ELASTOMERIC SEAL DEVELOPMENT FOR ADVANCED DOCKING/BERTHING SYSTEM

Christopher Daniels University of Akron Akron, Ohio

Jay Oswald J&J Technical Solutions, Inc. Cleveland, Ohio

Patrick Dunlap and Bruce Steinetz National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio

Presentation Overview

ADBS Overview

- → Seal evaluation criteria
- →Candidate seals
- → Environments
- →Historical data
- →Elastomers

Test Fixtures and Result.

- →Compression set
- → Adhesion testing
- → Small-scale flow test
- →Full-scale flow test

Numerical Simulation

Summary

Future Work

Brief ADBS System Overview

What is the ADBS?

System under development by Johnson Space Center (JSC) to:

- Provide androgynous pressurized interface permitting autonomous docking/berthing between space vehicles and structures
- Reduce impact loads between two mating space craft.
- Become new Agency standard for docking/berthing systems.

What are the Sealing Challenges?

- Androgynous configuration requires sealon-seal mating at the interface between systems
- Seals must survive exposure to space environment

Two types of seals are being considered:		
and group of some soning considered.	Elastomeric Seals	Metallic Seals
Ability to form adequate seal	Excellent	Good
Long term resistivity to space environments		
AO / UV	TBD	Excellent
Micrometeroids	TBD	TBD
Compression load required	TBD: initially low / expected to rise	TBD
Ability to perform under gapping / misalignment	TBD	TBD
Space application experience	<30 days on Shuttle / ISS	None known
Adhesion	Some expected	None expected

Historical Data

- Material evaluation completed for the Common Berthing Mechanism (CBM) / International Space Station (ISS)
- Fluorocarbon elastomers are unacceptable for use in environments where Atomic Oxygen (AO) and Ultraviolet radiation (UV) are present
- Leakage from silicone elastomer seals increased linearly when exposed for up to 181 hours of AO and UV.
- Leakage increased up to 3200% for Silicone seals exposed to 181 equivalent hours.

All three are silicone rubber. The PH S383-70 has a durometer of 70; the PH S899-50 has a durometer of 50; the EK is the softest material having a durometer of 38.

Compression Set Testing

- Determines the ability of elastomeric compounds to retain elastic properties after prolonged compression.
- Testing per ASTM Standards D395 (Test Method B) and D1414.
- Tests to be completed
- →As-received ✓
- →After exposure to AO
- \rightarrow After exposure to AO + UV

Photo of the Compression Set Fixture

Compression Set Results

• O-ring specimens have been tested per ASTM Standards D395 (Test Method B) and D1414.

- →Parker-Hannifin silicone S0383-70
- →Parker-Hannifin silicone S0899-50
- →Esterline Kirkhill silicone XELA-SA-401
- The specimen were tested in the as-received condition and have not been exposed to atomic oxygen nor ultra-violet radiation.

Test conditions

- →25% Compression
- \rightarrow 70 hours at room temperature
- →Surfaces were unlubricated
- →Compression set results (median)

• S0383-70:	
-------------	--

• XELA-SA-401

Compression set test results of o-ring specimen (AS 568A size 309) manufactured from Parker-Hannifin S0383-70, Parker-Hannifin S0899-50, and Esterline Kirkhill XELA-SA-401 compounds.

Small Scale Flow Testing

Quantify seal performance

- →Of 2-309 size o-rings
- →Leakage
- →Before and after exposure to AO and UV

Configuration

→Seal against flat metal plate

Pressure boundary conditions

- →Internal pressure
- →External vacuum
- Temperature conditions

→Room temperature

Photo of the Small-scale Flow Fixture with sample o-ring installed.

Full Scale Flow Testing

Quantify seal performance

- →Leakage
- →Compressive load required
- →Separation force required
- Under representative conditions
- →Full-scale (\$54") seal-on-seal configuration
- →Pressure boundary conditions•Internal pressure
 - External vacuum
- →Temperature conditions
 - Minimum temperature: -50C
 - Maximum temperature: 50C
 - Temperature gradients
- →Seal-to-seal alignment
 - Up to 0.050 inch axial misalignment
 - Angular misalignment (gapping)

Full-scale Flow Fixture.

Numerical Modeling

- Model includes
 - →Properties obtained using adhesion test fixture
 - → Friction
 - →Misalignment of seals
- - →Seal geometry
 - →Axial misalignments
- - →Does not support true incompressibility
 - →Difficult to converge
 - →Hyperelasticity most closely models rubber material

 - Close to ideally elastic
 Strongly resists volume changes
 Very compliant in shear

Summary

- Elastomeric seals are being considered for application to the Advanced Docking / Berthing System.
- Currently, three candidate elastomers are being evaluated.
- To meet the unique requirements of the ADBS, several test fixtures have been built to determine each elastomer's
 - →Environmental and operating temperature compatibility
 - →Material stability when exposed to Atomic Oxygen and Ultraviolet radiation
 - →Adhesion force required to separate
 - \rightarrow Compression set
 - →Leak rate
- These results will be compared with those from the metallic seal development to determine the final seal design

Future Work

- Complete compression set, adhesion, and small-scale flow tests
 - →Baseline
 - →After Atomic Oxygen (AO) exposure
 - →After AO + Ultraviolet radiation (UV) exposure

• Down-select between competing concepts and materials based on requirements.

• Perform full-scale flow tests to assess:

- →Full scale seal-on-seal leakage
- →Temperature effects
- →Effects of axial offset
- →Effects of seal-to-seal gapping (angular misalignment)

Perform numerical simulations to predict seal leakage

- → Seal geometries
- →Misalignments