Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

Shu-cheng S. Chen¹, Joseph P. Veres², and James E. Fittje³

¹NASA Glenn Research Center, Cleveland, Ohio 44135 ²Chief, Compressor Branch, NASA Glenn Research Center, Cleveland, Ohio 44135 ³Analex Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142 ¹(216) 433-3585, shu-cheng.s.chen@nasa.gov

Abstract. A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.

Keywords: Turbopump; Nuclear Thermal Rocket Engine; Conceptual Design; System Analysis.

at Lewis Field

Glenn Research Center -

James E. Fittje **B**

Albuquerque, NM, February 15, 2006 Presented at STAIF-2006 Conference

³Analex Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142 ²Chief, Compressor Branch, NASA Glenn Research Center, Cleveland, Ohio 44135

¹NASA Glenn Research Center, Cleveland, Ohio 44135

Shu-cheng S. Chen¹, Joseph P. Veres², and James E. Fittje³

Turbopump Design and Analysis Approach

for Nuclear Thermal Rockets

Turbopump Design Methodology Data Flow

Glenn Research Center -

N

NESS Turbopump Design Features

- Design both Axial Pumps (20 stages Max) or Centrifugal Pumps (4 stages Max w/ Inducer)
- Maximum Allowable Tip Speed of 457.2m/s for Hydrogen
 - Pump and Inducer have the Same RPM
- Pumps Staged by Specific Speed (~3200 for Axial and ~800 for Centrifugal)
 - Designs a Partial Admission Turbine if Blade Height 0.762cm
- Turbine is RPM Limited to Avoid Unrealistic Designs
- Turbine is Staged if Inlet Mach Number >1.7 or if Specific Speed is Below Minimum
- Efficiency Curves Based on Empirical Data

Glenn Research Center -

Key NESS Turbopump Values

Inputs:

- Pump Type (Axial or Centrifugal)
 - Turbine Bypass Fraction
- TPA Configuration (Multiple or Single)
- Fraction of Design Thrust for Loss of Turbo-pump
 - Specific Suction Speed

Outputs:

- Pump and Turbine Performance (On and Off Design)
 - Number of Stages, Including Inducer
- Mass Flow Rate, Temperature, and Pressure Schedules
 - Detailed Reactor Subsystem Mass Break Down

Glenn Research Center -

NESS System Inputs Summary

- •Expander Cycle
- Enabler-I (Increased Computational Design Space)
- •2700K Chamber Temperature
- •6894.75kPa Chamber Pressure
- •300:1 Nozzle Area Ratio
- •66.7kN and 111.2kN Thrust Levels
- Single Centrifugal Pump
- Pump and Turbine on Common Shaft
- Centrifugal Pump (Specific Suction Speed of 20,000)
 - Regenerative Nozzle Cooling to an Area Ratio of 25:1

Glenn Research Center -

NESS Pump Design Outputs

Thrust Level (kN)	66.72	111.2
Pressure Rise (MPa)	11.49	11.64
RPM	30937	23967
Suction Specific Speed	20000	20000
Number of Stages	3	3
NPSP (kPa)	34.47	534.47
Mass Flow Rate (kg/s)	7.53	12.56
Shaft Work (kW)	1809.1	3057.6
Efficiency	68.30%	68.20%
Diameter (cm)	19.53	25.35
Weight (N)	392.87	678.93

Glenn Research Center -

8

NESS Turbine Design Outputs

Thrust Level (kN)	66.72	111.2
Pressure Drop (MPa)	2.0567	2.2063
Temperature Drop (K)	27.7	27.8
Specific Speed	48	46
RPM	30937	23967
Number of Stages	2	2
Mass Flow Rate (kg/s)	6.273	10.564
Pressure Ratio	1.274	1.294
Efficiency	20%	%02
Diameter (cm)	15.8	20.42
Weight (N)	172.2	269.2

Glenn Research Center -

at Lewis Field

PumpDes Pump Design Code

- Station-by-Station Mean Line Code
- Developed Internal Flow based on Empirical and Semi-Empirical Estimates Hydraulic Losses Along the Flow Path (Fully Data)
- Flow Assumed to be in Thermodynamic Local Quasi-Equilibrium
- Empirical and Semi-Empirical Flow Path Losses
- Can Perform Inverse Design and Constrained Optimization
- Axial Inducer and Centrifugal Models are Functionally Integrated
- Real Gas Properties
- Validated Against the P&W ATDLH2, MK15-O, and MK48-O Pumps

Glenn Research Center -

PumpDes NTR Pump Characteristics

Glenn Research Center -

at Lewis Field

PumpDes NTR Pump Specifications

	Axial I	nducer	First Pur	np Stage
Thrust Level (kN)	66.72	111.2	66.72	111.2
Blade Number	3	3	8/16	8/16
BETA2 (Deg)	21.5	23.0	48.0	50.0
Chord Length (cm)	11.96	14.22		
Tip Diameter (cm)	-		18.28	23.75
Tip Span (cm)	-	-	0.521	0.620
Blade Axial Length (cm)			2.733	3.708
Wrap Angle (Deg)	164	161	100	95
Stage Pressure Rise (kPa)	208.91	196.50	3763.2	3813.5
Inlet NPSP	60.01	59.87	357.84	335.09
Cavitation Index* (kPa)	-51.34	-43.17	+160.65	+153.06
*Note: Cavitation Index is defined as: N	PSP_available – I	NPSP_required.		
			at Lew	ris Field

PumpDes NTR Pump Specifications (Cont.)

and the provident of the same of the provident	No. No. 10 Section Sec	A New York and the second seco	and the second s	and the second se
	Second Pu	ump Stage	Third Pui	np Stage
Thrust Level (kN)	66.72	111.2	66.72	111.2
Blade Number	6/12	6/12	8/16	9/18
BETA2 (Deg)	38.0	41.0	48.0	54.0
Tip Diameter (cm)	18.56	23.97	19.25	24.35
Tip Span (cm)	0.490	0.589	0.282	0.356
Blade Axial Length (cm)	2.764	3.731	2.837	3.772
Wrap Angle (Deg)	124	116	100	86
Stage Pressure Rise (kPa)	3763.2	3813.5	3763.2	3813.5
Inlet NPSP	High	High	Very High	Very High
Cavitation Index	Redundant	Redundant	Redundant	Redundant

Glenn Research Center -

AS A at Lewis Field

PUMPA Pump Analysis Code

- Utilizes Mean Line Modeling Method to Model Off-**Design Pump Performance**
- Empirical Correlations used to Model:
- Off-Design Efficiency
- Slip Factor
- Diffuser Pressure Recovery
- PUMPA Can Model:
- Axial, Centrifugal, and Multistage Pumps
- Inducers (Including Mixed Flow)
- Real Gas Properties Obtained from GASPLUS

Glenn Research Center -

TurbDes Turbine Design Code

- Axial Flow Turbine Design Code
- Designs Multiple Turbine Types:
- Partial Admission (Single Stage Only)
- Full Admission Impulse (Single or Dual Stages)
- Full Admission 50% Reaction (Single or Dual Stages)
- Utilizes Empirical Correlations for both Geometric Layout and Loss Estimates
- Different Data Sources and Loss Evaluation Rational for Each Turbine Type
 - Real Gas Effects

Glenn Research Center -

Thermodynamic Characteristics of 50% **Reaction Turbines for NTR**

Thrust Level (kN)	66.72	111.2
Fluid	H2	H2
Overall Efficiency (T-to-S)	86.60%	87.00%
Work Output (kW)	1698.7	2874.7
Inlet Pressure (kPa)	8416.4	8493.7
Inlet Temp. (K)	354	332.9
Exit Pressure (kPa)	6839.6	6812
Exit Temp. (K)	336.1	315
Pressure Ratio (T-to-S)	1.236	1.252
Tip Speed (m/s)	344.12	340.46
U/C	0.392	0.384

Glenn Research Center -

Geometric Characteristics of 50% Reaction **Turbines for NTR**

Thrust Level66.72Number of Stages21st Nozzle Inflow Angle (Deg)901st Nozzle Exit Angle (Deg)18	
Number of Stages21st Nozzle Inflow Angle (Deg)901st Nozzle Exit Angle (Deg)18	66.72
1 st Nozzle Inflow Angle (Deg) 90 1 st Nozzle Exit Angle (Deg) 18	2
1st Nozzle Exit Angle (Deg) 18 18	6) 6
	18
Mean Diameter (cm) 19.16	19.16
First Rotor Blade Height (cm) 1.93	m) 1.93
Second Rotor Blade Height (cm) 2.08	t (cm) 2.08

Glenn Research Center -

Impulse Turbines Designed for NTR Thermodynamic Characteristics of

	Southern - and a subscription	Service and a service of the service
Thrust Level (kN)	66.72	111.2
Fluid	2H	H2
Overall Efficiency (T-to-S)	%9.69	65.5%
Work Output (kW)	1698.7	2874.7
Inlet Pressure (kPa)	8416.4	8493.7
Inlet Temp. (K)	345.0	332.9
Exit Pressure (kPa)	6350.1	6329.4
Exit Temp. (K)	335.6	314.4
Pressure Ratio (T-to-S)	1.339	1.353
Tip Speed (m/s)	227.99	229.21
U/C	0.219	0.224

Glenn Research Center -

Geometric Characteristics Impulse Turbines for NTR

Thrust Level	66.72	111.2
Number of Stages	2	2
1st Nozzle Inflow Angle (Deg)	06	06
1st Nozzle Exit Angle (Deg)	18	16
Mean Diameter (cm)	12.49	16.27
First Rotor Blade Height (cm)	1.52	1.90
Second Rotor Blade Height (cm)	1.58	2.00

Glenn Research Center -

TURBA Turbine Analysis Code

- Utilizes Meal Line Flow Modeling
- **Obtains Design Point Performance and Generates** Characteristic Maps
- Empirically Derived Correlations From Existing Engines and Test Rigs
- Design Point Obtained from Correlations of Efficiency to Spouting Velocity Ratio
- Off-Design Efficiency Obtained from Empirical Data Normalized Relative to Design
- Flow Conditions Calculated at Tip, Hub, and Mean Line
- Real Gas Properties from GASPLUS

Summary

- A Sequence for NTR TPA Design and Analysis has been Utilized and Presented
- Performance Maps for both the Pump and Turbine Design Point Performance and Off-Design were Calculated
- Initial Conceptual Design of TPA's for a 66.7kN and 111.2kN Thrust NTR Engine have been Completed
- For Further Information About PumpDes, PUMPA, TurbDes, or TURBA see NASA/TM-2005-214004

Glenn Research Center -

20

S
Û
U
C
O
5
Ŧ
Ð
R

- Csomor and Sutton, Small, High-Pressure Liquid Hydrogen Turbopump, NASA CR-135186, 1980.
- Fowler, J.R., GASPLUS User's Manual, NASP Contractor Report 1012, Sverdrup Fechnology, Cleveland, OH, March, 1988.
- Secondary Flows; Part 2 Review of Rotordynamics Issues in Inherently Unsteady Hendricks, R. C., Tam, L. T., and Muszynska, A., *Turbomachine Sealing and* Flow Systems with Small Clearances, NASA/TM-2004-211991, NASA Glenn Research Center, 2004.
- Pelaccio, Schiel, and Petrosky, Nuclear Engine System Simulation (NESS): Version 2.0, NASA CR-191081, Science Applications International Corp., Torrance, California, 1993.
- Rocketdyne Engineering, Orbit Transfer Vehicle Engine Technology Program Task B-6 High Speed Turbopump Bearings, NASA CR-189230, Rocketdyne Division, Rockwell International Corp., 1992.
- Hydrogen or Oxygen Centrifugal Pump Design Point Performance, Sverdrup Scheer, D., PUMPDES – A Computer Program for Preliminary Prediction of Technology, Cleveland, Ohio. July, 1995, to Appear as a NASA-TM in 2005.

References (Cont.)	Scheer, D., <i>TURBDES – A Computer Program for Preliminary Prediction of Design Point Performance for Several Types of Rocket Engine Turbines</i> , Sverdrup Technology, Cleveland, Ohio. May, 1995, to Appear as a NASA-TM in 2005.	Schneider, Veres, Hah, Nerone, Cunningham, Kraft, and Tavernelli, "Satellite Propellant Pump Research," Joint Propulsion Conference, AIAA-2005-3560, July, 2005.	Sobin, A. J. and Bissell, W. R., <i>Turbopump Systems for Liquid Rocket Engines</i> , NASA SP-8107, Rocketdyne Division, Rockwell International Corp., August, 1974.	Texas A&M University, "Rotordynamics Instability Problems in High-Performance Turbomachinery," Conference Proceedings, NASA Conference Publication 2443, 1986.	Veres, J.P., Centrifugal and Axial Pump Design and Off-Design Performance Prediction, NASA-TM-106745, February, 1995.	Veres, A Method for Modeling Axial Turbine Mean Line Flow, 1993, to Appear as a NASA-TM in 2005.	Walker, J. F., Chen, S. S., and Scheer, D. D., <i>Rotating-Pump Design Code</i> , NASA Tech Brief LEW-17576-1, NASA Glenn Research Center, August 25, 2004.		n Kesearch Center at Lewis Field
	•	•	•	•			•	į	Glenn

Glenn Research Center -

		3
NESS (Nuclear Engine System Simulation) Code Features and Capabilities (Cont.)	 NESS can model expander, gas generator and bleed cycles, along with multi-redundant propellant pump feed systems Turbomachinery design options include multistage axial and traditional centrifugal pumps Key code outputs include reactor operating characteristics and weights, as well as, the engine subsystem parameters including performance, weights, dimensions, pressures, temperatures, specific impulse (lsp) values, LH2 mass flows, and turbopump operating characteristics for both nominal and off-design operating conditions NESS is written in standard FORTRAN NESS hydrogen properties package was recently upgraded from tabular lookups to GASPLUS 	Jan Research Center

Glenn Research Center -

- $ISP \sim (Tc/Mw)^{\Lambda}0.5$
- Potential Performance Increase with Hydrogen Dissociation
 - Lower Pressure and Higher Temperature Allow for Dissociation
- NTR System Size and Mass Tend to Increase with Lower Pc

ROVER/NERVA Program Achievements

- Biggest: Phoebus 2 with 4086 elements (4100MW Thermal)
- Highest Thrust: Phoebus 2A with 930 kN
- Highest Propellant Flow Rate: Phoebus2A with 120kg/s
 - Highest ISP: Pewee with 838s
- Minimum Reactor Specific Mass: Phoebus 2A at 2.3kg/MW
- Smallest: Nuclear Furnace with 49 Elements (44MW Thermal)
 - Hottest: Pewee with 2550K Exit Gas and a 2750K Fuel Temp.
- Longest Lived: Nuclear Furnace at 109min
- Highest Power Density: Pewee with 1.3 MW/Fuel Element 5200 MW/M3 (Fuel)

Why NTP Enables Faster Missions

Typical Attributes:LOX/LH2NTPSpecific Impulse420–460 s800–950 sThrust/Weight50–703–6Exhaust Temperature3000 K+~2700 K

For the same payload mass, high ISP allows:

- Much lower propellant mass for the same ΔV / trip time
- Much higher ΔV / faster trip time for same propellant mass
- Or a balance of both benefits

34

at Lewis Field

Glenn Research Center -

