

2nd International Formation Flying Symposium

1

The Formation Algorithms and Simulation Testbed

Mattthew Wette, Garett Sohl, Daniel Scharf, Edward Benowitz*
Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA, 91109, USA

Formation flying for spacecraft is a rapidly developing field that will enable a new era of
space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has
selected a formation flying interferometer design to detect earth-like planets orbiting distant
stars. In order to advance technology needed for the TPF formation flying interferometer,
the TPF project has been developing a distributed real-time testbed to demonstrate end-to-
end operation of formation flying with TPF-like functionality and precision. This is the
Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring
out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing
and system-wide formation robustness. In this paper we describe the FAST and show
results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first
time that precision end-to-end formation flying operation has been demonstrated in a
distributed real-time simulation environment.

I. Introduction
Formation flying is a very promising and rapidly developing field for enabling a new era of space science.
Formations of spacecraft separated by meters to kilometers operating together in tight synchronization provide a
high-precision platform for performing unprecedented science. The Terrestial Planet Finder (TPF) project has
baselined a design for planet detection using a formation flying interferometer. This design will require a formation
of five spacecraft to fly with an inter-spacecraft precision of 2cm in range and 1 arcmin in bearing and at separations
ranging from a few meters to a hundred meters. In addition, the formation must be able to avoid spacecraft collision
in the presence of spacecraft faults (e.g., spacecraft computer reset). In recent years, JPL has developed precision
formation flying algorithms for enabling these types of missions. In order to advance formation technology
readiness, the TPF project at JPL has been developing a distributed real-time simulation testbed for demonstrating
formation flying, called the Formation Algorithms and Simulation Testbed (FAST). The FAST contributes one of
many technology elements in TPF’s approach to formation flying technology (see Ref. 1).

To prove that this technology is viable for deep space missions like TPF we seek to demonstrate that a
formation flying control system can be integrated end-to-end, and can achieve the required performance and
robustness levels. While back-of-the-envelope error budgets can be used to provide much insight into performance
for single spacecraft missions, formation flying with its high level of integration of multiple components leaves new
classes of uncertainty in the results. In particular, there is significant interaction between flight control algorithms,
inertial and relative sensors (in coarse, medium and fine configurations), disturbance sources, communication
systems, and other elements of the flight system. Hardware testbeds provide much in the way of providing
validation of this complex operation. However, the relationship between ground hardware testbeds and their
companion flight versions is typically a necessary approximation due to cost/time constraints and the environment of
changing flight requirements and design.

Three elements of the TPF plan for developing formation flying technology are system engineering for formation
flying technology, the FAST – our end-to-end simulation testbed, and the Formation Control Testbed (FCT) – a
ground hardware testbed using 6-DOF robots with spherical and linear air bearings (see Ref. 2). The role of system
engineering is to understand TPF formation flying requirements and map these to the FAST and FCT. The FAST
has the capability of being able to simulate something close to the TFP formation flying concept, whereas the FCT
provides a hardware proof-of-concept for the integration of the elements needed precision formation flying control.
FAST can be used to predict functionality and performance of TPF. However, by applying the FAST simulation
environment to FCT, the FAST can be used to predict functionality and performance of FCT. Comparison of

* Autonomy and Control Section, 4800 Oak Grove Dr., M/S 198-326

2nd International Formation Flying Symposium

2

simulation results from the FAST to actual data from the FCT will provide validation of the FAST. Figure 1
illustrates this approach. The bottom boxes represent the FAST simulation environment applied to the FCT (on the
left) and TPF (on the right). In addition to the two-spacecraft TPF-like simulation described in this paper, we are
planning to validate the FAST against a two-robot FCT system and three-robot FCT system in 2005 and 2006,
respectively. In 2006 we will have a distributed real-time simulation for the baseline TPF design.

Software Model

Software

Algorithms

structures

…

avionics
electronics

System
Simulation

Models

modeling

analysis

Hardware Testbed

Simulated System

FFvalid3a.vsd
03Aug04 M.Wette

requirements
predicted

performance

system
performance

Algorithms

Software Model

Software

Algorithms

structures

…

avionics
electronics

System
Simulation

Models

modeling

analysis

Flight System

Simulated System

requirements
predicted

performance

system
performance

Algorithms

Functional Link

Perform
ance Link

Figure 1. Linking Hardware Testbeds, Simulation and Flight Design

A. Context of FAST in Formation Flying Technology Development

The FAST team has been able to leverage previous and ongoing efforts in formation flying as illustrated in
Figure 2. The FAST development has benefited from development of formation control algorithms and a distributed
simulation environment over the past several years. Technology development of algorithms and a desktop
workstation environment were developed under a NASA Code-R program. In addition, the StarLight project, which
had planned to demonstrate formation flying interferometry in space, provided many control and estimator algorithm
building-blocks, along with a C-coded workstation environment to demonstrate integrated operation. The TPF-
funded FAST effort started with these products and integrated them with new developments to demonstrate
formation control for a TPF-like mission in a distributed real-time environment. The same environment used to
develop the TPF system is being used to develop closed-loop, autonomous control for the FCT hardware ground
experiment.

TRL 1-3 Alg & Sim Dev

FF Control Algorithm Dev

FF Simulation
 (Desktop)

FF Simulation
(Dist Real-Time)

Code-R Dist S/C Tech Program

Oct 2003
first-ever demo of
formation flying
in dist real-time

Oct 2002
StarLight alg’s
handoff to TPF

End-to-End Multi-Robot
 (FCT)

FY02 FY04FY03

StarLight TPF (for flight mission & robot testbed)

FY05 FY06

StarLight

TPF (for flight mission & robot testbed)

TPF (for flight mission & robot testbed)

TPF (Robot Testbed)

Figure 2. Context of FAST in Formation Flying Technology Development

We have discussed the FAST with regards to the TPF mission and other developments in formation flying. In
the remainder of this paper we describe the FAST. In Section II we describe the system architecture; in Section III
we describe the flight-like algorithms and software; in Section IV we describe the simulation environment; in
Section V we describe results; and in Section VI we describe current activities and planned work.

2nd International Formation Flying Symposium

3

II. System Architecture
As shown in Figures 3 and 4, the FAST is hosted on a pair of racks, the Flight Cluster and the Simulation

Cluster. The Flight Cluser hosts algorithms and flight-like software running on PowerPC processors. The
Simulation Cluster hosts the dynamics simulation on a Beowulf cluster. Between the PowerPC flight-like boards of
the Flight Cluster and the Simulation Cluster is a set of reflective memory boards, providing a shared memory
interface. The five flight-side boards are Motorola PowerPC MCP750-366-K boards which each reside in a
dedicated ELMA CompactPCI chassis. These boards are running VxWorks version 5.3. The simulation computers
are PSSC8 computer cluster nodes which each host a pair of AMD MP220 1.8GHz CPUs running RedHat Linux 8.0
with the RTAI real-time patch. The simulation cluster runs with a SCI-based high speed interconnect, the Dolphin
Wulfkit 2D board, which provides CPU-CPU latencies on the order of < 10usec and a throughput of 300MB/sec.
The reflective memory interface between the flight and simulation side is the VMIC VMICPCI-5579 and VMIC
VMIPCI-5579 boards, for the CompactPCI and PCI backplanes, respectively.

Spacecraft and
Environment
Simulation

Formation Control
Algorithms and

Software

Ground
System

Simulation

VxWorks / PPC CPU

Flight Algorithms
and Software re

fle
ct

iv
e

m
em

or
y

re
fle

ct
iv

e
m

em
or

y

S
C

I n
od

eRTAI-Linux / x86

dynamics
simulation

fiber-optic

et
he

rn
et

cPCI bus PCI bus

VxWorks / PPC CPU
Flight Algorithms

and Software re
fle

ct
ive

m
em

or
y

re
fle

ct
ive

m
em

or
y

S
CI

 n
od

eRTAI-Linux / x86
dynamics
simulation

fiber-optic

et
he

rn
et

cPCI bus PCI bus

VxWorks / PPC CPU

Flight Algorithms
and Software re

fle
ct

iv
e

m
em

or
y

re
fle

ct
iv

e
m

em
or

y

SC
I n

od
eRTAI-Linux / x86

dynamics
simulation

fiber-optic

et
he

rn
et

cPCI bus PCI bus

VxWorks / PPC CPU

Flight Algorithms
and Software re

fle
ct

iv
e

m
em

o
ry

re
fle

ct
iv

e
m

em
o

ry

S
CI

 n
o

deRTAI-Linux / x86

dynamics
simulation

fiber-optic
et

he
rn

et

cPCI bus PCI bus

VxWorks / PPC CPU
Flight Algorithms

and Software re
fle

ct
ive

m
em

or
y

re
fle

ct
ive

m
em

or
y

S
C

I n
od

eRTAI-Linux / x86
dynamics
simulation

fiber-optic

et
he

rn
et

cPCI bus PCI bus

RTAI-Linux / x86

console
software

SIMULATION CLUSTERFLIGHT CLUSTER

 Figure 3. FAST Hardware Racks Figure 4. FAST Hardware Block Diagram

This configuration is representative of one that would be used in a flight project to test and debug the real-time

flight code before proceeding to full flight system testing. In this environment we are capturing the essence of the
development and testing of these algorithms in a flight project environment. The testbed will be validated against
the FCT, a ground testbed demonstrating formation robot control, as described in Ref. 2.

The software executive, which we consider separately from the flight algorithms (see Figure 5), includes
functionality for commanding and telemetry, and will be extended in the near future to include inter-spacecraft time
synchronization and formation fault protection logic. The formation algorithms include formation guidance with
collision avoidance in the presence of faults (e.g., spacecraft computer reset). The formation algorithms also
provide formation estimation with the aid of relative sensors and interspacecraft communication.

This computational architecture is highly scalable and hosts a distributed simulation, based on JPL's HYDRA3
architecture, of multiple spacecraft dynamics and associated attitude control actuators and sensors (e.g., thrusters,

2nd International Formation Flying Symposium

4

star trackers, gyros). In addition, the simulation includes models of interspacecraft communication and of relative
sensors (providing inter-spacecraft range and bearing information).

Simulation

Software Executive

Algorithms (FACS)

buffer

buffer actuator
manager

act model

buffer

sensor
manager sen model

buffer

dynamics
simulation

Cmd /
Uplink

manager uplk model

buf

clock
time

manager

getCommand()

buf

getClock()

exec

function call
write
read
interrupt

dnlk modelTelem /
Downlink
manager

buf

buf

ISC I/F

buffer

bufferISC
manager

buffer

buffer relative range/
bearing sensor

models

estimator

guid con cal

mdc
ISC

model

GUI

CONSOLE

FACS Manager

data
file

TCL
commands

Figure 5. Top-Level Software Architecture

We have developed the FAST using a process similar to what might be found on a flight project. The top-level

software architecture, as shown in Figure 5, is broken up into three areas: algorithms, software executive and
simulation. The first step in development of the FAST was to define the interfaces between these areas and develop
requirements to guide the subsystem development. The process for development and integration of these
subsystems is illustrated in Figure 6. The formation and attitude control system (FACS) algorithms, dynamics, and
actuator/sensor models are developed by control analysts and integrated into a desktop workstation environment.
These items are then delivered to the software and simulation teams, respectively and integrated into a distributed
real-time environment. The process has been applied so far to successfully deliver a two-spacecraft distributed real-
time simulation as well as two stand-alone robot simulations.

Since the algorithms and simulation environment were contributed from other projects, we found it useful to
document system level architecture and interface specifications. The use of the shared memory interface between
the flight algorithms and the simulation environment has been controlled by an interface specification which covers
interfaces for the actuators, sensors, clock/timers, uplink/downlink and inter-spacecraft communication (ISC).

The system has a novel method of providing accelerated simulation. The VxWorks operating system used for
the flight-side of the system provides facilities for clocks and timers. However, by implementing the clock and
timers on the simulation side the execution of the cyclic control loops in the flight-side processors is triggered via
timer interrupts from the simulation. This provides the capability of scaling the real-time execution of the system
easily by appropriately scaling the clock component of the simulation. Formation flying maneuvers often require
hours of simulation time; we have been able to compress the nominal 1Hz interrupt rate by up to a factor of 32. This
capability has been a great boost to productivity in using the testbed.

2nd International Formation Flying Symposium

5

distributed real-time environment

Dist. Real-Time Sim.Software Executive

Dist. Real-Time Sim.Software Executive

workstation environment

FACS models

modelsFACS

FACS models

Algorithms

Software Sim & Test

C-based / Solaris

delivery to
Design Team

demo's

VxWorks/PowerPC

Linux-RT/BeowulfVxWorks/PowerPC

Linux-RT/Beowulf

Figure 6. Flight-like Development Process

When using shared memory interface in a real-time system, the two components (i.e., flight and simulation

components) communicating over the shared memory interface must not access the interface at the same time.
Otherwise, inconsistent or corrupted data accesses may occur. The shared memory interface in FAST is used to
provide a medium for transfer of actuator, sensor and communication data. Exclusive access to data is enforced
using access time restrictions, or read/write deadlines, on the shared memory interface. In the initial FAST two-
S/C design, the algorithms are processed in a single phase; the five-S/C design the algorithms will be processed in
two phases.

sensor,
command,
ISC read
deadline

1 RTI

Interrupt

actuator,
telemetry,
ISC write
deadline

rd run algorithms wr

ISC2 write
deadline

sensor,
command,
ISC1 read
deadline

1 RTI

Interrupt

ISC2 read
deadline

actuator,
telemetry,
ISC1 write
deadline

rd alg1 read comm alg2 wr

Figure 7. Flight-side Single- and Dual-Phase Cycle Timing Deadlines

Figure 7 shows the single phase and dual phase timing deadlines, which are stated relative to the real-time

interval (RTI) interrupt. For single-phase design, the sensor, command and communication reads must be
completed within a fraction of 0.25 of the RTI and the actuator, telemetry and communication writes must occur by
a fraction of 0.75 of the RTI. For the dual-phase design we require the following. The flight side must read all
sensor, commands, and initial communication data within a fraction of 0.2 of the RTI; the flight side must write
initial comm. data, after processing, before 0.4 into the RTI. The software will then poll for the second phase of
communication data. The system requirements stipulate that phase-2 communication data must be transferred
between spacecraft by 0.5 into the RTI. The second phase of algorithm computations, actuator writes,
communication writes and telemetry writes must be completed by 0.9 into the RTI. Currently these requirements

2nd International Formation Flying Symposium

6

are representative and do not reflect any driving requirements (which might come from analysis of communication
latency capabilities).

III. Flight-Like Algorithms and Software
The flight-like software component of FAST consists of the formation control algorithms – called the Formation

and Attitude Control System (FACS) – and the Software Executive. Details of the FACS design and capabilities are
covered in a companion paper4. The FACS includes (refer to Figure 5) a guidance component (“guid”, with
autonomous path-planning and collision avoidance), formation estimation (“estimator”), formation control (“con”,
with synchronized thruster firing),) a control allocator (“cal”, to map torqe/force commands to thruster and reaction
wheel commands and a mode commander (“mdc”, the supervisory logic for the control system).

The Software Executive provides a flight-like environment for execution of the FACS. The executive provides
commanding, telemetry handling, device-level communication, inter-spacecraft communication, and scheduling
withing the real-time VxWorks operating system. This software uses a TCL (Tool Command Language, see Ref. 5)
command interpreter as the command executive. The formation control algorithms are also commanded via TCL
commands. These commands are simple to implement and we have found that adding new commands can be done
in less than an hour. Telemetry is available in ASCII or binary format and the process for generating telemetry has
been highly automated. Conversion tools are provided for analysis in a MATLAB environment. In addition,
telemetry identifiers, telemetry generation, telemetry decoding, and telemetry display code are all automatically
coded from a telemetry specification written in any standard spreadsheet tool. We are able to automatically code the
memory map describing the interface between the simulation and the VxWorks hardware boards, again based on a
spreadsheet specification. The autocoding tools were written in Java.

In its current form, the two FAST spacecraft clocks are synchronized. As mentioned previously, the flight
computer clock is provided by the simulation cluster. This contrasts with the traditional method of relying on
VxWorks or hardware. The simulation provided interrupts to the FAST software indicating the start of the RTI.
This synchronized feature was provided for compatibility with the FCT, and also allows time scaling. As we move
toward 5-spacecraft simulations in the FAST, we intend to allow simulated spacecraft clocks to drift with respect to
each other. The FAST software will then be upgraded to provide a clock synchronization algorithm via exchange of
inter-spacecraft communication messages.

IV. Simulation Environment
FAST uses simulated spacecraft dynamics for closed-loop testing of formation flying algorithms. The simulation

includes rigid and flexible body spacecraft dynamics as well as device models for on-board actuators and sensors.
The simulation must also model inter-spacecraft communications. The simulation runs on a real-time, RTAI/Linux
system and communicates with the software executive using fiber-optic reflective memory as shown in Figure 4.

The Dynamics Algorithms for Real-Time Simulation (DARTS) software package (see Ref. 7) is used to simulate
spacecraft dynamics based on the Spatial Operator Algebra (SOA). DARTS is a multi-platform software library
written in the C programming language. It provides highly efficient numerical algorithms for both rigid and flexible
body dynamics. Spacecraft mass and inertia properties are input to DARTS using a TCL script. A lightweight
interface to DARTS provides external actuator and sensor models access to dynamical inputs (forces) and outputs
(spacecraft state). A numerical integrator is used to propagate the system state based on accelerations computed by
DARTS. The FAST simulation allows the user to choose either a fixed step, fourth order Runga-Kutta integrator or
the variable step CVODE (see Ref. 6) integrator. The fixed step integrator provides real-time, deterministic
performance while the variable step integrator provides higher accuracy.

Each spacecraft’s dynamics simulation is distributed to run on its own CPU as shown in Figure 4. This
separation exploits the distributed nature of multiple spacecraft formation flying and allows for higher fidelity
simulation of more spacecraft than could be achieved on a single processor. While spacecraft dynamics can be
distributed, the multiple spacecraft in a formation flying system are not totally decoupled. Relative sensing between
spacecraft in a formation requires state knowledge of two or more spacecraft at a given time. This requires
synchronization between dynamics integrators running on separate CPUs. Synchronization is also used for inter-
spacecraft communications (ISC). This prevents a spacecraft simulation from propagating its state beyond the time
when it should receive a message from another spacecraft in the formation.

As the number of spacecraft in a formation increases, the overhead required to manage communication and
synchronization between distributed simulation components grows rapidly. A scalable, flexible and easily extensible
architecture is needed to automate communication and manage connections between distributed applications. The
FAST uses the JPL-developed Hierarchical, Distributed, Re-configurable Architecture3 (HYDRA). HYDRA

2nd International Formation Flying Symposium

7

automates the connection of distributed simulation elements using a publish-subscribe, client-server paradigm. As
each client application is started, it provides the server with a list of offered and desired services. The server
commands two clients to form a connection when they have advertised compatible services. Client applications
communicate through connectors that abstract message passing over a variety of protocols, including shared
memory and TCP/IP. While HYDRA is similar to other distributed architectures (e.g. CORBA, HLA, etc.), it was
specifically designed for the needs of high-speed, distributed simulation. HYDRA allows the user to override default
behaviors at several layers. Each spacecraft simulation in FAST is a HYDRA client and they communicate using
both 100Mbps TCP/IP network and a low-latency Scalable Coherent Interface (SCI). Adding a simulated spacecraft
to the formation only requires starting up another spacecraft client. This flexibility allows the FAST to rapidly
respond to changing mission requirements.

Figure 8 shows a timing diagram for a two spacecraft distributed simulation with a 1 second RTI duration. The
two spacecraft simulations are HYDRA clients that communicate over a SCI protocol. Hydra manages
communication and synchronization between simulation clients. Each simulation client communicates with the
software executive over a reflective memory interface. In this diagram, the software executive calls the FACS code
once per RTI and a single ISC message is sent between spacecraft each RTI.

Figure 8. Timing in HYDRA

V. Results
In the first year of FAST development, we were able to successfully integrate the C-coded FACS, the software
executive and Hydra-based simulation in our new distributed simulation environment to demonstrate autonomous
formation flying control of a two-spacecraft system using a single leader and single follower spacecraft.. The
following commands are representative of those sent to the spacecraft from the ground console.

facs_cmd INITIALIZE time {8500} StarDirection {0.0, 0.0, 1.0} \
 Baseline {20} BaselineVector {0.0, -1.0, 0.0} Duration {4500}
facs_cmd RE_TARGET time {14000} StarDirection 0.0, 0.6, -0.8} \
 Baseline {20} BaselineVector {0.0, 0.8, 0.6} Duration {8000}

These are TCL commands which are transmitted from the ground cosole, to the simulation, through the uplink
model and software handler, and thence to the FACS guidance module. In reaction to these commands, the pair of

2nd International Formation Flying Symposium

8

spacecraft (communicating via the ISC model) was able to go through initial deployment, stop-and-stare
observations and re-targeting maneuvers. The system is very autonomous, performing basic collision avoidance
without ground intervention.

Plots showing attitudes and relative positions for the spacecraft are provided in Figure 9. The top set of plots
shows the combiner spacecraft attitude, collector spacecraft attitude and spacecraft relative position from the
workstation-based CAST simulation environment. The bottom set of plots shows the same scenario executing in the
FAST distributed real-time simulation environment. As one can see, the agreement between the two environments
is excellent. Figure 10 shows the collision-avoidance path traveled by the spacecraft during a re-target maneuver:

from (sec) to (sec) activity

0 1000 delta-V to zero out realtive translational velocity
1000 3000 sun-point, then slew to predetermined attitude
3000 9000 relative sensor calibration
9000 13000 acquisition of first observation target

13000 14000 first observation
14000 22000 slew to second observation target
22000 30000 observe second target

0 1 2 3

x 10
4

−1

−0.5

0

0.5

1

W
O

R
K

S
T

A
T

IO
N

cmb att

0 1 2 3

x 10
4

−1

−0.5

0

0.5

1
col att

0 1 2 3

x 10
4

−30

−20

−10

0

10

20
rel pos

0 1 2 3

x 10
4

−1

−0.5

0

0.5

1

D
IS

T
. R

E
A

L−
T

IM
E

time
0 1 2 3

x 10
4

−1

−0.5

0

0.5

1

time
0 1 2 3

x 10
4

−30

−20

−10

0

10

20

time

Figure 9. Agreement between Workstation and Distributed Real-Time Simulation Environments

The process of developing and integrating this system together provided lessons in the validation of formation

flying work as well as bring out issues that we did not anticipate. One design issue brought out by the distributed
real-time simulation was that the guidance algorithm required more computational effort than we had anticipated.
The calculation performed by the guidance algorithm and required for each formation maneuver (e.g., re-target) had
been originally carried out in the foreground task as the core of our real-time loop. After discovering that the
guidance required about 20 seconds of computational time, we re-architected the software to process this algorithm
in a background task. The TPF design is being worked to accommodate this if maneuvers are to be commanded at
given times, the guidance algorithm will need to process the commands (20 seconds) prior to execution.

2nd International Formation Flying Symposium

9

Figure 10. Graphic Output from Distributed Real-Time Simulation

VI. Current Activities and Future Work
The results we described above were for a demonstration we executed in October 2003. Since then we have

been working on two major areas. We have been updating algorithms, software and simulation code to demonstrate
a five-spacecraft TPF-like formation flying operation. This work will be continued in 2005 and 2006. Currently, we
are working on developing algorithms, software and simulation capability for the TPF FCT, a ground hardware
testbed for demonstration of 6-DOF robots operating in precision formation. We have delivered two versions of
software for the first robot, to be delivered to JPL in August 2004.

Figure 11. Simulated FCT Robot

In the development of our five spacecraft simulation, we have developed prototype code for a communication

system that can simulate path-dependent delays, jitter, dropouts and buffer overflow. We plan to incorporate this
into FAST in 2005. In addition to this, we plan to develop spacecraft-to-spacecraft synchronization code. This is

2nd International Formation Flying Symposium

10

based on a Time Echo packet which is transmitted from each follower spacecraft to the leader and back. The packet
contains (1) the time the packet left the follower S/C, (2) the time the packet arrived at the leader, (3) the time the
packet was retransmitted from the leader and (4) the time the packet arrived at the follower again. From these four
values and the assumption that the time to transmit the pack is independent of direction, one can easily compute the
offset in the clocks on the two spacecraft as well as the time of flight.

Other work in the coming years will be focused on developing and demonstrating autonomous formation flying
systems which are robust to faults (e.g., spacecraft computer reset), working with communication dropouts, and
exploring the options for improving control performance.

Conclusions
FAST is providing a high fidelity environment for developing and exploring formation flying, providing

confidence in this new technology to the space science community. The architecture of this testbed is very flexible
and scalable and hence should be adaptable to not only changing TPF requirements but also other formation flying
missions. The testbed is equipped with a rich set of formation flying algorithms, a flight-like software environment
and distributed dynamic simulation with communication and relative sensor simulations. We have shown results
from a demonstration of a two-spacecraft formation exhibiting autonomous formation flying maneuvers in
distributed real-time. The results show much promise for the follow-on work of demonstrating five-spacecraft
formation flying in distributed real-time as well as system validation using a two and three robot formations in the
FCT ground testbed.

Acknowledgments

This work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

References

1Aung, M., Ahmed, A., Wette, M., Scharf, D., Tien, J., Purcell, G., Regehr, M., Landin, B., “An Overview of Formation
Flying Technology Development for the Terrestrial Planet Finder Mission,” IEEE Aerospace Conference,March 6-13, 2004, Big
Sky, Montana.

2Regehr, M., Acikmese, A., Ahmed, A., Bailey, R., Bushnell, C., Clark, K., Hicke, A., Lytle B., MacNeal, P., Rasmussen R.,
Shields, J., Singh G., "The Formation Control Testbed," IEEE Aerospace Conference, March 6-13, 2004, Big Sky, Montana.

3Martin, B. and Sohl, G., “Hydra: High-Speed Simulation Architecture for Precision Spacecraft Formation Simulation,” AIAA
Modeling and Simulation Technologies Conference and Exhibit, August 11-14, 2003, Austin, Texas.

4Scharf, D., “An Overview of the Formation and Attitude Control System for the Terrestrial Plant Finder Formation Flying
Interferometer,” 2nd International Formation Flying Conference, September14-16, 2004, Washington, D.C.

5Welch, B., “Practical Programming in TCL,” Prentice-Hall, 1999.
6Cohen, S. and Hindmarsh, A., “CVODE, a Stiff/Nonstiff ODE Solver in C,” Computers in Physics, volume 10, number 2,

pages 138-143, March 1996.
7Jain, A.and Rodriguez, G., “Recursive Flexible Multibody System Dynamics using Spatial Operators,” Journal of Guidance,

Control and Dynamics, vol 15, pp 1453-1466, November 1992.
8Professional Service Super Computers, http://pssclabs.com/.

	Home:

