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                                                                     Abstract 

  

      Near-forward scattering of an optically trapped 5μm radius polystyrene latex sphere by the 

trapping beam was examined both theoretically and experimentally.  Since the trapping beam is 

tightly focused, the beam fields superpose and interfere with the scattered fields in the forward 

hemisphere.  The observed light intensity consists of a series of concentric bright and dark 

fringes centered about the forward scattering direction.  Both the number of fringes and their 

contrast depend on the position of the trapping beam focal waist with respect to the sphere.  The 

fringes are caused by diffraction due to the truncation of the tail of the trapping beam as the 

beam is transmitted through the sphere. 
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                                                             1.   Introduction 

 

      When a downward-propagating tightly focused laser beam is incident on a small particle, the 

radiation force of the beam on the particle can sometimes be directed upward.  If the upward 

radiation force is sufficiently strong it can balance gravity and optically trap the particle1.  The 

radiation trapping force has been calculated using ray theory2,3, Rayleigh scattering1,4, Rayleigh-

Gans scattering5-7, and Mie theory8-14.  In each of these approaches one must model the details of 

the incident beam.  The two beam types most commonly used in trapping calculations are (i) a 

freely propagating focused Gaussian beam in the medium surrounding the particle, paying no 

attention to the way in which the beam is produced and (ii) a Gaussian beam that overfills a high 

numerical aperture (NA) oil-immersion microscope objective lens and is transmitted from a 

microscope cover slip to a water-filled sample cell, thus acquiring spherical aberration15-17.  

Although the Gaussian beam is highly idealized whereas the apertured, focused, and aberrated 

beam (hereafter called an AFA beam) is more experimentally realistic, their predicted trapping 

properties are found to be surprisingly similar when the particle to be trapped is near the top of 

the sample cell where the spherical aberration of the AFA beam is small14. 

 

      In this paper we examine scattering of the trapping beam by a trapped particle and determine 

the conditions under which the near-forward direction light scattering signature of the freely 

propagating Gaussian beam and the AFA beam greatly differ in spite of the similarity of their 

trapping properties.  A complication caused by the trapping beam’s tight focus is that it has a 

wide angular extent in the far-zone which substantially overlaps the scattered light.  
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Experimental measurements record the intensity of the beam-plus-scattered light, which 

necessitates calculating the beam’s far-zone fields and adding them to the scattered fields.  For 

weak focusing, the paraxial far-zone beam fields are well approximated by the Fourier transform 

of the beam fields in the plane containing the center of the particle18-21.  But for strong focusing 

and wide angular spreading in the far-zone, the paraxial approximation is inappropriate and an 

alternative approach is required. 

 

      The body of this paper is organized as follows.  In Section 2 we describe a tightly focused 

on-axis beam and its far-zone asymptotic form in terms of the beam’s partial wave shape 

coefficients.  We also give the specific form of the shape coefficients for a freely propagating 

focused Gaussian beam and an AFA beam.  In Section 3 we compute the trapping properties of 

each of these beams for a 5μm radius polystyrene latex (PSL) sphere in water.  We find that both 

the maximum trapping efficiency and the trapping range are similar when each beam has the 

same focal waist radius and the sphere is near the top of the sample cell.  We also find that for 

high laser power the center of the focal waist of each beam is predicted to lie near the center of 

the particle in the stable trapping position.  Section 4 examines the calculated angular structure 

of the light scattered by the PSL sphere in the near-forward direction, the physical scattering 

mechanisms responsible for the structure, and the features of the structure which differ markedly 

for the tightly focused Gaussian beam and the AFA beam.  We find that when the center of the 

beam waist lies outside the sphere, scattering by each beam is similar.  But when the center of 

the beam waist lies deep inside the particle, the scattered light in the forward hemisphere for 

each of the two beams is quite different.  In Section 5 we describe an experiment whose purpose 
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was to measure the laser beam trapping length and observe the near-forward scattered intensity.  

Finally, in Section 6 we summarize our conclusions.  

     

                                   2.   On-Axis Beam Fields in the Far-Zone 

                                                   2a.   Beam Amplitudes 

 

      Consider an on-axis focused electromagnetic beam in a medium of refractive index  n .  The 

beam propagates in the positive z direction of a fixed coordinate system and the beam axis 

coincides with the z axis.  The beam has free-space wavelength λ , wave number k=2π/λ , and 

time dependence exp(-iωt) .  The center of the beam focal waist is located at z=z0 . In the beam’s 

focal plane the peak electric field strength is E0 and the beam’s electric field is polarized in the x 

direction.  The partial wave decomposition of the beam electric field is13 

 

                              ∞ 
Ebeam(r,θ,φ) = - E0 Σ il+1 (2l+1) gl [jl(nkr) / (nkr)] πl(θ) sin(θ) cos(φ) ur 
                             l=1 
  
                               
                     + E0 Σ {il (2l+1)/[l(l+1)]} [hl jl(nkr) πl(θ) - i gl Ll(nkr) τl(θ)] cos(φ) uθ 
                             l=1 
 
                             ∞ 
                     - E0 Σ {il (2l+1)/[l(l+1)]} [hl jl(nkr) τl(θ) - i gl Ll(nkr) πl(θ)] sin(φ) uφ (1) 
                            l=1 
 
 

where gl and hl are the partial wave shape coefficients of the beam, jl (nkr) are spherical Bessel 

functions, 
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Ll(nkr) ≡ jl(nkr) / (nkr) - jl’(nkr)     ,                                                                                          (2) 

 

and the prime in eq.(2) denotes the derivative of the spherical Bessel function with respect to its 

argument.  The Mie theory angular functions are 

 

πl(θ) = Pl1[cos(θ)] / sin(θ)                                                                                                   (3a) 

τl(θ) = (d/dθ) Pl1[cos(θ)]     .                                                                                               (3b) 

 

If the beam amplitude is circularly symmetric in its focal plane, the beam shape coefficients 

satisfy gl = hl .  In order to calculate the beam fields in the scattering far-zone, the spherical 

Bessel functions in eq.(1) are decomposed into incoming and outgoing spherical Hankel 

functions22.  Retaining only the outgoing Hankel function for θ in the forward hemisphere, the 

beam’s electric field in the r→∞  far-zone becomes 

 

Ebeam(r,θ,φ) = -i E0 [exp(inkr) / (nkr)] [-S2,beam(θ) cos(φ) uθ + S1,beam(θ) sin(φ) uφ] + O(1/r2)  

                                                                                                                                                  (4) 

where the far-zone beam amplitudes are 

                           ∞ 
S1,beam(θ) = (- ½) Σ {(2l+1) / [l(l+1)]} [gl πl(θ) + hl τl(θ)]                                                   (5a) 
                          l=1 
 
                           ∞ 
S2,beam(θ) = (- ½) Σ {(2l+1) / [l(l+1)]} [gl τl(θ) + hl πl(θ)]        .                                          (5b) 
                         l=1 
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      A spherical particle of radius a and refractive index N has its center at the origin of 

coordinates and scatters the focused beam.  In the far-zone the scattered electric field is  

 

Escatt(r,θ,φ) = -i E0 [exp(inkr) / (nkr)] [-S2,scatt(θ) cos(φ) uθ + S1,scatt(θ) sin(φ) uφ] + O(1/r2)    

                                                                                                                                             (6) 

where the scattering amplitudes are 

                 ∞ 
S1,scatt(θ) = Σ {(2l+1)/[l(l+1)]} [al gl πllθ) + bl hl τl(θ)]                                            (7a) 
                l=1 
 
                  ∞ 
S2,scatt(θ) = Σ {(2l+1)/[l(l+1)]} [al gl τl(θ) + bl hl πl(θ)]   ,                                                (7b) 
                l=1 
 
and al and bl are the Mie theory partial wave scattering amplitudes23.  If the beam is tightly 

focused in its focal plane it has a wide angular spreading in the far-zone.  The beam fields and 

scattered fields then substantially overlap, and the total far-zone beam-plus-scattered amplitudes 

are 

 

S1,total(θ) = S1,beam(θ) + S1,scatt(θ)                                                                                       (8a) 

S2,total(θ) = S2,beam(θ) + S2,scatt(θ)   .                                                                                   (8b) 

 

      The Debye series decomposition of the scattered light can be used to simplify eqs.(8a,8b).  In 

the large sphere or short wavelength limit 2πna/λ >>1 , the various terms of the Debye series 

decomposition of the partial wave scattering amplitudes 

 
                                          ∞ 
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al , bl = (½) [1 - Rl
external -  Σ Tl

in (Rl
interrnal) p-1 Tl

out ]                                                               (9)  
                                        p=1 
 

acquire the following physically intuitive meanings24,25.  An incoming partial wave l is in part 

diffracted by the sphere [½] , it is in part externally reflected from the sphere surface                   

[-Rl
external /2] , and it is in part transmitted through the sphere [-Tl

in Tl
out /2] following p-1 

internal reflections [(Rl
interrnal) p-1] .  Explicit forms for the partial wave transmission and 

reflection coefficients are given in Ref.25.  Substituting eqs.(5a,5b,7a,7b,9) into eqs.(8a,8b), the 

beam amplitude exactly cancels the diffracted part of the scattering amplitude.26  Thus when the 

beam and scattered fields overlap the total amplitudes of eqs.(8a,8b) contain only external 

reflection and transmission through the sphere following all numbers of internal reflections. 

 

                                  2b.   Shape Coefficients of Paraxial Beams 

 

      If the electric field half-width of the beam in its focal plane is w, the confinement parameter s 

of the beam is defined as 

 

s ≡ 1 / (nkw)   .                                                                                                                  (10) 

 

If s<<1 the beam is loosely focused and remains paraxial as it propagates to the far-zone.  In this 

situation it is common practice to specify the beam by its presumed shape in the focal plane 

rather than by specifying it via its partial wave shape coefficients gl and hl  .  But it is the shape 

coefficients that are required in eqs.(7a,7b) for calculating scattering of the beam by the spherical 
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particle.  One way to determine the shape coefficients from the beam’s focal waist profile is the 

localized model27,28 which replaces nk multiplied by the transverse coordinate ρ’ of the beam 

fields in the z=0 plane by l+½ .  For use in Section 4, a weakly focused Gaussian beam with the 

center of its focal waist in the z=0 plane  

 

Ebeam(ρ’,0) = E0 exp(-ρ’2/w2)  ux                                                          (11) 

 

diffracts to the far-zone to give  

 

Ediffracted(r,θ,φ) = (iE0 / 2s2) [exp(inkr) / (nkr)] exp(-θ2/4s2) [-cos(φ) uθ + sin(φ) uφ]       (12) 

 

and has the localized model shape coefficients   

 

gl= hl = exp[-s2(l+½)2]   .                                                                     (13) 

 

Similarly, the weakly focused paraxial beam in the z=0 plane  

 

Ebeam(ρ’,0) = 2E0 J1(nkρ’α) / (nkρ’α)  ux                                                                            (14) 

 

diffracts to the far-zone29 to give an apertured spherical wave with opening angle α 

 

Ediffracted(r,θ,φ) = [-2iE0 /α 2] [exp(inkr) / (nkr)] [-cos(φ) uθ + sin(φ) uφ]      for θ<α 
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                        = 0                                                                                         for θ>α                         

                                                                                                                                          (15) 

and has the localized model shape coefficients 

 

gl = hl = 2 J1[(l+½) α] / [(l+½) α]      .                                            (16) 

 

As will be seen in Section 2c, if these beams were focused at z=z0 rather than at z=0, the shape 

coefficients acquire a phase factor obtained by diffracting the beam from z=z0 to z=0.   

 

      The weakly focused beams generated by the shape coefficients of eqs.(13,16) each contain 

many partial waves, but for different reasons.  The shape coefficients of the weakly focused 

Gaussian beam damp out only after many partial waves since  s<<1 .  One can expect that for a 

tightly focused beam with s≈1 and  z0≈0 only a few partial waves will contribute to eq.(13).  The 

shape coefficients of the apertured paraxial beam damp out only after many partial waves 

because of the sharp cutoff of the far-zone field at θ≈α .  For a tightly focused beam where α is 

large, one can expect the beam will continue to require many partial waves in order to build up 

the sharpness of the far-zone angular cutoff.  In the analysis of previous experiments where a 

weakly focused beam was scattered by a spherical particle and the total light intensity in the 

near-forward direction was measured18-21, the scattered fields were obtained using eqs.(7a,7b) 

with the localized beam shape coefficients while the far-zone beam fields were analytically 

modeled by diffraction or by some suitable extension of it.  This cannot be done when the beam 

is tightly focused. 



 
 

10

 

                            2c.   Shape Coefficients of Tightly Focused Beams 

 

      In general, the presumed shape of the electric field in the focal plane is not an exact solution 

of Maxwell’s equations.  But the approximation to that shape given by the beam generated by 

the localized shape coefficients is an exact solution, thereby repairing the defect in the original 

beam description.  This distinction is not important for a weakly focused beam since the 

presumed shape is already a close approximation to an exact solution of Maxwell’s equations.  

But for strongly focused beams where s≈1 , the presumed shape increasingly differs from an 

exact solution, and the paraxial diffractive modeling of the evolution of the beam to the far-zone 

becomes increasingly invalid as well.  One alternative is to start by specifying the beam shape 

coefficients.  In this section we apply the shape coefficients that were appropriate to a weakly 

focused beam without change to a strongly focused beam.  The resulting beam is an exact 

solution of Maxwell’s equations.  But the behavior of the tightly focused beam generated from 

the shape coefficients contains various distortions with respect to the paraxial behavior of the 

analogous weakly focused beam.  Reference13 examined distortions in the beam’s focal plane.  

It was found that for both a strongly focused Gaussian beam and an AFA beam, the actual focal 

plane beam half-width wa was somewhat larger than the intended width w.  As a result, when 

modeling a beam with a desired actual width, the intended width used as in input parameter in gl 

and hl is chosen somewhat smaller.   

       

      We here examine the far-zone distortions of a tightly focused Gaussian beam and an AFA 
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beam.  If the Gaussian beam has the intended half-width w and focuses at z=z0 , the localized 

beam shape coefficients are14 

 

gl = hl = D exp(-inkz0) exp[-D s2 (l+½)2]                                   (17) 

 

where 

 

D = (1 - 2isz0 /w)-1    .                                                                                                        (18) 

 

The Gaussian beam examined here had n=1.33, λ=0.532μm, and an intended focal plane half-

width w=0.172μm corresponding to an actual focal plane half-width of wa=0.205μm, which is 

the focal waist width of an NA=1.25 oil immersion microscope objective lens.  The far-zone 

beam was calculated using eqs.(5a,5b,17,18) for a number of values of z0 near zero.  Figure 1 

shows the beam profile for z0=-1.60μm (a typical value) truncating the partial wave series at 

lmax=97 .  The reconstructed far-zone beam for 0o≤θ≤60o is Gaussian in shape and has an 

angular width corresponding to the intended width.  Thus the tightly focused Gaussian beam 

generated by the shape coefficients of eqs.(17,18) behaves in the far-zone as if its width is w and 

in the focal plane as if its width is wa  . 

 

      The AFA beam models a Gaussian beam of initial width W that is incident on and overfills a 

high numerical aperture microscope objective lens of focal length F and aperture radius A .  

Before focusing, it crosses an interface from a glass microscope cover slip with refractive index 
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n1 into water with refractive index n2 , thus acquiring spherical aberration.  The coordinate of the 

center of the beam focal waist in the absence of the interface is z0 , and the coordinate of the 

interface is d with d<z0 .  The beam fields were modeled in Refs.15-17 using an angular spectrum 

of plane waves.  The localized beam shape coefficients derived from them are14 

                         α 
gl = (-in1kF/2)  ∫sin(θ1) dθ1 [cos(θ1)]½ exp{-i [n2kd cos(θ2) + n1k(z0-d) cos(θ1)]} 
                        0 
  
            ×    exp[- (A/W)2 tan2(θ1) / tan2(α)] 
 
            ×   {[tTE + tTM cos(θ2)] J0[(l+½) sin(θ2)] + [tTE - tTM cos(θ2)] J2[(l+½) sin(θ2)]}              
                                                                                                                                         (19a) 
 
                         α 
hl = (-in1kF/2)  ∫sin(θ1) dθ1 [cos(θ1)]½ exp{-i [n2kd cos(θ2) + n1k(z0-d) cos(θ1)]} 
                        0 
  
             ×     exp[- (A/W)2 tan2(θ1) / tan2(α)] 
 
             ×     {[tTM + tTE cos(θ2)] J0[(l+½) sin(θ2)] + [tTM - tTE cos(θ2)] J2[(l+½) sin(θ2)]}               
                                                                                                                                                (19b) 
 

where the numerical aperture of the lens is 

 

NA = n1 sin(α)       ,                                                                                  (20) 

 

the angles θ1 and θ2 of a component plane wave in the angular spectrum in glass and water are 

related by Snell’s law 

 

n1 sin(θ1) = n2 sin(θ2)    ,                                                                                                 (21) 
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and the Fresnel coefficients of a component plane wave for transmission through the glass-water 

interface are 

 

tTE = 2 cos(θ1) / [cos(θ1) + (n2/n1) cos(θ2)]                                                                    (22a) 

 

tTM = 2 cos(θ1) / [(n2/n1) cos(θ1) + cos(θ2)]     .                                                               (22b) 

      

      The apertured beam considered here had W/A=5.0 which approximates a plane wave incident 

on the focusing lens, n1=1.50, n2=1.33, λ=0.532μm, and NA=1.25 corresponding to truncating 

the converging beam in the glass at an angle of α=56.4o.  The focal waist half-width in the 

absence of the interface is 0.202μm.  The reconstructed AFA beam in the far-zone was computed 

using eqs.(5a,5b,19a,19b) with lmax=1200.  The large number of partial waves was required to 

accurately reconstruct the sharp cutoff of the far-zone beam.  Figure 2 shows the intensity of the 

reconstructed beam for  z0=0.13μm (a typical value).  It also shows the paraxial approximation  

 

⏐S1,diffracted(θ)⏐2 = (n2/n1)4 [tTE + tTH cos(θ2)]2 / [4 cos(θ1)]    ,                                          (23) 

 

and the intensity resulting when the beam reconstruction is truncated at lmax=97.  For α=56.4o in 

glass, Snell’s law predicts the cutoff angle in water should be θ2=69.9o.   Figure 2 however, 

shows that the cutoff of the reconstructed beam is θ2=53.8o corresponding to 

θ2 = (n1/n2) sin(α)                                                                                                             (24) 
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rather than Snell’s law as in eq.(21).  As a check of this result, a number of other apertured beams 

with 30o≤α≤60o were reconstructed from the shape coefficients of eqs.(19a,19b).  The cutoff was 

also found to be given by eq.(24) rather than eq.(21).  Figure 2  also shows that the reconstructed 

beam slowly decreases as a function of angle rather than remaining approximately constant since 

the  beam incident on the focusing lens approximates a plane wave.  For the beam parameters 

considered here, the beam’s calculated falloff is roughly Gaussian with W/A≈1.5.  Thus if a 

Gaussian beam of specified half-width W were incident on the high NA lens, the far-zone 

reconstructed beam would be that of an incident Gaussian beam with a somewhat smaller half-

width.  This distortion is not expected to be important for trapping calculations since the trapping 

properties of the beam were found in Ref.14 to be relatively insensitive to W/A . 

 

                     3.   Trapping of a Spherical Particle by a Tightly Focused Beam 

 

      An on-axis tightly focused Gaussian beam with n=1.33, λ=0.532μm, w=0.172μm, and 

wa=0.205μm, whose focal waist center is at z0 in the absence of the particle, is incident from 

above on a PSL sphere of radius a=4.987μm and refractive index N=1.59 whose center is at the 

origin of coordinates.  The computed radiation trapping force14 is directed upward for                    

-8.4μm≤z0≤-1.5μm.  The beam focal point lies inside the sphere for z0 ≥-5μm, and it lies outside 

the sphere for z0 ≤-5μm. The maximum trapping efficiency of eq.(8) of Ref.14 was calculated to 

be Qmax=-0.0313 at z0=-4.8μm.  If the incident beam power is larger than about 60mW with the 

relative density of PSL with respect to water of 1.05g/cm3, gravity can effectively be neglected 

with respect to the radiation trapping force and the stable trapping position should be near z0=-



 
 

15

1.5μm.  As the beam power is decreased to 2mW, the effects of gravity become more important 

and the stable trapping position should move toward z0=-4.8μm.  If the beam is momentarily 

blocked when the stable trapping position is  z0≈-1.5μm, the PSL sphere will start to fall through 

the water.  If the beam is unblocked a short time later, it should be able to pull the sphere back up 

to the original trapping position as long as the radiation trapping force is still directed upward, i.e. 

if the sphere has fallen less than about 6.9μm.  

       

      For comparison, an AFA beam with n1=1.50, n2=1.33, W/A=1.5, λ=0.532μm, and NA=1.25 is 

incident from above on the same PSL sphere.  The center of the sphere is still at the origin of 

coordinates, the center of the beam focal waist in the absence of both the glass-water interface 

and the particle is z0 , and the interface is located at d=z0 -5.08μm.  This corresponds to the stable 

trapping position for large laser power being at the top of the sample cell so that the spherical 

aberration produced by the glass-water interface is relatively small. The computed radiation 

trapping force is calculated to be directed upward for -6.30μm≤z0≤0.08μm.  If z0p and z0e are the 

focal point of the paraxial and edge rays of the aberrated beam in the water in the absence of the 

particle, this trapping range corresponds to -6.88μm≤z0p≤-0.50μm and -7.57μm≤z0e≤-1.19μm, and 

as a result the beam’s spherical aberration caustic thus lies inside the particle for about 60% of the 

trapping range and is outside the particle for other 40% . The maximum trapping efficiency was 

calculated to be Qmax=-0.0267 at z0=-2.34μm.  The stable trapping position for large laser power 

is z0≈0.08μm.  The trapping range of 6.38μm differs from that of the Gaussian beam by only 7%, 

and the maximum trapping efficiency differs by 15%.  As was found to be the case in Ref.14, 

although the tightly focused Gaussian beam is highly idealized from an experimental point of 
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view while the AFA beam is much more realistic, both beams have similar trapping properties for 

an a=4.987μm PSL sphere in water near the top of the sample cell.  If the sphere were trapped 

deeper in the sample cell, the predicted trapping properties of the two beam models would differ 

since the AFA beam takes into account the increasing spherical aberration of the beam at the 

glass-water interface whereas the Gaussian beam model does not.  The trapping properties of the 

AFA beam were computed for – 40 µm ≤ d ≤ - 5 µm.  It was found that although the maximum 

trapping efficiency decreased due to the increased spherical aberration as the sphere was farther 

from the glass-water interface, the calculated trapping length varied by less than 6%. 

 

                                       4.   Scattering of a Tightly Focused Beam 

 

      Since the tightly focused beams considered in Section 2c have a far-zone angular half-width 

of 40o to 50o , the beam strongly overlaps the scattered light for much of the forward hemisphere. 

 Thus the experimentally measured intensity corresponds to the beam-plus-scattering amplitudes 

of eqs.(8a,8b).  We have already seen that since the beam is tightly focused, its far-zone fields can 

differ greatly from those of the diffractive paraxial approximation.  As a result the incident beam 

used in eqs.(8a,8b) was obtained by summing over partial waves in eqs.(5a,5b) until convergence 

was obtained rather than by using an analytic expression for the diffracted fields as was done 

when the beam was loosely focused20,21.  

 

      The total intensity as a function of scattering angle θ in water was computed for the 

a=4.987μm PSL sphere trapped in the tightly focused Gaussian beam of Fig.1 for a number of 
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values of z0 in the trapping region.  Representative results are shown in Figs.3a-c.  Since the half-

width of the beam for small z0 is much less than the particle’s diameter, scattering for θ≤40o 

should be dominated by transmission with no internal reflections.  To verify this Figs.3a-c also 

show the intensity of the transmitted Debye series component of the scattered light.  As expected, 

the transmitted intensity and the beam-plus-scattered intensity are almost identical, providing a 

self-consistency check on the calculation.   

 

      Figure 3a shows the scattered intensity for z0=-1.60μm.  Assuming the paraxial expression for 

the beam width as a function of position in the absence of the particle  

 

w(z) = w [1 + 4 (z-z0)2 / (nkw2)2]1/2                                                                                 (25) 

 

remains at least qualitatively valid for a tightly focused beam, the half-width of the rapidly 

expanding Gaussian beam in the exit plane of the sphere for z0=-1.60μm is still smaller than the 

sphere radius.  Thus the entire beam passes through the sphere, resulting in the lack of diffractive 

structure in the beam-plus-scattered light.  Figure 3b shows the scattered intensity for z0=-

4.32μm.  This beam focuses just inside the particle.  Almost two radii later when it exits, the 

width of the rapidly expanding beam is somewhat larger than the particle radius.  Thus a part of 

the beam tail is effectively cut off by the particle, producing the diffractive structure 

superimposed on the Gaussian shape.  These results may also be thought of from a 

complementary point of view.  When z0>>w/2s, the Gaussian beam shape coefficients of 

eqs.(17,18) become 
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gl = hl ≈ (iw/2sz0) exp(-inkz0) exp[-isw(l+½)2 / 2z0] exp[-w 2(l+½)2 / 4z0
2]   .        (26) 

When the particle radius is a=4.987μm, the largest partial wave included in the Mie theory 

scattering amplitudes of eqs.(7a,7b) is 

 

lmax = 1 + (2πna/λ) + 4.3 (2πna/λ)1/3   = 97   .                                                      (27) 

 

For z0=-1.6μm, the Gaussian factor in eq.(26) evaluated at lmax =97 is 10 -12, while for z0=-

4.32μm the Gaussian factor has fallen to only 0.023.  This indicates that when the Mie sum for the 

scattered wave in eqs.(7a,7b) is truncated at lmax the beam is completely reconstructed for the 

first value of z0 , thus producing a smooth scattering pattern, while important partial waves 

contributing to the beam shape are missing for the second value of z0 , thus producing the 

diffractive angular structure. 

 

      In order to estimate the scattering angle at which transmission effectively ceases in 

Figs.3a,3b, the trajectory of the family of geometrical rays approximating the beam and crossing 

the z axis inside the sphere was calculated.  The scattering angle of the incident ray making an 

angle θ=42.4o with the z axis (i.e. the 1/e2 intensity ray of the far-zone beam) for z0=-1.60μm was 

θ=38.3o, and for z0=-4.32μm the scattering angle was θ=29.4o.  These angles agree well with the 

1/e2 intensity points of the transmitted light in Figs.3a,b in spite of the fact that for 2πna/λ=78, 

ray theory is only qualitatively accurate at best.  In Refs.20,21 the intensity oscillations in the 

beam-plus-scattered light for scattering by a weakly focused beam were due to an interference 
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effect arising from the fact that the beam fields originate at z=z0 while the scattered fields 

originate at z=0, and the surfaces of constant phase of the beam fields and the scattered fields 

reach the detector with different radii of curvature.  This interference effect does not contribute to 

the intensity oscillations for z0=-4.32μm since the predicted angular size of the fringes due to 

different radii of curvature are an order of magnitude larger than those appearing in Fig.3b.  

Lastly, Fig.3c shows the scattered light for z0=-7.72μm.  The source is now outside the particle, 

and when the beam is modeled by ray theory the transmitted light produces a rainbow-enhanced 

forward glory30,31 as long as z0 ≥-15.3μm.   The scattering angle of the rainbow accompanying the 

forward glory was computed using ray theory32, and occurs at  θ=9.7o for z0=-7.72μm, agreeing 

well with the angular cutoff of the scattered intensity in Fig.3c.  

       

      Figure 4 shows the intensity for θ=0o as a function of z0 throughout the trapping region.  

When the beam focuses inside the particle and the entire beam fits within the particle’s aperture    

          ( z0≥-4μm), the forward intensity is rather featureless.  But when the beam focuses outside 

the particle ( z0≤ -5μm), the forward intensity oscillates between bright and dark with intensity 

maxima occurring at  z0=-5.85μm,  -7.45μm, and at -11.28μm, and intensity minima at               

z0=-5.33μm, -6.41μm, and -8.31μm .  This general behavior is reminiscent of glory scattering.  At 

each of these maxima and minima, the optical path length difference ΔL of the glory ray and the 

central ray was computed in ray theory32.  As z0 recedes from the sphere surface, the difference 

between ΔL evaluated at adjacent maxima and minima for a glory should be 0.5λ, whereas in 

Fig.4 it is 0.71λ, 0.58λ, 0.75λ, 0.43λ, and 0.76λ.  This rough agreement suggests that the 

oscillations in the θ=0o intensity as a function of the distance from the effective point source to 
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the sphere surface are qualitatively described by the interference between the glory ray and the 

central ray. 

      Figures 5a-c show representative results for scattering by the AFA beam of Fig.2.  Figure 5a 

displays the scattered intensity for z0=0.08μm.  The scattered light in this figure consists of a 

number of concentric rings and cuts off at about 42o.  Since lmax=97 for scattering by the 

a=4.987μm PSL sphere while 1200 partial waves are required to accurately reconstruct sharp 

cutoff of the beam in the far-zone, the sphere’s effective aperture cuts off the tail of the beam in 

the z=0 plane, and the intensity ripples in the far-zone truncated beam in Fig. 2 are mirrored in 

the far-zone scattering pattern of Fig.5a.  Figure 5b shows the scattered intensity for z0=-2.52μm.  

There are now fewer concentric intensity rings and the cutoff of the scattered light occurs at a 

smaller angle θ.  These same trends were found in the reconstructed far-zone beam in the absence 

of the particle when the beam was truncated at 97 partial waves.  Figure 5c shows the scattered 

intensity for z0=-6.30μm where the spherical aberration caustic now lies outside the particle.  As 

was the case for the focused Gaussian beam, this situation may be qualitatively described by an 

exterior point source which produces a rainbow-enhanced forward glory of the transmitted light.  

The details of the forward glory for the AFA beam differ somewhat from those of the Gaussian 

beam due to the blurring of the effective point source by the spherical aberration of the beam.  

Figure 6 shows the θ=0o intensity as a function of z0 throughout the trapping region.  As opposed 

to the focused Gaussian beam case of Fig.4, the forward intensity oscillates between bright and 

dark for beam focusing both inside and outside the particle giving a smooth transition between the 

diffraction behavior when the beam focal point lies inside the sphere and the sphere cuts off the 

tail of the trapping beam, and the rainbow-enhanced glory behavior when the focal point lies 
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outside.  

 

                                                               5.  Experiment 

 

      A sample cell was made by creating a narrow slit approximately 3.175 mm (~1/8”) wide 

between two pieces of laboratory film that was melted slightly to form walls between a clean 

microscope slide and a coverslip. The distilled water solution containing a=4.987±0.030μm PSL 

spheres at a volume fraction of ~10 -3 was drawn into the chamber via capillary action, and then 

the open ends of the chamber were sealed with fingernail polish to prevent evaporation. 

  The height of the water layer on the slide was measured using a micrometer and by viewing 

fiducial marks on the top of the slide and bottom of the cover slip through a microscope fitted 

with a 40X objective lens.  The water layer height was found to be between 123±3μm and 

140±4μm for different sample cells.  The trapping beam was a downward propagating collimated 

Gaussian beam of a Nd:Vanadate laser with λ=0.532μm, operating at a power of about 25 mW, 

that slightly overfilled an NA=1.25 100X oil-immersion microscope objective lens, and was 

focused within the sample cell which was in optical contact with the objective lens via an index 

matching oil. 

 

      The terminal velocity of a PSL sphere falling in the sample cell was measured as follows.  A 

single sphere was optically trapped and moved to roughly the center of the cell.  The trapping 

beam was then blocked and the sphere began to fall.  When the sphere passed through the point 

where it came into focus when viewed through the microscope, it was followed while maintaining 
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focus for a fixed time interval.  The sphere terminal velocity was then obtained from the measured 

time interval and the travel distance of the microscope stage.  Since the viscosity of water has 

significant temperature dependence, the gradual heating of the sample cell over the space of an 

hour from about 20oC to 34oC by the laser beam and an incandescent lamp used to illuminate the 

sphere for microscope viewing was monitored by a type E thermocouple attached to the bottom of 

the slide.  The measured value of the terminal velocity, ranging between 2.7μm/sec and 

3.8μm/sec, agreed well with the calculated terminal velocity assuming Stokes drag, including 

buoyancy, and using the published temperature dependence of the viscosity of water33. 

 

      The trapping length of the laser beam was measured by trapping a single sphere and moving it 

so that its surface was a predetermined distance Δ (between 4μm and 50μm) below the cover slip, 

blocking the beam for a fixed time interval during which the sphere fell through the sample cell, 

and then seeing whether the sphere was pulled upward to its original stable trapping position 

when the beam was unblocked.  The distance of fall was obtained from the measured time interval 

and the sphere terminal velocity calculated assuming Stokes flow and using the published value 

of the viscosity of water for the temperature of the cell at the time experiment was performed.  

The experiment was repeated a number of times for each value of the starting distance and each 

time interval.  Figure 7 shows the resulting inferred trapping length of the beam as a function of Δ 

based on a 100% retrapping rate.  For Δ=4μm, the inferred trapping distance is 23μm which is 

over a factor of three larger than the theoretical predictions of Section 3.  But for only slightly 

larger Δ the inferred trapping length rapidly decreased and leveled off at about 7μm, in nominal 

agreement with the theoretical predictions.  A 100% retrapping rate was not achieved for 
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Δ>30μm.  We conjecture that the anomalously long inferred trapping lengths for Δ=4μm and 5μm 

result from either electrostatic interactions between the PSL sphere and glass cover slip or 

hydrodynamic interactions with the cover slip that delayed either the onset of the sphere’s motion 

or its approach to terminal velocity.  No additive was included in the PSL-water suspension to 

screen any electrostatic charge the spheres might have.  For Δ=4μm, hydrodynamic interactions 

with the cover slip34 increase the drag force by a factor of ~1.6 over Stokes drag, while for 

Δ=10μm the increase is only a factor of  ~1.1.  Additional evidence along these lines is provided 

by the fact that when the sphere was in contact with the bottom of the cover slip and the trapping 

beam was blocked, it remained in contact with the cover slip for at least 20sec before starting to 

fall, and often had to be dislodged from the cover slip by gently tapping the slide. 

 

      During some of the retrapping experiments in which the PSL sphere had fallen to near the end 

of the trapping length before the beam was unblocked, the near-forward scattered light passed 

through a beam splitter and illuminated a screen where it was recorded in video format as the 

sphere was pulled back up to its stable trapping position.  Figure 8 shows a number of frames 

from a typical video sequence.  In the earliest frame a, the sphere has fallen sufficiently far so that 

the beam focal waist lies a few microns outside it, and the near-forward light scattered by the 

diverging beam is very bright and relatively featureless.  As the sphere is retrapped and moves 

upward toward its stable trapping position as in frames b-d, concentric interference fringes similar 

to those of Figs.3c,5c begin to form, and give the appearance of propagating radially outward 

from the center of the pattern.  As the sphere approaches the stable trapping position and the beam 

focal waist moves inside the sphere, the number of concentric interference rings continues to 
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increase and the pattern generally becomes dimmer as is observed in frames e-h of Fig.8 and 

predicted in Figs.5b,5a for the AFA beam model.  By the time the sphere had returned to its stable 

trapping position about six or seven pairs of bright and dark fringes had formed, in general 

agreement with Figs.5a,6.  These video images show that whereas the trapping properties of the 

Gaussian and AFA beam models are similar, only the latter model correctly predicts the angular 

structure of the near-forward scattered light.  Similar scattering structure is apparent in Fig.1b of 

Ref.1 where the scattered light was viewed from the side, rather than head-on. 

 

                                                              6.   Conclusions 

   

      Theoretically, although the trapping ranges and efficiencies of the highly idealized Gaussian 

beam and the more realistic AFA beam are quite similar, scattering by these beams exhibits large 

differences when the particle is held in the stable trapping position for high laser power.  The 

Gaussian beam focuses deep inside the particle and the entire beam fits through the particle’s 

effective aperture.  As a result, the scattered light is also roughly Gaussian and the forward 

intensity remains slowly varying until the magnitude of z0 increases enough so that the beam 

focuses outside the particle.  The AFA beam field contains a long slowly decreasing tail in its 

focal plane due to the beam’s sharp angular cutoff in the far-zone.  As a result, no matter whether 

the beam focuses inside or outside the particle, the particle’s effective aperture truncates the beam 

producing diffractive intensity ripples in the far-zone.  Our experimental results confirm these 

predictions and provide further evidence that Mie theory, augmented by a realistic model of the 

beam shape coefficients, is capable of accurately predicting both the trapping and scattering 
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properties of tightly focused, as well as paraxial, beams.      
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                                                              Figure Captions 

 

Figure 1.   Far-zone beam intensity (solid curve) as a function of the scattering angle in water θ 

for the freely propagating Gaussian beam generated from the shape coefficients of eqs.(17,18) 

with n=1.33, λ=0.532μm, w=0.172μm, wa=0.205μm, z0=-1.60μm, and lmax=97.  The dashed 

curve is the far-zone paraxial approximation of eq.(12) using the intended width w. 

 

Figure 2.   Far-zone beam intensity (solid curve) as a function of the scattering angle in water θ2 

for the AFA beam generated from the shape coefficients of eqs.(19-22) with W/A=5.0, n1=1.50, 

n2=1.33, λ=0.532μm, NA=1.25, z0=0.13μm, d=-4.95μm, and lmax=1200.  The beam cuts off at  

θ2=53.8o.   The dashed curve is the far-zone paraxial approximation of eq.(23), and the open 

circles are the reconstructed intensity when lmax=97.  

 

Figure 3.   Far-zone beam-plus-scattered intensity (solid curve) as a function of the scattering 

angle in water θ for the freely propagating Gaussian beam of Fig.1 incident on a PSL sphere with 

a=4.987μm and N=1.59 for (a) z0=-1.60μm, (b) z0=-4.32μm, and (c) z0=-7.72μm.  The dashed 

curve is the intensity for the transmitted term of the Debye series expansion of the scattered light. 

 

Figure 4.   Far-zone beam-plus-scattered intensity (solid curve) for θ=0o as a function of the beam 

focal point location z0  for the freely propagating Gaussian beam of Fig.1 incident on the PSL 

sphere of Fig.3.  The dashed curve is the θ=0o intensity for the transmitted term of the Debye 
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series expansion of the scattered light. 

 

Figure 5.   Far-zone beam-plus-scattered intensity (solid curve) as a function of the scattering 

angle in water θ2 for the AFA beam of Fig.2 (except with W/A=1.5 and new values of d based on 

the value of z0 ) incident on the PSL sphere of Fig.3 for (a) z0=0.08μm, (b) z0=-2.52μm, and (c) 

z0=-6.30μm.  The dashed curve is the intensity for the transmitted term of the Debye series 

expansion of the scattered light. 

 

Figure 6.   Far-zone beam-plus-scattered intensity (solid curve) for θ2=0o as a function of the 

beam focal point location z0  for the AFA beam of Fig.5 incident on the PSL sphere of Fig.3.  The 

dashed curve is the θ2=0o intensity for the transmitted term of the Debye series expansion of the 

scattered light. 

 

Figure 7.  Measured trapping length of the laser beam as a function of the distance of the PSL 

sphere’s surface from the bottom of the glass coverslip, based on a 100% retrapping rate. 

 

Figure 8.   Near-forward beam-plus-scattered intensity at various times as the PSL sphere is 

pulled back up to its stable trapping position: (a) 0.000sec, (b) 0.915sec, (c) 1.213sec, (d) 

1.426sec, (e) 1.612sec, (f) 1.801sec, (g) 2.305sec, and (h) 2.615sec.  
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         Fig. 8 


