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GAIN-SCHEDULED FAULT TOLERANCE CONTROL UNDER
FALSE IDENTIFICATION∗

Jong-Yeob Shin †

ABSTRACT

An active fault tolerant control (FTC) law is generally sensitive to false identification
since the control gain is reconfigured for fault occurrence. In the conventional FTC law
design procedure, dynamic variations due to false identification are not considered. In
this paper, an FTC synthesis method is developed in order to consider possible varia-
tions of closed-loop dynamics caused by false identification. An active FTC synthesis
problem is formulated into a linear matrix inequality (LMI) optimization problem to
minimize the upper bound of the induced-L2 norm which can represent the worst-case
performance degradation due to false identification. The developed synthesis method
is applied to control of the longitudinal motion of FASER (Free-flying Airplane for
Subscale Experimental Research). The designed FTC law of the airplane is simulated
for pitch angle command tracking under a false identification case.

1 INTRODUCTION

In the past few decades, there has been interest in a fault tolerant control (FTC) sys-
tem which has the ability to detect actuator/sensor faults automatically and to prevent
faults from developing into a total system failure. Especially in constructing a flight control
system, an active FTC system has been researched for achieving single aircraft accident
prevention [2, 3, 7, 16]. An active FTC system consists of an FTC law, a fault detection
and isolation (FDI) module and a supervisory system. An FTC law should react to actua-
tor/sensor faults through reconfiguration and an FDI module should detect actuator/sensor
fault occurrences. Based on the information provided by an FDI module, a supervisory
system decides which actuator/sensor is faulty and sends a signal to an FTC law for its
reconfiguration.

In general, an active FTC law is designed, based on an open-loop system modeled as a
function of fault parameters under the assumption that they are immediately identified by an
FDI module. Recently, using linear matrix inequality (LMI) optimization solutions [3, 7, 16],
an active FTC law has been synthesized in the form of a linear parameter varying (LPV)
system whose dynamics vary as scheduling parameters change. Open-loop dynamics are
modeled as an LPV system in which some of the scheduling parameters are fault param-
eters that represent fault occurrences at actuators/sensors. The designed LPV-FTC law
can robustly stabilize the closed-loop system and achieve desired performance during a fault
occurrence under the assumption that fault parameters are measured in real-time.

∗This work was supported by the National Aeronautics and Space Administration under NASA Cooper-
ative Agreement NCC1-02043.

†National Institute of Aerospace (N.I.A.), Hampton, VA 23666. Email:shinjy@nianet.org
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Typically, there is always some level of time-delay to detect faults regardless of FDI al-
gorithms such as an extended Kalman FDI filter [16] or an LPV-FDI filter [17]. During a
time-delay interval, an open-loop system is in a faulty condition but the information provided
by an FDI module implies that the system is not in a faulty condition. It is also possible
that an FDI module and a supervisory system can produce false identification on healthy
actuator/sensors, which may lead the system to be locally unstable temporarily.

The objectives of FTC synthesis are for the closed-loop system to be stable and to be able
to achieve the desired performance level for fault occurrences and to reduce performance
degradation due to false identification. One approach to achieve the objectives is designing a
passive FTC law which has constant gains for both healthy and faulty systems. In that case,
obviously the closed-loop system can be stable for a false identification case since the control
gains are not changed due to false identification. The designed passive FTC law may be,
however, conservative in performance since the controller is constructed from the common
solutions of the LMI optimization problem[3] for both healthy and faulty systems.

Another approach is designing an active FTC law whose gains are reconfigured when a
fault occurs. One of the synthesis methods to design an active FTC law is a conventional
LPV synthesis method[18] in which it is assumed that scheduling parameters of an LPV
system are exactly measured in real-time. In the conventional LPV synthesis method, false
identification can not be considered. It is needed to modify the LPV synthesis method in
order to consider possible closed-loop dynamic variations caused by false identification.

In this paper, an LPV control synthesis method is developed to design an active FTC law
in order to consider the dynamic variations of an FTC system due to false identification,
based on the brief unstable LPV system analysis method[13, 8] and the conventional LPV
synthesis method[18]. In Ref.[8], the performance of an LPV system with brief instability
was analyzed in terms of the upper bound of the L2 norm as a function of duration time and
exponential decay rate over parameter subspaces. In Ref.[13], the LPV analysis method[8] is
applied to analyze an FTC system under false identification. In Ref.[13], during a short time
interval of false identification, the closed-loop system can be locally unstable. The unstable
rate was calculated and then used to calculate the upper bound of the L2 performance level
over all parameter spaces. In this paper, an LPV control synthesis method under possible
false identification is developed and applied for designing an active FTC laws of the longi-
tudinal motion of FASER.

This paper is organized as follows. In Section 2, the analysis problem including false iden-
tification case is described and in Section 3 a gain-scheduled FTC synthesis methodology is
presented. In Section 4, the longitudinal motion of FASER is described in terms of control
sensitivities of each control surfaces and the details in designing FTC law are presented.
Section 5 concludes with a brief summary.

2 LINEAR PARAMETER VARYING ANALYSIS METHOD

An FTC system consists of an FTC law, an FDI module and a supervisory system (logic).
When a fault occurs, the FDI module and supervisory system detect it and generate signals
for evaluating/reconfiguring the FTC law. The FDI model requires some time to detect a
fault. Hereafter, the required time is called detection time for the FDI module. During

2



detection time, open-loop dynamics are in a faulty condition but the designed control law
is not yet reconfigured for it. Suppose there are redundant control actuators to prevent a
system having zero controllability for fault occurrence. The FDI module can also identify a
healthy actuator as a faulty one for a short time interval when a fault occurs on another. It
is called false identification. In Refs.[13, 8, 15], an analysis framework of the FTC system
is developed for false identification and detection time-delay cases. In this section, the LPV
analysis method including false identification is summarized.

Consider an open-loop system as an LPV system:ẋ

e

y

 =

 A(ρp, ρf ) B1(ρp, ρf ) B2(ρp, ρf )

C1(ρp, ρf ) D11(ρp, ρf ) D12(ρp, ρf )

C2(ρp, ρf ) D21(ρp, ρf ) 0


x

d

u

 (1)

where ρp ∈ Rnp are physical parameters measurable by sensors in real-time such as velocity
and angle of attack in flight dynamics and ρf ∈ Rnf are fault parameters estimated by the
FDI module that can indicate open-loop dynamic variations due to fault occurrence. The
vectors x ∈ Rnx , e ∈ Rne , y ∈ Rny , d ∈ Rnd , and u ∈ Rnu are states, errors, measurements,
disturbances and input signals, respectively. Note that the matrices are functions of physical
parameters and fault parameters.

A control law is defined as[
ẋk

u

]
=

[
Ak(ρp, ρ̄f ) Bk(ρp, ρ̄f )

Ck(ρp, ρ̄f ) 0

] [
xk

y

]
:= K

[
xk

y

]
(2)

where the vector xk is a control state vector and ρ̄f are estimated fault parameters. Note
that the control gain is a function of physical parameters and estimated fault parameters.

Using Eqs.(1) and (2), the closed-loop system is[
ẋcl

e

]
=

[
Acl(ρp, ρf , ρ̄f ) Bcl(ρp, ρf , ρ̄f )

Ccl(ρp, ρf , ρ̄f ) Dcl(ρp, ρf , ρ̄f )

] [
xcl

d

]
(3)

where xT
cl = [xT xT

k ] ∈ Rn and

Acl(ρ) = Ã(ρp, ρf ) + B̂(ρp, ρf )K(ρp, ρ̄f )Ĉ(ρp, ρf )

Bcl(ρ) = B̃(ρp, ρf ) + B̂(ρp, ρf )K(ρp, ρ̄f )D̂21(ρp, ρf )

Ccl(ρ) = C̃(ρp, ρf ) + D̂12(ρp, ρf )K(ρp, ρ̄f )Ĉ(ρp, ρf )

Dcl(ρ) = D11(ρp, ρf ) + D̂12(ρp, ρf )K(ρp, ρ̄f )D̂21(ρp, ρf )

(4)

where the parameter matrices are

Ã =

[
A 0

0 0

]
, B̃ =

[
B1

0

]
, C̃ =

[
C1 0

]
, Ĉ =

[
0 I

C2 0

]
(5)
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B̂ =

[
0 B2

I 0

]
, D̂12 =

[
0 D12

]
, D̂21 =

[
0

D21

]
(6)

Hereafter, parameters (ρp, ρf , ρ̄f ) are denoted by ρ. Note that when an FDI module identifies
faults immediately, the estimated fault parameters ρ̄f are equal to ρf . For analyzing the
closed-loop system for false identification, ρ̄f and ρf are treated as independent parameters
to capture the closed-loop dynamic variations due to false identification.

The trajectories of parameters ρ(t) stay in the compact set called the entire parameter
space such that

P := {ρ(t) | ρp(t) ∈ Fp, ρf (t) ∈ Fρf
, ρ̄f (t) ∈ Fρ̄f

} (7)

where Fp, Fρf
, and Fρ̄f

are bounded compact sets in Rnp , Rnf , and Rnf , respectively. Note
that Fp is called flight envelope when ρp are velocity and angle of attack for longitudinal
motion of an airplane.

The entire parameter set is divided into two subspaces P1 and P2 such that

P := P1 ∪ P2,

∅ = P1 ∩ P2,
(8)

The subspaces are defined based on the closed-loop dynamic changes due to false identifi-
cation. Here, when all parameters stay in P1, the FDI module estimates fault parameters
accurately to within a small error bound, δρ. Thus, the subspace P1 can be defined as:

P1 := {ρf (t)| ρf (t) ∈ S(ρ̄f , δρ), ρ̄f (t) ∈ Fρ̄f
, ρp ∈ Fp} (9)

where
S(ρ̄f , δρ) := {ρf (t) | ||ρf (t)− ρ̄f (t)|| ≤ δρ, 0 ≤ δρ} . (10)

For false identification, ρf (t) is not in the set S(ρ̄f , δρ) since ρf (t) indicates a healthy con-
dition but ρ̄f (t) indicates a faulty condition. Parameter subspace P2 is defined for the false
identification. Assume that the closed-loop system is locally unstable along the trajectories
over the parameter subspace P2.

To represent dynamic variations of the closed-system in Eq. (3) over each parameter sub-
space, a duration time over each subspace is defined as follows [8]:
Definition 1 Duration time Tpi

over each parameter subspace :

Tpi
(to, t) = Toi

+

∫ t

to

σi(ρ(s))ds, ∀t > to > 0, (11)

σi(ρ(s)) =

{
0, ρ(s) /∈ Pi,

1, ρ(s) ∈ Pi, i ∈ [1 2].
(12)

A duration time is bounded as

Toi
≤ Tpi

≤ Toi
+ αi(t− to) (13)
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where 0 ≤ αi ≤ 1 and 0 ≤ Toi
. The constant αi represents a ratio of the duration time in

the i-th subspace to the total time and Toi
is the duration time for a system to stay in the

i-th subspace during the interval [0, to]. Note that
∑2

i=1 αi = 1 and
∑2

i=1 Toi
= to.

For the closed-loop system of Eq. (3), an induced-L2 norm is defined as:

sup
ρ∈P,d∈L2,||d||2 6=0

||e||2
||d||2

. (14)

The performance level of the closed-loop system with false identification is calculated in
terms of the induced-L2 norm as follows:

Theorem 1: Consider the closed-loop system in Eq.(3). Suppose there exists a positive
definite matrix P (ρ) ∈ Rnx×nx such thatAT

cl(ρ)P (ρ) + P (ρ)Acl(ρ) + Ṗ (ρ) + λ1P (ρ) P (ρ)Bcl(ρ) CT
cl(ρ)

BT
cl(ρ)P (ρ) −γI DT

cl(ρ)

Ccl(ρ) Dcl(ρ) −γI

 < 0, ρ ∈ P1, (15)

AT
cl(ρ)P (ρ) + P (ρ)Acl(ρ) + Ṗ (ρ)− κP (ρ) P (ρ)Bcl(ρ) CT

cl(ρ)

BT
cl(ρ)P (ρ) −γI DT

cl(ρ)

Ccl(ρ) Dcl(ρ) −γI

 < 0, ρ ∈ P2. (16)

P > 0, ρ ∈ P (17)

where λ1 and κ are positive scalar constants. The induced-L2 norm from d to e of the
closed-loop system with given To2 is no larger than Mγ where

Mγ = γ

√
e(λ1+κ)To2λ1

λ
, (18)

λ = λ1 − (λ1 + κ)α2. (19)

Under the condition α2 < αt := λ1

(λ1+κ)
, the constant λ is positive.

Proof: See Ref.[15].
The constant Mγ represents the upper bound of the worst-case performance level due to

false identification. Thus, a synthesis problem for a controller K, as defined in Eq.(2), can
be formulated into an optimization problem:

min
K,γ>0,P>0

Mγ, s.t. Eqs.(15)-(17). (20)

with pre-defined λ1 and κ values. The optimization problem of Eq.(20) is converted into an
LMI optimization problem in the next section.
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3 GAIN-SCHEDULED FTC SYNTHESIS METHODOLOGY

The projection lemma in Ref. [5] plays a key role in converting the analysis problem of
Eqs.(15)-(17) into a control synthesis problem. Here, for completeness, the lemma [5] is
described as follows:

Lemma 1: Given a symmetric matrix Ψ ∈ Rn×n and two matrices Q and R of column
dimension n, consider the problem of finding some matrix Θ of compatible dimensions such
that

Ψ + RT ΘT Q + QT ΘR < 0 (21)

Suppose the matrices NR and NQ are the null space of R and Q, respectively. Then Eq.(21)
is solvable for Θ if and only if

N T
R ΨNR < 0, and N T

Q ΨNQ < 0 (22)

Proof: See Ref.[5].
To synthesize a gain-scheduled FTC law under false identification, λ1 and κ values are

defined by a control designer. The solvability condition of synthesizing a gain-scheduled
control under false identification is described as follows:

Theorem 2 Given the open-loop system in Eq.(1), the entire parameter spaces are par-
titioned (see Eq.(8)). Suppose there exist positive matrices X(ρ) and Y (ρ) that satisfy the
following conditions

N T
X

A(ρ)T X(ρ) + X(ρ)A(ρ) + Ẋ + λ1X(ρ) X(ρ)B1(ρ) CT
1 (ρ)

BT
1 (ρ)X(ρ) −γI DT

11(ρ)

C1(ρ) D11(ρ) −γI

NX < 0, ρ ∈ P1 (23)

N T
Y

Y (ρ)A(ρ) + Y (ρ)AT (ρ)− Ẏ + λ1Y (ρ) Y (ρ)CT
1 (ρ) B1(ρ)

C1(ρ)Y (ρ) −γI D11(ρ)

BT
1 (ρ) DT

11(ρ) −γI

NY < 0, ρ ∈ P1, (24)

N T
X

A(ρ)T X(ρ) + X(ρ)A(ρ) + Ẋ − κX(ρ) X(ρ)B1(ρ) CT
1 (ρ)

BT
1 (ρ)X(ρ) −γI DT

11(ρ)

C1(ρ) D11(ρ) −γI

NX < 0, ρ ∈ P2, (25)

N T
Y

Y (ρ)A(ρ) + Y (ρ)AT (ρ)− Ẏ − κY (ρ) Y (ρ)CT
1 (ρ) B1(ρ)

C1(ρ)Y (ρ) −γI D11(ρ)

BT
1 (ρ) DT

11(ρ) −γI

NY < 0, ρ ∈ P2, (26)

[
X(ρ) I

I Y (ρ)

]
> 0, ρ ∈ P , (27)

6



with given constants λ1 and κ, where

NX = Null([BT
2 (ρ) DT

12(ρ) 0]) (28)

NY = Null([C2(ρ) D21(ρ) 0]). (29)

Then the induced-L2 norm of d to e of the closed-loop system of Eq.(3) is bounded by Mγ of
Eq.(18).

Proof. : Define matrices as follows:

R = [Ĉ(ρ) D̂21(ρ) 0] (30)

Q = [B̂T (ρ)P (ρ) 0 D̂T
12(ρ)] (31)

Ψ =

ÃT (ρ)P (ρ) + P (ρ)Ã(ρ) + λ1P (ρ) + Ṗ P (ρ)B̃(ρ) C̃T (ρ)

B̃T (ρ)P (ρ) −γI DT
11(ρ)

C̃(ρ) D11(ρ) −γI

 (32)

Using Eqs. (30)-(32) and (2), the LMI condition of Eq.(15) is equal to

Ψ + RT KT Q + QT KR < 0. (33)

Using Lemma 1, the LMI condition of Eq. (33) is decomposed into the following two LMI
conditions:

N T
R ΨNR < 0, (34)

N T
Q ΨNQ < 0. (35)

The positive matrix P is parameterized as follows:

P (ρ) =

[
X(ρ) N(ρ)

NT (ρ) X1(ρ)

]
, P−1(ρ) =

[
Y (ρ) M(ρ)

MT (ρ) Y1(ρ)

]
. (36)

From Eqs.(30)-(32) and (36), it is proved that the LMI condition of Eq.(34) is equal to
Eq.(23).

Eq.(31) is rewritten as
Q = [B̂T (ρ) 0 D̂T

12(ρ)]S(ρ) (37)

where

S(ρ) :=

P (ρ) 0 0

0 I 0

0 0 I

 . (38)

Using Eq.(37), the nullspace NQ is rewritten as

NQ = S−1N ([B̂T (ρ) 0 D̂T
12(ρ)]. (39)

After some algebraic manipulation with Eqs.(30)-(32) and (39), the LMI condition of Eq.(35)
is equal to Eq.(24). Using the above method, it is proved that the LMI in Eq.(16) is converted
into the two LMI conditions of Eqs.(25) and (26).
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The control synthesis problem can be solved using the LMI Toolbox [6] such that

min
X(ρ), Y (ρ)

γ. (40)

In order to solve the optimization problem, the basis functions of X(ρ) and Y (ρ) are required.

X(ρ) :=
ns∑
i=1

fi(ρ)Xi, Y (ρ) :=
ns∑
i=1

gi(ρ)Yi (41)

where functions fi(ρ) : Rns → R and gi(ρ) : Rns → R are bounded and the unknown
matrices Xi and Yi are symmetric, respectively. Note that it is still unknown how to choose
optimal basis functions for predicted performance level of the closed-loop system. Under
the assumption that D12 and D21 are full-column and full-row rank for the entire parameter
space, respectively, the controller is constructed from the solutions X(ρ) and Y (ρ) in Eq.(40)
as follows:[1]

Dk = 0 (42)

Bk = N−1B̂k (43)

Ck = ĈkM
−T (44)

Ak = N−1{XẎ + NṀT + Âk −XAY − B̂kC2Y −XB2Ĉk}M−T

where

B̂k =
1

γ
CT

2 (D21G1D
T
21)

−1 + (XB1 +
1

γ
CT

1 D11)(D
T
21D21)

−1DT
21 (45)

Ĉk = −1

γ
(DT

12G2D12)
−1BT

2 −DT
12(D12D

T
12)

−1(C1Y − 1

γ
D11B

T
1 ) (46)

Âk = AT
[
XB1 + B̂kD21 CT

1

] [
γI −DT

11

−DT
11 γI

]−1 [
BT

1

C1Y + D12Ĉk

]
(47)

G1 = (γ2I −DT
11D11)

−1, G2 = (γ2I −D11D
T
11)

−1. (48)

Note that the matrices in Eqs.(42)-(48) are functions of the scheduling parameters. To
complete the control construction, the following factorization is used

N(ρ) = X(ρ), M(ρ) = X(ρ)−1 − Y (ρ) (49)

to satisfy the equality condition:

I −X(ρ)Y (ρ) = N(ρ)MT (ρ). (50)

4 EXAMPLE

In this section, it is demonstrated how to synthesize a gain-scheduled FTC law for the
airplane of FASER shown in Fig. 1, by using the method described in the previous section.
Two gain-scheduled LPV FTC laws are designed by the conventional LPV synthesis and the
suggested method, respectively. For comparison, the designed control laws will be simulated
under false identification.
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4.1 Mathematical Model of FASER

4.1.1 Description of FASER

FASER (Free-flying Airplane for Sub-scale Experimental Research) shown in Fig. 1 has been
developed at the NASA Langley Research Center, which has a conventional high wing with
tail configuration with 7 ft wingspan and a propeller driven by an electric motor[11]. The
detailed shape and physical quantities are taken from Refs.[10, 11]. The control surfaces of
the airplane are an elevator, ailerons, flaps and a rudder driven by JRDS8611 Digital servos.
For an INS system of the airplane, the MIDG GPS/INS unit built by Microbotics[9] is used.
The positions are calculated based on GPS signals received by the MIDG. To measure angle
of attack and side-slip angles, small props with small potentiometers are attached at both
tips of the main wing. The roll, pitch and yaw angle rates are also measured by the MIDG.
The on-board flight computer of FASER is the PC104 with 133MHz CPU, the 10 channel
PWM board (Quartz-MM Diamond system) and the 16 channel analog I/O board (DM6420
Real-Time Devices).

4.1.2 Nonlinear Equations of Longitudinal Motion

The longitudinal dynamics have four states: velocity (V ) in ft/s, angle of attack (α) in
radians, pitch rate (q) in rad/s, and pitch angle (θ) in radians, and inputs: elevator deflection
(δe) in radians and thrust (T ) in lbs. The airplane (FASER) has the right/left ailerons
(δra/δla) and the right/left flaps (δrf/δlf ) to be operated independently. The longitudinal
equations of the motion are written as:

V̇ =
1

m
{(qSCX + T ) cos α + qSCZ sin α}+ g(− sin θ cos α + cos θ sin α), (51)

α̇ =q +
qSCZ cos α

mV
− qSCX + T

mV
+

g

V
(cos α cos θ + sin θ sin α), (52)

q̇ =
1

Jyy

qSc̄Cm, (53)

θ̇ = q, (54)

where aerodynamics coefficients CX , CZ , and Cm are written as

CX =CXo(α) + CXq(α)
c̄q

2V
+ CXδe

(α)δe + CXδa
(α)δaall

+ CXδf
(α)δfall

,

CZ =CZo(α) + CZq(α)
c̄q

2V
+ CZδe

(α)δe + CZδa
(α)δaall

+ CZδf
(α)δfall

,

Cm =Cmo(α) + Cmq(α)
c̄q

2V
+ Cmδe

(α)δe + Cmδa
(α)δaall

+ Cmδf
(α)δfall

.

Note that the positive deflection of both right and left aileron control surfaces is defined
in the same way of the conventional definition of the positive elevator deflection. In the
longitudinal motion, assume that the left and right aileron surfaces can symmetrically move
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to change the lift and drag forces. Thus, the control inputs of the airplane in the longitudinal
motion are thrust T (lb), elevator deflection δe(deg), aileron deflection δaall

= 0.5(δra + δla),
and flap deflection δfall

= 0.5(δrf +δlf ). The detailed aerodynamic coefficients are calculated
by using a CFD code in Refs.[4, 12].

4.1.3 Quasi-LPV Model of Longitudinal Motion

It is required to represent the nonlinear dynamics as a quasi-LPV model in order to design
an LPV control law using the method described in Section 3. Using the quasi-LPV represen-
tation method in Ref.[14], the nonlinear equation of longitudinal motion can be represented
as the quasi-LPV model:

ẋ = A(V, α)x + B(V, α)u (55)

where x = [V α q θ]T and u = [T δe δaall
]T . The detailed matrices A and B can be found

in Refs.[14, 12]. Note that the flaps are not included in the quasi-LPV model on purpose
since the wake generated by flap movement may be able to coupled with elevator deflection
movement. The coupling effect may generate mathematically unpredictable aerodynamic
force and moment on the airplane. Hereafter, control variables are set as thrust T , elevator
deflection δe and same directional aileron deflection δaall

.
The flight envelope is defined as follows:

60ft/sec ≤ V ≤ 120ft/sec

2◦ ≤ α ≤ 7◦
, (56)

based on the trim region (the line of the plot shown in Fig.2) for a constant level flight
condition (ẋ = 0, α = θ). Note that the states V and α are also considered as scheduling
parameters ρp which represent flight conditions. The control action limits under the nominal
condition are as follows:

0 ≤ T ≤ 6 lb, −20◦ ≤ δe ≤ 20◦, −20◦ ≤ δaall
≤ 20◦. (57)

4.1.4 Elevator Fault Model and Parameter Space

In this example, elevator failure is considered as loss of elevator controllability. Assume that
the elevator is fixed at trim position for a failure case. Floating control surfaces, partially
damaged control surfaces and control surfaces fixed at any other positions can be considered
as failures and can be modeled. However, those failures are not considered here for simplicity.
In this paper, the fault is simply modeled as linear change of the matrix B(ρ) such as

B(ρ)u = B(ρp)

1 0 0

0 τ1 0

0 0 τ2

u (58)
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where the failure parameters τ1 and τ2 can vary from 0 (failure condition) to 1 (healthy
condition).

Consider that one of two actuators can be failed at a time in order to prevent zero con-
trollability of the system. In order to represent the failure condition, the fault parameter ρf

is defined as follows:

ρf (t) =

τ1(t) if 0 ≤ τ1(t) < 1, τ2 = 1,

2− τ2(t) if τ1 = 1, 0 ≤ τ2 < 1.

(59)

The estimated fault parameter can be calculated from the estimations of the failure param-
eters τ1 and τ2.

The false identification case is considered as the estimated fault parameter indicates the
aileron failure for the elevator failure for a short time interval. In the time interval, aileron
actuator is actually healthy but an FDI module indicates it as a faulty one. Also, the eleva-
tor actuator is failed but a FDI indicates it as a healthy one. In that case, estimated fault
parameter ρ̄f is equal to 2(aileron failure) instead of 0 (elevator failure).

The entire parameter space P and subspaces shown in Fig. 3 are defined as

P = P1 ∪ P2 (60)

where

P1 := {ρ | ρp ∈ Fp, ρf ∈ S(ρ̄f , 0.1), ρ̄f ∈ [0 2]}
P2 := {ρ | ρf = 0, ρ̄f ∈ [1.9 2]}.

(61)

Here, the set S(ρ̄f , 0.1) is defined as

S(ρ̄f , 0.1) := {ρf (t) | ||ρf (t)− ρ̄f (t)|| < 0.1}. (62)

The set Fp is defined as the flight envelope in Eq.(56). Note that the fault parameter ρf

can vary abruptly from 1 (healthy condition) to 0 (faulty condition) but the estimated fault
parameter can smoothly vary from 1 to 0, based on the FDI module algorithm. Generally,
the LPV-FTC law is designed for the subspace P1 in Refs.[16, 7] under the assumption that
the FDI can estimate the fault parameter fast and accurately. In this paper, we consider
cases where the closed-loop system stays in the parameter subspace P2 for a short time
interval.

4.2 Control Synthesis Framework

The control design objectives are to track the pitch angle command with less than 4% track-
ing error under a nominal condition and to reduce tracking error under a faulty condition.
In the control design procedure, the variations of the predicted closed-loop dynamics due
to false identification are also considered by including LMI conditions of Eqs. (25) and (26)
with the pre-defined parameter κ. Recall that the parameter κ represents possible instability
of the closed-loop system under false identification [13].

The control design problem is formulated as a model matching problem shown in Fig.4.
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In the block diagram shown in Fig.4, the block “Act” implies the actuator models. In this
example, the mathematical models of the JRDS8611 servo motor and the electric motor
are approximated as the first order filters 20

s+20
and 5

s+5
, respectively. The first order model

of the servo motor is approximated with constant one in the control design procedure to
reduce the order of the designed control law. The first order model is, however, used for
simulations of the closed-loop system. The block Wnoise represents sensor noise such as
diag([0.1ft/sec, 1◦ 1◦ , 1 ]). The performance weighting function Wp is set as 25

s/0.1+1
to

represent 4% error allowance in a low frequency domain and the ideal transfer function Ti is
set as 1

s/0.9+1
for ideal pitch angle responses. The block Wact is set as diag([1/10, 1/40 1/40])

to constrain control action. Using the block diagram shown in Fig.4, the augmented open-
loop is constructed with a linearized model around a trim point (Vt, α) = (70, 5.4◦).

For simplicity in designing an FTC law under the false identification, the scheduling pa-
rameter is defined as the fault parameter ρf ∈ [0, 2] at the given trim point. The basis
function fi(ρ) of X in Eq. (41) is defined as

f1(ρf ) = 1, f2(ρf ) = ρf , f3(ρf ) = 1/ρf , (63)

and the basis function gi(ρ) of Y is set as same as fi(ρ). The LMI constraints of Eqs. (23)-
(26) are evaluated at each grid point in the set [0.01, 0.2 0.4 · · · 1.8 2] of ρf . Note that
the grid point of 0.01 that represents a faulty condition is chosen in order to avoid singularity
of 1/ρf when the basis functions are evaluated at every grid point. For evaluating the time
derivatives of X and Y , the parameter rate bound is defined as 1 sec−1.

To solve the LMI optimization in Eqs.(23)-(26), the scalar parameters λ1 and κ are pre-
defined as 0.01 and 0.1, respectively. To calculate the best values of λ1 and κ, it is required
to solve another optimization by minimizing Mγ of Eq. (18). In this paper, we choose them
based on a few iterations of different values of λ1 and κ. For example, when λ1 is 0.2, there
is no feasible solution for the LMI optimization in Eqs. (23)-(26). Thus, λ1 value should be
smaller than 0.2. When κ is set as large number, it implies that the closed-loop system can
be unstable with very fast rate. It also implies that the upper bound of the induced-L2 norm
of Eq. (18) could be large. Thus, the parameter κ can not be set as large number. When
the parameter is set as small number close to zero, it implies that stability of the closed-
loop system is required under the false identification with expense of over all performance
degradation.

In this paper, two LPV FTC controllers K1 and K2 are designed by the conventional LPV
method and the method suggested in Section 3, respectively. The conventional LPV method
can be re-constructed from Eqs. (23) and (24) by setting λ1 as zero. The designed two LPV
controllers are simulated in the next section.

4.3 Simulation Results

For all simulations, pitch angle commands are set as a square signal such as 1 degree up at
5 second and 1 degree down at 20 second. The label “Ti” in Figs. 5-9 denotes the ideal
pitch angle time responses. The label δe and δec denote elevator deflection angle and elevator
deflection angle command, respectively. For all simulations, state’s initial values are set as
the trim values. The simulation results under a healthy condition are shown in Fig. 5. Note
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that the controllers K1 and K2 achieve the desired performance objective that pitch angle
command tracking is less than 4% at low frequency.

For an elevator failure case, the closed-loop time responses are shown in Fig. 6. In the
simulation, it is assumed that elevator fails after 5 second and an FDI module detects the
fault immediately. The pitch angle time responses with the controllers are very similar to
each other and imply that the two controllers achieve the performance objective while the
elevator fails. The two controllers generates aileron deflection angle commands to compensate
the elevator failure.

Three false identification cases are simulated. 1) While the elevator fails after 5 second,
an FDI detects the aileron failure between 5 and 10 seconds and the elevator failure after
10 second. 2) While the two actuators are healthy, an FDI detects elevator failure between
5 and 10 second. 3) While the two actuators are healthy, an FDI detects aileron failure
between 5 and 10 second. The simulation results for the case 1 are shown in Fig. 7. Note
that estimated fault parameter responses are generally simulated by an FDI module with
the closed-loop system but in this paper, they are pre-defined in order to represent false
identification. It is observed from Fig. 7 that the controller K2 can reduce the performance
degradation due to the false identification, but the controller K1 can not. The controller K1

generates elevator command signals due to the estimated fault parameter which indicates
an aileron fault between 5 sec and 10 sec. The generated elevator command signals can not
operate the elevator actuator since the elevator is actually failed after 5 second. Again, in the
design process for the controller K1, there is assumption that the estimated fault parameter
is equal to the true fault parameter. In the false identification, the assumption is violated.
Meanwhile, in the controller K2 design process, the possible false identification is considered.
That leads to the reduction of performance degradation due to false identification. When
the pre-defined parameters λ1 and κ are different values, the time responses of the closed-
loop system would be different. It would be of interest to further investigate the sensitivity
the closed-loop performance and actuator responses to λ1 and κ for a false identification
case. For the false identification cases 2 and 3, the closed-loop time responses are shown
in Figs. 8 and 9, respectively. Note that the two controllers K1 and K2 can achieve the
performance objective. Since the two actuators are healthy, one of compensated actuator
command signals can operate healthy actuators, respectively. The second and third false
identifications do not affect pitch angle tracking of the system, respectively.

5 CONCLUSION

In this paper, an active fault tolerant control synthesis method is developed under false
identification. In the control synthesis method, possible closed-loop dynamic variations due
to false identification are considered. In the control synthesis, the closed-loop system under
false identification can be unstable for a brief time interval with trade-off of performance
degradation. The performance level of the closed-loop system is described as a function of
duration time of the parameter subspace, the induced-L2 norm index γ and exponential decay
rate in each parameter subspace. With given possible exponential decay rate of the predicted
closed-loop system, the control synthesis problem is formulated into the LMI optimization
to minimize the upper bound of the induced-L2 norm. The suggested LPV-FTC synthesis

13



method is applied to design an FTC law for the longitudinal motion of the airplane FASER.
According to simulation results, the designed control law is insensitive for false identification
while it achieve pitch angle tracking error less than 4% in a faulty condition.
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Figure 1: The FASER
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Figure 5: Time responses of the closed-loop system under a healthy condition.
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Figure 6: Time responses of the closed-loop system under elevator failure.
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Figure 7: Time responses of the closed-loop system under the false identification case 1.
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Figure 8: Time responses of the closed-loop system under the false identification case 2.
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Figure 9: Time responses of the closed-loop system under the false identification case 3.

20



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2.  REPORT TYPE 
Contractor Report

 4.  TITLE AND SUBTITLE

Gain-Scheduled Fault Tolerance Control Under False Identification
5a. CONTRACT NUMBER

 6.  AUTHOR(S)

Shin, Jong-Yeob

 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center              National Institute of Aerospace (NIA)
Hampton, VA  23681-2199                      100 Exploration Way
                                                                 Hampton, VA 23666

 9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546-0001

 8. PERFORMING ORGANIZATION
     REPORT NUMBER

NIA Report No. 2005-07

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Langley Technical Monitor:  Christine Belcastro
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 03
Availability:  NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email:  help@sti.nasa.gov)

14. ABSTRACT

An active fault tolerant control (FTC) law is generally sensitive to false identification since the control gain is reconfigured for
fault occurrence.  In the conventional FTC law design procedure, dynamic variations due to false identification are not
considered.  In this paper, an FTC synthesis method is developed in order to consider possible variations of closed-loop
dynamics under false identification into the control design procedure.  An active FTC synthesis problem is formulated into an
LMI optimization problem to minimize the upper bound of the induced-L2 norm which can represent the worst-case
performance degradation due to false identification.  The developed synthesis method is applied for control of the longitudinal
motions of FASER (Free-flying Airplane for Subscale Experimental Research).  The designed FTC law of the airplane is
simulated for pitch angle command tracking under a false identification case.

15. SUBJECT TERMS
Fault Tolerant Control; LPV Control; Mathematical Model

18. NUMBER
      OF 
      PAGES

25
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a.  REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF 
      ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3.  DATES COVERED (From - To)

5b. GRANT NUMBER

NCC1-02043
5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

2113
5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT
      NUMBER(S)

NASA/CR-2006-213925

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY)

10 - 200601-




