Substitutional and Interstitial Diffusion in α_2 -Ti₃Al(O)

E. Copland¹, D. J. Young², <u>B. Gleeson³</u>, N. Jacobson⁴

¹ Case Western Reserve University, Cleveland, Ohio, USA
 ² University of New South Wales, Sydney, NSW, Australia
 ³ Iowa Sate University, Ames, Iowa, USA
 ⁴ NASA Glenn Research Center, Cleveland, Ohio, USA

The reaction between Al₂O₃ and α_2 -Ti₃Al was studied with a series of Al₂O₃/ α_2 -Ti₃Al multiphase diffusion couples annealed at 900, 1000 and 1100°C. The diffusion-paths were found to strongly depend on α_2 -Ti₃Al(O) composition. For alloys with low oxygen concentrations the reaction involved the reduction of Al₂O₃, the formation of a γ -TiAl reaction-layer and diffusion of Al and O into the α_2 -Ti₃Al substrate. Measured concentration profiles across the interaction-zone showed "up-hill" diffusion of O in α_2 -Ti₃Al(O) indicating a significant thermodynamic interaction between O and Al, Ti or both. Diffusion coefficients for the interstitial O in α_2 -Ti₃Al(O) were determined independently from the interdiffusion of Ti and Al on the substitutional lattice. Diffusion coefficients are reported for α_2 -Ti₃Al(O) as well a γ -TiAl. Interpretation of the results were aided with the subsequent measurement of the activities of Al, Ti and O in α_2 -Ti₃Al(O) by Knudsen effusion-cell mass spectrometry.

Substitutional and Interstitial

Diffusion in α_2 -Ti $_3$ Al(O)

<u>E. Copland ^{1,4}, D. J. Young ², B. Gleeson ³, N. Jacobson ⁴</u>

¹ Case Western Reserve University, Cleveland Ohio ² University of New South Wales, Sydney Australia

³ lowa State University, Ames lowa

⁴ NASA Glenn Research Center, Cleveland Ohio

TMS Annual Meeting: 2/25 - 3/1/2007 – Orlando, FL, USA

B. Lee, N. Saunders, Z. Metallkd., 1997, 88(2), pp. 152-161.

outline

- rationale... possible MMC and oxidation of α_2 -Ti $_3$ Al + γ -TiAl
- multi-phase couples: α_2 / Al₂O₃
- results & calculations
- single-phase couples: $\alpha_2(0) / \alpha_2(0)$
- results & calculations
- partial thermodynamic properties in α_2 -Ti $_3$ Al(O)
- summary

multi-phase Ti-Al / Al₂O₃ couples

- arc-melted: Al, Ti & TiO₂; annealed at *T* = 900, 1000, 1100°C
- → closed system: Ta-foil (barrier for SiO)- in SiO₂ capsule
- HIP bonding (170 MPa, 1100°C for 2 h), poly-crystalline Al₂O₃
- re-encapsulated, reacted 900, 1000, 1100°C for t = 20 ~ 500 h
- analysis: metallography, optical, EPMA and micro-hardness

	 no reaction, ignore 					 reaction, but ignore 	
phase	γ-TiAI	α_2 -Ti ₃ AI	α_2 -Ti ₃ AI	α2 -Ti₃AI	α_2 -Ti $_3$ Al(O)	α2-Ti₃Al(O)	$\alpha_2 + \gamma$
comp. (at.%)	Ti-(49, 52, 55)AI	Ti-25AI	Ti-32AI	TI-35AI	Ti-33.35AI-5O	Ti-27AI-10O	Ti-(40, 48)AI
alloy	1 ~ 3	4	S	9	7	ω	9 ~ 10

Ti-32AI / Al₂O₃, *t* = 500 h marker 10um α_2 -Ti₃Al / Al₂O₃ couples 000°C J $k_p = 4.0\pm0.2$, ! 10um 1100°C 1000°C 9 10um 1100°C 100 8 99 thickness (µm)

γ-ΤΙΑΙ

 Al_2O_3

 α_2 -Ti $_3$ AI

20

15

 $k_p = 0.12 \pm 0.02$

000°C

 $k_p = 0.72 \pm 0.04$

1000°C

40

20

0

k_p (10¹¹cm²s⁻¹)

sqrt. time (10⁻²s^{1/2})

9

- - limited kinetic interaction between lattices plus $\tilde{J}_0 \gg \tilde{J}_{Al}$, treat:
- Ti-Al "pseudo binary" and O "transient equilibrium"

- correct profiles: r(Ti, AI) = 1.45, 1.43Å; $V_m(\alpha_2, \gamma) \approx 10.0 \text{ cm}^3 \text{mol}^{-1}$
- → **Ti, AI:** $C_i = (N_i/(N_{Ti} + N_{AI}))/V_m$
- **C**₀ = N_0 / V_m

T = 1100°C

average values

Arrhenius behavior / comparison

() 0/ F	ð	2			Mothod	
(n_) /	<i>D₀</i> (cm ² s ⁻¹)	E _a (kJmol ⁻¹)	D ₀ (cm ² s ⁻¹)	E_a (kJmol ⁻¹)	Method	Kelerence
1169-1366	•	-	3.0x10 ⁻³	210	concentration	Kainuma, Inden (1997)
845-1310	10	312±6	2.8	295 ±10	concentration	Sprengel (1996)
881-1400	•	-	1.5	291 ±10	tracer	Kroll, (1992)
897-995	0.3	290±15	-	-	tracer	Rüsing, Herzig (1995)
897-995	n/a	≈350	-	-	concentration	Rüsing, Herzig (1995)
750-1250	1.5x10 ⁻⁶	117±5	2x10 ⁻⁵	152±2	concentration	Hirano, Iijima (1984)
900-1100	0.3	290±25	1.1x10 ⁻⁵	140±40	concentration	Present results

$$\tilde{J}_0^i = -\tilde{D}_{00}^{Ti} \frac{\partial C_0}{\partial x} - \tilde{D}_{0AI}^{Ti} \frac{\partial C_{AI}}{\partial x}$$
, no intersecting diffusion paths...

region of pure O enrichment,

$$\frac{\partial C_{\rm Al}}{\partial x} = 0 \quad \rightarrow \quad \tilde{J}_0^i = -\tilde{D}_{00}^{\rm Ti} \frac{\partial C_0}{\partial x}$$

EPMA and micro-hardness; assume $ilde{D}_{
m OO}$ const.

$$\frac{C(x,t) - C_s}{C_o - C_s} = erf(\frac{x}{2\sqrt{Dt}})$$

Alloy	$ ilde{D}_{oo}^{ au}$	(10 ⁻¹⁰ cm ² s ⁻¹)		Arreheniu	s Behaviour
	1100°C	1000°C	ጋ∘006	D ₀ (cm ² s ⁻¹)	E _a (kJmole ⁻¹)
I(Ti-25AI)	4.0 ±1.0	0.75±0.15	0.2±0.1	0.014	200±23
II(Ti-32AI)	5.5±1.5	0.6±0.15	0.15 <u>±</u> 0.1	0.60	240±37
III(Ti-35AI)	6.5±1.5	1.0 ±1.5	0.15 <u>±</u> 0.1	2.37	252±10

\tilde{D}_{00} / $\tilde{D}_{\rm Al}$ = 100 ~ 1000

single-phase $\alpha_2(0)$ / $\alpha_2(0)$ couples

- arc-melted pure-Al, Ti & TiO₂, annealed in closed system:
- Ta-foil in SiO₂ capsule
- uni-axial hot press (1100°C for 2 ~ 4 h); *T* = 1100°C for 100 h
- analysis: metallography, optical & EPMA
- used multi-alloy EPMA standard... TiO₂ surface-layer Ĵ

calculated J_0 and \tilde{D}_{00}

 \tilde{D}_{00} ~ independent of X_0 but small Ti / Al dependence (?)

15

- profiles flipped relative to diffusion path
- classic "up-hill" profile for O...
- thermodynamic interaction: Ti-Al \rightarrow O t
- Ti-Al interaction zone decreases with $X_0 = \frac{3}{1}$
- $O \rightarrow Ti$ -AI: kinetic / thermodynamic ? Ĵ
- expect similar $\Delta \mu_{(Ti,AI)}$ for each X_0 Ĵ

- 9-1 and 7-3 don't intersect; 7-3 and 6-4 are parallel...
- new couples needed to determine kinetic interaction $O \rightarrow Ti$ -Al Ĵ
- 9-1 diffusion path shows "up-hill" Al diffusion:
- O dissolution must: increase a(AI), decrease a(Ti) (or both) Ĵ

a(AI) vs. *X*₀

reference state: {Al(I) + Al₂O₃(s)} 20

a(Ti) vs. *X*₀

reference state: {Ti(s) + Y₂O₃(s)} 24

summary

- α_2 / Al $_2$ O $_3$ and α_2 (O) / α_2 (O) couples... Ti-Al-O reaction behavior
- unsaturated α_2 (O) reduces Al $_2$ O $_3$: γ -layer, "up-hill" \tilde{J}_0 in α_2 (O) •
- $\tilde{J}_0 >> \tilde{J}_{Al}$; treat subst. and interstitial lattices independently
- → Ti-Al "pseudo binary" $\tilde{D} = \tilde{D}(C_i)$, scatter in data (effect of X_0)
- → "transient equ.": \tilde{D}_{0AI} / \tilde{D}_{00} and \tilde{D}_{00} , slight Ti / Al dependence
- $lpha_2$ (O) / $lpha_2$ (O) couples: confirm $ar{D}_{
 m OAI}$ / $ar{D}_{
 m OO}$ and $ar{D}_{
 m OO}$ behavior, but Ti-AI interdiffusion reduced > 10x with $X_0 0.005 \rightarrow 0.08$
- thermodynamic interaction + change in mobility (?) Ĵ
- difficult to observe kinetic aspect; thermodynamics is clear Ĵ
- more work is need...
- significant insight to oxidation of Ti-Al alloys Ĵ

acknowledgements:

Judy Auping (NASA Glenn), James Smith (NASA Glenn)

Christian Chatillon (Saint Martin d'Hères, France),

NASA Glenn Research Center – Directors Discretionary Fund

University of New South Wales, Sydney, Australia – ARC Grant