

Follower:

r̈
F

= −µ1
r1F

||r1F
||3

− µ2
r2F

||r2F
||3

− ...− µi
r

iF

||r
iF
||3

− ...− µn
r

nF

||r
nF
||3

+ u
thrust,F

(3)

Differencing eqs. (2) and (3) yields the relative motion of the Follower with respect to the Leader:

ẍ = r̈
F
− r̈

L

= −
n∑

i=1

µi
r

iF

||r
iF

||3 + u
thrust,F

− (−
n∑

i=1

µi
r

iL

||r
iL

||3 + u
thrust,L

)

= −
{

n∑
i=1

µi

||r
iF

||3

}
x−

n∑
i=1

µi

{
1

||r
iF

||3 −
1

||r
iL

||3

}
r

iL
+ (u

thrust,F
− u

thrust,L
)

(4)

Eq. (4) provides an exact expression of the nonlinear dynamics of relative motion between the Follower
and Leader spacecraft. The next step is to linearize the relative dynamics of the Follower with respect to
the Leader.
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C. Linearized Dynamics

The approach to linearizing eq. 4 is to examine each term. Consider
{

1
||r

iF
||3 −

1
||r

iL
||3

}
{

1
||r

iF
||3 −

1
||r

iL
||3

}
=

{
1

||r
iL

+x||3 −
1

||r
iL

||3

}
=

{
1

[(r
iL

+x)T(r
iL

+x)]3/2 − 1
||r

iL
||3

}
=

{[
||r

iL
||2 + xTx + 2 (r

iL
Tx)

]−3/2 − ||r
iL
||−3

}
=

{[
1 + xTx

||r
iL

||2 + 2 (r
iL

Tx)

||r
iL

||2

]−3/2

− 1
}
||r

iL
||−3

(5)

Apply a binomial expansion to first order, resulting in

{
1

||r
iF

||3 −
1

||r
iL

||3

}
=

{[
1 + xTx

||r
iL

||2 + 2 (r
iL

Tx)

||r
iL

||2

]−3/2

− 1
}
||r

iL
||−3

=
{[

1 + (− 3
2 )

(
xTx

||r
iL

||2 + 2 (r
iL

Tx)

||r
iL

||2

)
+ H.O.T.

]
− 1

}
||riL ||−3

≈ −3
2

(
xTx

||r
iL

||2 + 2 (r
iL

Tx)

||r
iL

||2

)
||r

iL
||−3

(6)

It follows from Eq. 6 that

n∑
i=1

µi

||r
iF

||3 ≈
n∑

i=1

µi

||r
iL

||3

(
1− 3

2
xTx

||r
iL

||2 − 3 (r
iL

Tx)

||r
iL

||2

)
(7)

Substituting Eqs. 6 and 7 into Eq. 4 gives

ẍ ≈ −
{

n∑
i=1

µi

||r
iL

||3

(
1− 3

2
xTx

||r
iL

||2 − 3 (r
iL

Tx)

||r
iL

||2

)}
x +

n∑
i=1

{
µi

||r
iL

||5
(

3
2xTx + 3 r

iL
Tx

)
r

iL

}
+(u

thrust,F
− u

thrust,L
)

(8)

Replace (xTx) r
iL

and (r
iL

Tx) r
iL

in Eq. 8 with the equivalent expressions, (r
iL

xT)x and (r
iL

r
iL

T)x,
yielding

ẍ ≈ −
{

n∑
i=1

µi

||r
iL

||3

(
1− 3

2
xTx

||r
iL

||2 − 3 (r
iL

Tx)

||r
iL

||2

)}
x +

n∑
i=1

{
µi

||r
iL

||5
(

3
2r

iL
xT + 3 r

iL
r

iL
T
)
x
}

+(u
thrust,F

− u
thrust,L

)

=
{
−

n∑
i=1

µi

||r
iL

||3

[(
1− 3

2
xTx

||r
iL

||2 − 3 (r
iL

Tx)

||r
iL

||2

)
I3 − 1

||r
iL

||2
(

3
2riL xT + 3 riL riL

T
)]}

x

+(uthrust,F − uthrust,L)

(9)

In order to remove the state dependence of the dynamics matrix in Eq. 9. assume a tight formation
with ||x|| << ||r

iL
||, for all i. Thus, || − 3

2
xTx

||r
iL

||2 − 3 (r
iL

Tx)

||r
iL

||2 || << 1. Likewise, the term 3
2

r
iL

xT

||r
iL

||2 is also
neglected, since its matrix norm is much smaller than the remaining terms,. Eq. 9 simplifies to
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ẍ = −
{

n∑
i=1

µi

||r
iL

||3

[
I3 − 3

||r
iL

||2
(

r
iL

r
iL

T
)]}

x + (u
thrust,F

− u
thrust,L

)

= −
{

n∑
i=1

µi

||r
iL

||3
[
I3 − 3

(
r̊

iL
r̊

iL
T
)]}

x + (u
thrust,F

− u
thrust,L

)

(10)

Note that r̊
iL

denotes a unit vector along r
iL

.

In summary the linearized dynamics are expressed as

ẍ =
I

Ξ(t) x + u
thrust,F

− u
thrust,L

(11)

where

I

Ξ(t) = −
n∑

i=1

µi

||r
iL

||3
[
I3 − 3

(
r̊

iL
r̊

iL
T
)]

The linearized dynamics in matrix form are

ξ̇ =
I

A(t) ξ + B (u
thrust,F

− u
thrust,L

) (12)

Where:

ξ =

[
x

ẋ

]
;

I

A(t) =

[
0 I3
I

Ξ(t) 0

]
; B =

[
0
I3

]

IV. Conclusions

The process for systems engineering and technology planning for precision formation flying missions
is fully entwined with the science definition and instrument design. The MAXIM mission is used as an
evidential example in this paper. After laying out engineering and technology requirements, one small, but
challenging element of the engineering problem, that of controlling a formation near the Earth-Sun L2 point,
is discussed.

Linear control design is attractive for many applications, based on heritage. Linear control theory offers
many analysis tools for characterizing control performance. This paper presents the linearized dynamics
of relative motion for two spacecraft operating under the influence of an n-body gravitational field. The
linearized dynamics form the basis for a good linear control design.

Future work will employ the linearized dynamics in various control designs. This work will include consid-
eration of spacecraft attitude, disturbances due to differential solar pressure, and measurement error/noise.
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