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The requirements on station-keeping for constellations of free-flying collectors coupled
as (future) imaging arrays in space for astrophysics applications are discussed. The typical
knowledge precision required in the plane of the array depends on the angular size of
the targets of interest; it is generally at a level of tens of centimeters for typical stellar
targets, becoming of order centimeters only for the widest attainable fields of view. In
the “piston” direction, perpendicular to the array, the typical knowledge precision required
depends on the bandwidth of the signal, and is at a level of tens of wavelengths for narrow
∼ 1% signal bands, beccoming of order one wavelength only for the broadest bandwidths
expected to be useful. The significance of this result is that, at this level of precision, it
may be possible to provide the necessary knowledge of array geometry without the use
of signal photons, thereby allowing observations of faint targets. “Closure-phase” imaging
is a technique which has been very successfully applied to surmount instabilities owing to
equipment and to the atmosphere, and which appears to be directly applicable to space
imaging arrays where station-keeping drifts play the same role as (slow) atmospheric and
equipment instabilities.

I. Introduction

One of the major problems affecting the design of systems for high-resolution astronomical imaging using
constellations of free-flying interferometers in space (e.g. Stellar Imager (SI), Infrared Terrestrial Planet
Finder (TPF-IR), Far Infrared Interferometer in Space (SPECS), etc.) is the necessity to keep the individual
elements of the constellation at their designated stations to a high degree of accuracy for extended periods
of time. The current view is that the required precision transverse to the optical axis of the constellation is
only of the order of a modest fraction of the diameter of the individual collector elements, but parallel to the
optical axis (the “boresight”, or “piston” direction) the required precision is currently expected to be a small
fraction of a wavelength. Sophisticated radio + laser ranging systems may be adequate for station-keeping
in the transverse direction, but more elaborate measures will be required to achieve the necessary precision
in the parallel direction. Current thoughts for achieving the required level of “piston” accuracy include fine
control using photons from the target itself; unfortunately this means that observations of faint targets may
be impossible.

In this paper I first review the precision requirements in the transverse direction; the relevant scale length
in this case depends on the wavelength and the size of the desired field of view, and for a representative
example is measured in tens of centimeters. I then discuss the “piston” requirements and conclude that the
relevant scale length is the correlation length of the signal, which is related to the signal wavelength and
bandwidth; again, for a representative example, this is measured in units of tens of λ.

I then describe the concept of “closure phase” and its current application to synthesis imaging in radio
and optical ground-based astronomy in the case where the interferometer data has poor fringe phase stability.
This can happen for instance at low radio frequencies owing to the ionosphere, at optical and near-infrared
wavelengths owing to the atmosphere, and at all wavelengths owing to insrumental drifts and instabilities.
Transfer of the closure phase concept to the space astrophysics imaging problem appears straightforward,
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with station-keeping errors in the role of producing the instrumental phase instability, although many details
still need to be considered. A rough example is sketched out in the form of a multi-channel strawman imaging
mission similar to the Stellar Imager in dilute-aperture Fizeau mode, but applications to Michelson systems
and systems with various degrees of ”pupil densification” may also be feasible. If the idea proves viable in
practice, the impact on the design of such systems in space could be substantial. On-board radio + laser
ranging may then be adequate for controlling the piston errors and, since target photons are not needed for
“guiding”, faint targets would become accessible. The range of available astrophysics problems which such
systems could address would then be greatly increased.

II. Accuracy requirements for Imaging

For illustration purposes one can think of the problem in terms of arranging a constellation of free-flying
collectors on the surface of a (very) large sphere and combining the signals in a “classical” fashion at the
focus; this “dilute aperture” imager is presently one of the designs being explored for the Stellar Imager
(SI) concept mission. Let us define a cartesian coordinate system with x,y in the plane tangent to the
(very-slightly-curved) spherical surface, and z along the optical axis. The collector elements in this example
are distributed over a region on the sphere which is ∼ 0.5 km in diameter; the focus of the system is at a
central hub located ∼ 65 km away along the optical axis.

A. Transverse direction

Let B denote the baseline distance between any two elements of the array. The fringe pattern formed by
this component of the constellation in the focal plane when viewing a distant star located at the center of
the field will have the approximate form at each wavelength λ of

P ≈ P0[1 + cos(2π(B/λ)θ)], (1)

for θ in radians. Note that a typical system we might presently have in mind has B/λ ∼ 3 × 109 and
θ ∼ 3 − 100 × 10−10 rads, or ∼ 60 − 2000 µas. This fringe pattern expands and contracts about the field
center as B changes, and for a given (but in reality unknown) baseline error of δB the resulting fringe phase
error grows with angular distance from the center of the field. The situation is sketched in Figure 1. The
net phase change δφ in units of “turns” (one “turn” of phase corresponds to a path length difference of one
full wavelength, or 360◦) at a radius ρ = Nf × λ/B radians from the center of the field of view is:

δφ = NfδB/B (2)

where Nf is the number of fringes in the angle ρ. If we require that the fringe phase error incurred by this
unknown component of station “drift” be . λ/Q where Q is defined as the “aperture quality factor” then
the requirement is:

δB/B . 1/NfQ. (3)

As an example, suppose the source is a star like the sun and the instrument is intended to provide 30
independent resolution elements across the stellar diameter. It can be safely presumed that there is no signal
outside a circle of radius ρ = 15 × λ/Bmax rads from the center of the star, where Bmax is the longest
baseline in the constellation. For this example, Nf ≈ 15. If we demand “optical quality” of, say, λ/100 in
our imaging instrument, then Q = 100 and δB/B . 1/1500. For a maximum baseline of B = 500 meters, the
largest unknown δB we can tolerate is 33 cm. Note that since Nf ∼ B for a given source size, δB is actually
independent of B, so the required accuracy in this example is 33 cm for every baseline in the constellation.
However, the requirement grows with the size of the target field of view in the sky. For instance, for a
supergiant star the desired FOV could be a factor of 10 larger than the example calculated above, and
the required tolerance on any baseline would be ∼ 3 cm. But now such a constellation would provide 300
independent resolution elements across the star, and it may be more prudent to “shrink” the array by a
factor 10 in order to return to the scale of the initial example and relax the station-keeping requirements
accordingly.

It is interesting to ask what the limit on δB/B might be for very large fields. Thee largest field of view
will be limited by the diffraction pattern of the individual collector elements; this field is of angular radius
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Figure 1. Top panel: fringe pattern for baseline B. Bottom panel: fringe pattern for a baseline which is in
reality 5% larger. Notice the ∼ 0.15λ fringe phase error (54◦ ≈ 1 rad) at the edge of this (small) 3 × λ field.

∼ λ/a where a is the diameter of a collector element. For this field of view, Nf ≈ B/a, so the maximum
tolerable error is:

δB/B . 1/NfQ ≈ a/BQ; (4)

i. e., δB . a/Q, which depends only on the size of the elements of the array, and is a result we could have
obtained more directly from information theory considerations.

To conclude this section, I note that changes in operating wavelength have similar effects on the array
reponse to those I have discussed above and can be modelled in the same way. One particularly deleterious
effect of this is that the point spread function of a system with a finite spectral resolution will vary over the
field of view, becoming radially elongated at large angular distances. Such effects were first analysed in detail
by radio astronomers modelling the reponse of ground-based synthesis imaging arrays (see e.g. Thompson
(1994)6).

B. Longitudinal direction

Station-keeping errors occurring in the z-direction are perhaps a little more obvious in their effect. Errors of δz
directly translate to a fringe phase error of 2δz/λ rads in the dilute reflecting aperture (Fizeau interferometer)
being modelled here, and half this much for a Michelson interferometer. In this case it is not an expansion or
contraction of the fringe pattern about the field center, but a gross movement of the entire fringe pattern in a
direction parallel to that of the baseline projection on the field of view. At first sight this is a serious problem,
since it appears to require holding the station position to a tiny fraction of the wavelength. However, since
it is the whole fringe pattern that moved and not the relative separation between two points in the field of
view, the angular distance measured in fringes between the field center and the edge remains the same. In
other words, the relative fringe phase is actually not sensitive to this shift. Figure 2 shows a sketch of the
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situation. If we can design our system and/or (post-) process the data in order to use this relative phase

Figure 2. Top panel: original fringe pattern. Bottom panel: fringe pattern shifted by a phase error of δφ = 1
rad, caused e.g. by a “piston” error of ≈ λ/12 in a simple dilute reflecting Fizeau system.

insead of an absolute phase, we will be quite insensitive to “piston” errors, although we would lose the ability
to measure the target position in an absolute sense. Except for precision wide-angle astrometry, no other
applications in astrophysics require such absolute position information.

The real problem comes because of a loss of fringe amplitude at large piston errors owing to the finite
bandwidth of the detection system; only if the bandwidth is infinitely narrow will the fringe pattern amplitude
remain independent of δz as shown in Figure 2. For finite fractional bandwidths of δλ/λ, the fringe pattern
has an effective width of ≈ λ2/δλ. This is the “correlation length” of the fringes. Figure 3 shows a sketch
of this situation. If we can keep δz to some fraction of the correlation length, then the measurement of
fringe amplitude and fringe phase can be made subject only to photon noise in the time scale of the drift
in the “piston” position. Although this time scale is short in the case of ground-based observations through
the earth’s turbulent atmosphere, the time scale for a collector element to drift an appreciable fraction of a
wavelength in space could be much longer, permitting longer coherent integration times on the fringes.

The problem now becomes to find a method of turning the recorded fringe amplitudes and (drifting)
phases into an image in such a way as to be insensitive to shifts of the whole fringe pattern owing to piston
errors. There are several related “post-processing” techniques which could be used. For instance, if the field
of view contains a particularly bright star besides the target of interest, fringe phases could be “referenced”
to this star. Another trick which was used first at radio wavelengths is to reference phases to a bright spectral
line feature.

One quite general approach to this “unstable-phase” imaging problem which has been used with success
for ∼ 30 years uses the concept of “closure phase”, which I will now summarize.
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Figure 3. Top panel: Fringe pattern vs. piston error (in wavelengths) for a very narrow-band signal. Bottom
panel: The same fringe pattern for a square bandpass of 20%. Note how the fringes disappear beyond Nf ≈ 5.

III. Closure phase

In 1958, Jennison1 presented a technique for measuring relative fringe phase which used three radio-linked
collectors coupled as three interferometers operating at a wavelength of 2.4 meters over baselines up to ∼ 10
km. Owing to a variety of instrumental problems related to the amplifiers and local oscillator electronics
available at the time, the fringe phase between any two collectors was unstable and could normally not be
measured; the source structure information had to be derived from the (squared) fringe amplitudes alone (a
familiar situation in present-day ground-based optical interferometry). Jennison showed that, if the three
observed fringe phases were summed, the resultant combined phase was insensitive to equipment instabilities.
With this approach, Jennison & Latham (1959)2 showed that the brightness distribution of the radio source
Cygnus A, which until then was only known to be elongated, actually consisted of two separated sources
of nearly equal brightness straddling a peculiar optical object tentatively identified at the time with two
galaxies in collision. This was the first observation to reveal the double-lobed structure of a powerful radio
galaxy.

Applications of this method to circumvent atmospheric phase instabilities in optical interferometry were
described by Jennison (1961)3 and, apparently independently, by Rogstad (1968).5 The first use of the
term “closure phase” which I have been able to find is in Rogers et al. (1974)4 describing an application
at radio wavelengths using very accurate, but independent, reference oscillators at the three stations in a
so-called “very-long-baseline” interferometer array. Since that time, closure phase has been used extensively
at radio, IR, and optical wavelengths, and there are many papers describing the subject, its virtues, and its
limitations. For newcomers, the lectures presented at the Michelson Summmer schools by John Monnier and
David Buscher in 2001, and by Peter Tuthill in 2003 are good sources (see http://msc.caltech.edu/school/2003
and links there).
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IV. Conclusion

The requirements on station keeping for constellations of free-flying collectors coupled as (future) imaging
arrays in space for astrophysics applications have been discussed. The typical knowledge precision required
in the plane of the array depends on the angular size of the targets of interest; it is generally at a level of
tens of centimeters for typical stellar targets, becoming of order centimeters only for the widest attainable
fields of view. The requirements on control precision can be even less stringent, depending on the time scale
over which the “knowledge” information is available. In the “piston” direction, perpendicular to the array,
the typical knowledge precision required depends on the bandwidth of the signal, and is at a level of tens
of wavelengths for narrow ∼ 1% signal bands, beccoming of order one wavelength only for the broadest
bandwidths expected to be useful. Control precision will likely be even less stringent, depending on the time
scales involved, but a discussion of control issues lies outside this paper.

The significance of this result is that, at this relaxed level of precision, it may be possible to provide the
necessary knowledge of array geometry without the use of signal photons, thereby allowing observations of
faint targets.

Such constellations of free-flyers will produce images using various sophisticated reconstruction techniques
which relax the level of precision required on the fringe phase of each component interferometer. “Closure-
phase” imaging is one such technique which has been very successfully applied to surmount instabilities
owing to equipment and to the atmosphere, and which appears to be directly applicable to space imaging
arrays where station-keeping drifts play the same role as (slow) atmospheric and equipment instabilities.
Among the many open questions to be investigated in connection with this idea, future work on this topic
ought to include writing a computer-based imaging simulator for a typical free-flyer space array mission
using closure phase reconstruction.

Acknowledgments

My thanks to my colleagues on the Stellar Imager “Optics” team, especially Dave Mozurkewich and
Rick Lyon, for stimulating discussions. I am pleased to acknowledge the support of this work by the Space
Telesope Science Institute, and by grants from the NASA-Goddard Space Flight Center.

References

1Jennison, R.C. 1958, Monthly Notices of the Royal Astronomical Society, 118, 276.
2Jennison, R.C., & Latham, V. 1959, Monthly Notices of the Royal Astronomical Society, 119, 174.
3Jennison, R.C. 1961, Proceedings of the Physical Society, 78, 596.
4Rogers, A.E.E, et al. 1974, Astrophysical Journal, 193, 293.
5Rogstad, D.H. 1968, Applied Optics, 7, 585.
6Thompson, A.R. 1994, in Synthesis Imaging in Radio Astronomy, eds. R.A. Perley, F.R. Schwab, & A.H. Bridle, ASP

Conference Series, Vol. 6, (ASP, San Francisco), 32.

6 of 6


	Home: 


