
Source of Acquisition
NASA Goddard Space Flight Center

Joaquin Peiia Michael G. Hinchey Roy Sterritt
NASA Goddard Space Flight Center University of Seville University of Ulster

j oaquinp@us .es MichaeI.G.Hinchey@nasa. gov r.sterritt@ulster.ac.uk
Spain USA Northern Ireland

Antonio Ruiz-CortCs
University of Seville

aruiz@us.es

Abstract

Autonomic Computing (AC), self-management based on
high level guidance fiom humans, is increasingly gain-
ing momentum as the way forward in designing reliable
systems that hide complexiv and conquer IT management
costs. Effectively, AC may be viewed as Policy-Based Self-
Management. The Model Driven Architecture (MDA) ap-
proach focuses on building models that can be transformed
into code in an automatic manner In this papel; we look
at ways to implement Policy-Based Self-Management by
means of models that can be converted to code using trans-
formations that follow the MDA philosophy. We propose
a set of UML-based models to spec& autonomic and au-
tonomous features along with the necessary procedures,
based on mod$cation and composition of models, to deploy
a policy as an executing system.

1 Introduction and Motivation

Autonomic Systems (encompassing both Autonomic
Computing and Autonomic Communications) is an emerg-
ing field for the development of large-scale, self-managing,
complex distributed computer-based systems [11. In intro-
ducing the concept of Autonomic Computing, IBM’s Paul
Horn likened the needs of large scale systems management
to that of the human Autonomic Nervous System (ANS).
The A N S , through self-regulation, is able to effectively
monitor, control and regulate the human body without the
need for conscious thought [5].

As in all emerging fields, there are many fruitful areas
for concern, that are worthwhile targets for research and
development. Many issues are yet to be addressed, such

Manuel Resinas
University of Seville
resman@tdg.lsi.us.es

as, for example, how autonomic managers, which together
with the component being managed make up an autonomic
element, should be designed in order to exist in a collabo-
rative autonomic environment, and ultimately provide self-
management of the system to the highest degree possible.

The long-term strategic vision of AC highlights an over-
arching self-managing vision where the system would have
such a level of “self’ capability that a senior (human) man-
ager in an organization could specify business policies-
such as profit margin on a specific product range, or sys-
tem quality-of-service for a band of customers-and the
computing and communications systems would do the rest
themselves.

The main idea behind a Model-Driven Architecture is
separation of the specification of the operation of a system
from the details of the way that system uses the capabili-
ties of its platform. With the purpose of abstracting away
platform details, MDA involves two main types of models.
The platform-independent model (PIM) which provides a
model of the system without platform details, and the plat-
form specific-model (PSM), which is obtained by means of
transformation of the PIM model.

We propose an MDA approach for applying policies to
autonomic systems. This avoids platform-dependent details
unnecessary at the level of abstraction of a policy, and em-
ploys transformations of models to bring the policy through
the necessary levels to be transformed into an implementa-
tion [8]. This is based on our previous work applying an
Agent-Oriented methodology called MaCMAS (Methodol-
ogy Fragment for Analyzing Complex Multi-Agent Sys-
tems) to model, specify and deploy policies at runtime [151.
In this paper, we extend this work to, using an MDA ap-
proach, automate the process of applying a new policy. Es-
sentially, we propose UML-based PIMs for specifying au-
tonomous and autonomic properties of the system and an

1

Figure 1. Summary of our MDA approach

operation to transform these models in order to implement
changes specified by a policy in the running system.

In addition, to illustrate our approach, we use an exam-
ple from the NASA ANTS concept mission (described in
Section 3). This mission involves the use of a swarm of
pico-class spacecraft to explore and collect data from the
asteroid belt, and exhibits both autonomous and autonomic
properties.

2 Using MDA for applying policies

Figure 1, depicts the main steps and models of our ap-
proach. We propose using three PIM models and one PSM
model. These models are as follows:

Reusable Autonomous & Autonomic Features (M-RAAF):
The first model we produce is a platform independent
model where each autonomous or autonomic feature is
modeled in isolation and without platform-dependent
details. This first model, that we call ModeZ of
Rezisable Autonomous and Autonomic Features (M-
RAAF), allows us to improve our capabilities for
reusing features across systems since we can maintain
a repository of models [3]. Each feature is modeled
separately by means of a role model, as is shown in
Figure 1.

Acquaintance Organization Model (AOM): The AOM
shows the organization of agents as the set of inter-
action relationships between the various roles played
by agents. Role models are also used to represent
this model, but, as shown in the figure, in this stage,
role models do not represent isolated features, but are
composed to show how these features relate in the
system at hand.

Structural Organization Model (SOM): The SOM
shows agents as artifacts that belong to sub-
organizations, groups, and teams. In this view
agents are also structured into hierarchies showing the

social structure of the system. In this model, agents
are assigned a set of roles.

Platform Specific Model (PSM): Finally, a platform spe-
cific model is used to deploy the policies over the run-
ning system.

Note that the distinction between the Acquaintance Or-
ganization Model (AOM) and the Structural Organization
Model (SOM) is usual in Agent-Oriented Software Engi-
neering, e.g. in the GAIA methodology [17].
As can also be observed in the figure, we use transfor-

mations between these models. These transformations are
the following:

Transformation from M-RAAF to AOM This transfor-
mation consists of taking such features as are needed
for our system, and composing those that are depen-
dent. For this we use information on the dependencies
between these features, and the process is carried out
by role model composition. In addition, given that in
this schema each feature is separate and we know their
dependencies, as shown in the figure, when a new pol-
icy has to be deployed into the system, we can analyze
it to find out which features are affected. Then, adding
the new dependencies introduced by the policy, we can
modify the features and transform their models, to ul-
timately result in the PSM that will be deployed over
the running system.

transfor-
mation consists of taking the set of agents needed
in our system, and the structural constraints of the
organization they must adopt, and assign to each agent
the role it must play. This process is done by role
model composition also. The structural organization
is formed by agents playing roles. These agents must
use interactions in order to function, and thus, it
is safe to say that the acquaintance organization is
always contained in the structural organization 161.
This allows us to define a natural mapping between
the acquaintance organization and the corresponding
structural organization. The mapping consists of
assigning roles to agents and is the one used for this
transformation from AOM to SOM[171.

Transformation from SOM to PSM This is done by
adding platform specific details to the SOM, such as
generating code taking into account type conversions,
mechanisms of assigning roles to running agents, and
so on.

When a new policy is to be applied we can do so at the
M-RAAF level or at the AOM level. In the former case,
we can specify policies that add new features, or that es-
tablish new dependencies between existing features or new

Transformation from AOM to SOM: This

2

Prospecting Asteroid Mission
Encounter Architecture + ASTEROID

3.2 Autonomic Properties of ANTS
\ SATELLITE

D

,,.'

Figure 2. ANTS encounter with an asteroid

features. Once the features affected by a policy have been
identified and we have applied the changes to the M-RAAF,
we can apply the transformations to propagate the changes
through to the running system. In the latter case, we can
specify policies that change the roles played by agents or
their organization (that is to say, the structural organization).
In this case, changes can be also propagated by means of
transformations.

3 NASA ANTS Case Study

In this section, we briefly introduce ANTS, a NASA
concept mission, that illustrates properties of several po-
tential exploration missions. We show two models of an
autonomous and autonomic property of the system.

3.1 ANTS Mission Overview

The Autonomous Nano-Technology Swarm (ANTS)
mission [2, 161 is a concept mission that involves the use
of swarms of autonomous pico-class (approximately 1 kg)
spacecraft that will search the asteroid belt for asteroids that
have specific characteristics. The mission is envisioned to
consist of approximately 1,000 spacecraft launched from a
factory ship. As illustrated in Figure 2, the swarm is en-
visioned to consist of several types of spacecraft. Many of
these spacecraft (called specialists) will have a specialized
single instrument for collecting particular types of data. To
examine an asteroid, several spacecraft will have to form a
sub-swarm, under the control of a ruler, and collaborate to
collect data from asteroids of interest, based on the proper-
ties of that asteroid. This will be achieved using an insect
analogy of hierarchical social behavior with some space-
craft directing others.

The ANTS system may be viewed as an Autonomic Sys-
tem as it meets four key requirements: self-configuration,
self-healing, self-optimization and self-protection, as illus-
trated in [161. Here we focus on self-configuration proper-
ties as these are illustrated in our case study.

ANTS is self-protecting: The self protecting behavior of
the team will be interrelated with the self-protecting behav-
ior of the individual members. The anticipated sources of
threats to ANTS individuals (and consequently to the team
itself) will be collisions and solar storms.

Collision avoidance through maneuvering will be lim-
ited because ANTS individuals will have limited ability to
adjust their orbits and trajectories, due to limited thrust for
positioning. Individuals will have the capability of coordi-
nating their orbits and trajectories with other individuals to
avoid collisions with them. Given the chaotic environment
of the asteroid belt and the highly dynamic trajectories of
the objects in it, occasional near approaches of interloping
asteroidal bodies (even small ones) to the ANTS team may
present threats of collisions with its individuals. Collision-
avoidance maneuvering for this type of spacecraft presents
a great challenge and is currently under consideration. The
main self-protection mechanism for collision avoidance is
achieved through the process of planning. The plans involve
constraints that will result in acceptable risks of collisions
between individuals when they carry out their observational
goals. In this way, ANTS exhibits a kind of self-protection
behavior against collisions.

Another possible ANTS self-protection mechanism in-
volves protection against the effects of solar storms, which
is the basis of the case study we use later in this paper.
Charged particles from solar storms could subject individ-
uals to degradation of sensors and electronic components.
The increased solar wind from solar storms could also af-
fect the orbits and trajectories of the ANTS individuals
and thereby could jeopardize the mission. Specific mecha-
nisms to protect ANTS spacecraft against the effects of so-
lar storms have not yet been determined. A potential mech-
anism might, for example, provide spacecrafts with a solar
storm sensing capability through on-board, direct observa-
tion of the solar disk. When the spacecrafts recognize that
a solar storm threat exists, they would invoke their goal of
protecting themselves from the harmful effects of a solar
storm. Part of the protective response might be to orient
solar panels and sails to minimize the impact of the solar
wind. An additional response might be to power down un-
necessary subsystems to minimize disruptions and damage
from charged particles.

3

els

The first two PIM models, i.e., M-RAAF and AOM, are
specified using the role model concept. We use an extension
of UML2.0 collaborations [14]. Although a larger number
of models are necessary specify the M-RAAF and the AOM
(cf. [14] for further details), in the following we present
only the more important for the purposes of this paper:

a) Static View: This shows the interaction relationships
between roles in the system. For our purposes, the
main models in this are:

Role Models: show an acquaintance sub-organization
as a set of roles interacting by means of sev-
eral multi-Role Interactions (mFU) [12, 131. An
mFU is an institutionalizedpattern of interaction
that abstractly represents the fulfillment of a sys-
tem goal without detailing how this is achieved.
Thus, using mRI as the minimum modeling ele-
ment for interactions we do not have to take into
account all of the details required to fulfill a com-
plex system goal nor the messages that are ex-
changed at stages where these details have not
been identified clearly, are not known, or are not
even necessary. This allows us to have abstract
models where intelligent behavior is carried out
by means of neural networks, fuzzy logic, etc.,
(as, for example, is required in ANTS, cf. Sec-
tion 3), without the necessity of dealing with all
the details. In addition, the direct correlation be-
tween system goals and m R I s allows us to estab-
lish a clear traceabijity between goal-oriented re-
quirement documents and analysis models. This
is also important for our goal in this paper, since
policies usually address system goals. Having
this kind of model helps to simplify the way in
which policies are specified, and deployed in the
system at runtime. We use role models to repre-
sent autonomous and autonomic properties of the
system at the level of abstraction we need.

A) Plan Model

B) Role Model

Figure 3. Model of autonomic property of
self-protection from solar storms

of the role are sequenced. It is represented using
UML 2.0 ProtocolStateMachines [l l , p. 4221,
and is used to focus on a particular role, while
ignoring others.

Plan of a role model: represents the order of mRIs in
a role model with a centralized description. It is
represented using UML 2.0 StateMachines [l 1,
p. 4461. It is used to facilitate easy understanding
of the whole behavior of a sub-organization.

4.1 Example of a model of reusable au-
tonomous and autonomic features of
ANTS

Parameterized Role Models: are role models where
some of the elements are parameterized and can
be instantiated to obtain a particular role model.
This model allows us to generalize the specifi-
cation Of at the level Of the M-RAAF
model, improving its reusability.

To foster reuse, to model an autonomous or an autonomic
property in a sufficiently generic and generalized way, and
to enable a policy to be deployed at runtime, features at the
M-RAAF must be modeled independently of the other fea-
tures they may be related to and of to the concrete agents
over which they will be deployed.

b) Behavioral View: The behavioral view shows the se-
quencing o f a s in a particular role model. It is rep-
resented by two equivalent models:

Plan of a role: This separately represents the plan of
each role in a role model showing how the mRIs

For example, showing the autonomous process of or-
biting an asteroid to take a measurement requires at least
two models-its role model and its plan model. Figure 4b
shows the role model for this example. In this model there
are two kinds of elements: roles, which are represented us-
ing interface-like icons, and a s , which are represented

4

B) Role Model

Figure 4. Autonomous property of orbiting and measuring an asteroid

PARAMETERS

--

Figure 5. Parameterized role model of Measure

as collaboration-like icons. Roles indicate which is their
general goal and their particular goals when participating
in a certain interaction with other roles or with some part
of the environment (represented using interfaces with the
<<environment>> stereotype). Roles also represent the
knowledge they manage (middle compartment) and the ser-

vices they offer (bottom compartment). For example, the
goal of the Orbiter role is “maintain the orbit and measure
[the asteroid]”, while its goal when participating in the Re-
port Orbit interaction is to maintain a model of the orbit it
must follow. In addition to roles, mRIs also show us some
important information. They must also show the system-
goal they achieve when executed, the kind of coordination
that is carried out when executed, the knowledge used as
input to achieve the goal, and the knowledge produced. For
example, the goal of the mRI Report Orbit is to “Report the
Orbit”. It is done by taking as input the knowledge of the
OrbitModeler regarding the orbit and producing as output
the model for the orbit (orbitM) in the Orbiter role.

Continuing with the example, in Figure 4a, we show the
plan model of this role model where the order of execution
of all its mRIs is shown. As can be seen, the Orbiter, while
it is in orbit, is adjusting its orbit and measuring and report-
ing measures. And when it has completed constructing a
model of the asteroid, it escapes the orbit using its knowl-
edge of the orbit model (orbitM).

Autonomic properties can be also modeled in this way.
Here we illustrate a model for a self-protection autonomic
property: protecting from solar storms. The role model for
this property is shown in Figure 3b, and, as can be seen, as
it is a property at the individual level, a single role is shown
(seZfPotectspuceCru~). Its plan model is shown in Fig-

5

ure 3a. As all the spacecraft can be affected by solar storms,
this role will be applied to all the spacecraft in the swarm
when transforming into the SOM, thereby adding this auto-
nomic property to all of the spacecraft

In addition, the feature for measuring may have been
modeled in isolatation, as shown in Figure 5 using a pa-
rameterized role model. However, in the model used for
our example, we decided not to isolate this feature.

5 Transforming from RAAF to A 0

As shown previously, we must compose role models in
order to build the AOM that contains the features needed
from the M - W F . We have to take into account that when
composing several role models, we can find:

emergent roles or mRIs : roles and mEUs that appear in the
composition yet they do not belong to any of the initial
role models;

composed roles or mRTs : the roles and mlUs in the resul-
tant models that represent several initial roles as a sin-
gle element;

unchanged roles or mRIs : those that are left unchanged
and imported directly from the initial role models;

Once we have identified the roles and mRIs that have to
be composed, we must complete the composite role model.
Importing an mRI or a role simply requires us to add it to
the composite role model; this step is trivial and we do not
detail it here. The following describes how role models and
plans are composed.

5.1 Composing roles

When several roles are merged in a composite role
model, their elements must also be merged:

1. Goal of the role: The new goal of the role abstracts
all the goals of the role to be composed. This infor-
mation can be found in requirements hierarchical goal
diagrams or we can add it as the and (conjunction) of
the goals to be composed. In addition, the role goal for
each mRI can be obtained from the goal of the initial
roles for that mRI.

2. Cardinality of the role: THis is the same as in the
initial role for the corresponding mRI.

3. Initiator(s) role(s): If mRI composition is not per-
formed, as in OF case, this feature does not change.

4. Interface of a role: All elements in the interfaces of
roles to be merged must be added to the composite

interface. Notice that there may be common services
and knowledge in these interfaces. When this happens,
they must be included only once in the composite in-
terface, or renamed, depending on the composition of
their ontologies, as we show below.

5. Guard of a role/mIU: The new guards are the and
(conjunction) of the corresponding guards in initial
role models if roles composed participate in the same
mRI. Otherwise, guards remain unchanged.

6. Ontologies of an mRT: The new ontology must cover
all the terms described in all the ontologies of roles
to be composed. (cf. [4, 9, lo]). This procedure also
shows how to deal with repeated knowledge in the in-
terface of roles to be composed. That is to say, if as
a result of ontology composition, a knowledge entity
that is repeated in several roles is shown as the same
element in the composed ontology, we can include it
just once; if it results in different elements in the com-
posed ontology, we must rename them.

5.2 Composing plans

The composition of plans consists of setting the order of
execution of mRIs in the composite model, using the role
model plan or role plans. We provide several algorithms to
assist in this task: extraction of a role plan from the role
model plan and vice versa, and aggregation of several role
plans; see [12] for further details of these algorithms.

Because of these algorithms, we can keep both plan
views consistent automatically. Several types of plan com-
position can be used for role plans and for role model plans:

Sequential: The plan is executed atomically in sequence
with others. The final state of each state machine is su-
perposed with the initial state of the state machine that
represents the plan that must be executed, except the
initial plan that maintains the initial state unchanged
and the final plan that maintains the final state un-
changed.

Parallel: The plan of each model is executed in parallel.
It can be documented by using concurrent orthogonal
regions of state machines (cf. [1 1, p. 4351).

Interleaving: To interleave several plans, we must build a
new state machine where all mRIs in all plans are taken
into account. Notice that we must usually preserve the
order of execution of each plan to be composed. We
can use algorithms to check behavior inheritance to en-
sure that this constraint is preserved, since to ensure
this property, the composed plan must inherit from all
the initial plans [7].

6

and it determines that there exists risk of a solar storm, the
spacecraft rnustjrst escape the orbit and later power down
subsystems and use its sail as a shield.

Note that we have limited the policy to two role models
to simplify the example, but in the real world we must also
take into account the rest of the autonomic properties and
associated role models involved in orbiting an asteroid.

The first part of the policy shows the context where it
is applied, determining the role models of the features that
should be taken into account. In this example, two role
models are affected by the policy introducing a new depen-
dency between them.

Figure 6. Policy for protecting from solar
storms when orbiting

If a spacecraft is orbiting and measuring an

asteroid and it measures that there exists risk of a solar storm,

the spacecraft mustfirst escaue the orbit and later

power down subsystems anduse its sail as a shield

Role Model

Interaction

Interaction

Interaction Interaction

t

1

Figure 7. Composed plan

The composition of role model plans has to be performed
following one of the plan composition techniques described
previously. Later, if we are interested in the plan of one of
the composed roles, we can extract it using the algorithms
mentioned previously. We can also perform a composition
of role plans following one of the techniques to compose
plans described previously, Later, if we are interested in the
plan of the composite role model, for example for testing,
we can obtain it using the algorithms mentioned previously.

5.3 Example of applying a new policy to
the ANTS case study

As a result, these features are taken ftom the M-RAAF
and composed following the constraints imposed by the pol-
icy to obtain a modification of the original AOM. The com-
position of both role models, that is to say, the part of the
AOM that is changed by the policy, is shown in Figure 8.
As we can see, the roles Orbiter and SelfprotectSC have
been composed into a single role called SelfprotectingOr-
biter following the prescription shown in Section 5.1. We
can observe that the rest of the roles have been left un-
changed and that all mRIs have also been added without
changes.

In addition, as the self protection must be taken into ac-
count during the whole process of orbiting and measuring,
and not just in a concrete state, we must perform a parallel
composition, as it is shown in Figure 7. Note also, that the
policy tells us the order of mRIs we must follow for self-
protection, adding the Escape Orbit mRI before protection,
which results in the new state machine shown.

Later, the new AOM i s re-transformed into the SOM, and
this re-transformed into the PSM adding the platform spe-
cific details needed. Finally, these changes are deployed
over the running system.

6 Conclusions

We use the following hypothetical scenario to document
our example: It has been discovered that several spacecraft
have collided with an asteroid as a result of self-protection
fi-om a solar storm. As a result, it has been decided to avoid
protection kom solar storms while orbiting, adding the fol-
lowing policy to the system, shown graphically in Figure 6.

If a spacecraft is orbiting and measuring an asteroid

We have presented a extension of our prior work on
Policy-Based Management for autonomous and and auto-
nomic system [15]. The approach is based on a general
MDA-based procedure for policy deployment, and allows
us to add policies to autonomic systems that change the
functionality of an operational system, add to its function-
ality, or some combination.

7

Figure 8. Composed Role Model

This paper has presented the initial two platform-
independent models, and the corresponding transformation
between them, and we have illustrated this with a simple
example from a NASA concept mission. We have not en-
tered into the details of further transformations, such as
changing the structural organization of the system. How-
ever, given that such transformations are also based on role
composition, we expect this work to extend easily to cover
this. Also, although we have not presented the algorithms
described more formally, implementations are available
on the MaCMAS methodology website (http:lluww.tdg-
seville.info/joaquinpMaCMAS).

We believe that this work is more structured that the ap-
proached described in our previous paper [151 and that it is
more consistent with standard approaches in the software
industry (such as MDA and UML), which is necessary in
order to support the industrial uptake of Policy-Based Self-
Management.

References

[l] IEEE Task Force on Autonomous and Autonomic
Systems, (TFAAS), June 2005. Available at
http:llwww.computer.orgltab.

[2] S. A. Curtis, W. E Truszkowski, M. L. Rilee, and P. E.
Clark. ANTS for the human exploration and develop-
ment of space. In Proc. IEEE Aerospace Conference,
Big Sky, Montana, USA, 9-16 March 2003.

[3] C. He, W. Tu, and K. He. Role based platform inde-
pendent web application modeling. In PDCAT, pages
41 1-415. IEEE Computer Society, 2005.

[4] J. Heflin and J. Hendler. Dynamic ontologies on the
web. In AAAI/IM, pages 44349,2000.

[5] P. Horn. Autonomic computing: IBM perspec-
tive on the state of information technology. In
AGENDA '01, Scottsdale, AR, 2001, (available at
http:/lwww.research.ibm.com/autonomic/).

[6] E. A. Kendall. Role modeling for agent system anal-
ysis, design, and implementation. IEEE Concurrency,
8(2):3441, AprLTune 2000.

[7] B. Liskov and J. M. Wing. Specifications and their
use in defining subtypes. In Proceedings of the Eighth
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA,
pages 16-28. ACM Press, 1993.

8

[8] S. Mellor, A. Clark, and T. Futagami. Model-driven
development - guest editor’s introduction. IEEE Soj-
ware, 20(5):14-18, Sept. 2003.

[9] P. Mitra and G. Wiederhold. An ontology-composition
algebra. In S. Staab and R. Studer, editors, Handbook
on Ontologies, International Handbooks on Informa-
tion Systems, pages 93-1 16. Springer-Verlag, 2004.

Semi-
automatic integration of knowledge sources. In Proc.
of the 2nd Int. Con$ On Information FUSION’99,
1999.

[IO] P. Mitra, G. Wiederhold, and J. Jannink.

[I I] 0. M. G. (OMG). Unified modeling language: Su-
perstructure. version 2.0. Final adopted specification
ptc/0348-02, OMG, August 2003. www.omg.org.

[121 J. Peiia, R. Corchuelo, and J. L. Arjona. Towards In-
teraction Protocol Operations for Large Multi-agent
Systems. In Proceedings of the Second International
Workshop on Formal Approaches to Agent-Based Sys-
tems (EXASS 2002), volume 2699 of LNAI, pages 79-
9 1, NASA-Goddard Space Flight Center, Greenbelt,
MD, USA, 2002. Springer-Verlag.

[I31 J. Peiia, R. Corchuelo, and J. L. Arjona. A top down
approach for mas protocol descriptions. In ACMSym-
posium on Applied Computing SAC’03, pages 4549,
Melbourne, Florida, USA, 2003. ACM Press.

[14] J. Peiia, R. Corchuelo, and M. Toro. Representing
complex multi-agent organisations in UML. In LYJor-
nadas de Ingenieria del Software y Bases de Datos
JISBD ’04, pages 159-1 70, Mkiaga, Spain, 2004.

[I51 J. Peiia, M. G. Hinchey, and R. Sterritt. To-
wards modeling, specifying and deploying policies
in autonomous and autonomic systems using an aose
methodology. In 3rd IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems
(EASe 2006), pages 37-46, Columbia, MD, 2006.
IEEE Computer Society Press.

[161 R. Sterritt, C. A. Rouff, J. L. Rash, W. E Truszkowski,
and M. G. Hinchey. Self-* properties in NASA
missions. In 4th International Workshop on Sys-
tem/Software Architectures (TWSSA ’05) in Proc. 2005
International Conference on Software Engineering
Research and Practice (SERP’O5), pages 66-72, Las
Vegas, Nevada, USA, June 27 2005. CSREA Press.

[171 F. Zambonelli, N. Jennings, and M. Wooldridge. De-
veloping multiagent systems: the GAIA methodol-
ogy. ACM Transactions on Software Engineering and
Methodology, 12(3):3 17-370, July 2003.

9

