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Topics

• Major combustion processes and controlling 
mechanisms in normal and microgravity 
environments

• Review of some buoyancy effects on combustion: 
melting of thermoplastics; flame strength, geometry 
and temperature; smoldering combustion 

• Video comparing polymeric rods burning in normal 
and microgravity environments

• Relation to spacecraft fire safety of current 
knowledge of polymers’ microgravity combustion
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The major processes involved in combustion are similar both in normal normal gravity and microgravity.  However, the 

absence of buoyancy may result in different controlling mechanisms of some processes. 

1.  Pre-combustion physical processes include melting and water evaporation.  Further exposure to heat decomposes the 

polymers by pyrolisis; combustion gases or solids may result.  Mixing with oxygen could result in a flammable mixture and the 

combustion may be initiated by an open flame, or the material may self-ignite.  For most polymers, flaming combustion would 

result in the gas phase, while smoldering combustion could be a possibility for porous materials burning in the solid phase.  The 

heat feedback to the material produces further melting and pyrolisis and if the heat generated exceeds the heat lost, the 

combustion would be self-sustained. 
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Melting of thermoplastics

Microgravity effects on: 

• melt retention 
• bubble migration
• bubble retention time, bursting strength and 

bursting frequency

 
2.  Thermoplastics are polymers which typically melt and this results in some major differences between the 

normal and microgravity conditions.  As a matter of fact, thermoplastics present a fire hazard unique to 

microgravity.  Reduced gravity results in melt retention; furthermore, during combustion, chemical reactions within 

the bulk of the material may generate internal bubbles.  When the local temperature at a bubble nucleation site 

exceeds the degradation temperature of the polymer, bubble growth is initiated. 

A temperature gradient induces migration of the bubble toward the regions of higher temperature by 

thermocapillary motion or viscosity gradients.  Thermocapillary motion is driven by surface tension along the 

surface of the bubble, which create a tangential stress that causes fluid motion inside and outside the bubble.  Never-

the-less, viscosity gradients appear to be a more realistic explanation of bubble migration, especially if the bubble 

growth rate is much larger than the translation speed. 

Once at the surface, the bubble may be retained or burst through, depending on the internal pressure, growth 

rate, and the viscosity, surface tension, and viscoelasticity of the melt at the surface.  Burning fuel vapor and 

occasionally molten fuel may be forcibly ejected, potentially spreading the fire in random directions, a phenomena 

which may be enhanced in microgravity.  Lower flame temperatures in microgravity are associated with a lower 

melt temperature and consequently higher viscosity.  The bubble may be retained longer at the melt surface, 

enhancing it's size and burst strength.  Kashiwagi and Ohlemiller observed that for burning PMMA the bubble 

frequency increased and bursting was less violent with increasing levels of oxygen. 
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Flaming combustion in 
microgravity

• Flame strength
• Flame geometry, color, strength
• Temperature: level and distribution
• Flame interactions
• Near-extinction oscillations

 
4.  The visible flame in quiescent microgravity is different from that in normal gravity in a number of aspects: 

A.  Shape.  For a rod material configuration, the microgravity flame is more spherical, with a reduced height-to-width ratio.  

Consequently the flame provides a large portion of the heat feedback to the burning region, which is different in normal gravity - 

where only some of the fuel burns in the material vicinity, the rest being swept away and reacting in the plume region.  There is a 

larger flame standoff in microgravity, indicating that the total heat feedback is less. 

B.  Color.  The microgravity flames tend to be blue and not yellow (sooty).  The reason is the reduced flame temperature in 

microgravity.  The soot would be formed only at 1500 F or above (Glassman).  The reduced flame temperature results from the 

fact that the heat loss relative to the heat generation rate is larger in microgravity even though the heat loss in microgravity is 

smaller.  Never-the-less,radiative heat loss can be significant in microgravity and lead to quenched extinction.  The radiative 

losses can be from the surface, from gas-phase species such as water and carbon dioxide, or from a combination of both. 

C.  The flame structure is different.  For downward flame propagation in normal gravity the highest rate of fuel reaction 

(consumption) occurs close to the base of the flame.  In microgravity, the highest reactivity occurs at the top and dimishes toward 

the base. 

5.  Interactions between flames could be enhanced in microgravity.  Usually the height-to-width ratio is lower in 

microgravity; the flames have a tendency to be thicker.  There is a critical distance between two parallel burning surfaces where 

the interaction is most enhanced.  At shorter distances the flame strength in the inside dimishes, while at increased distance the 

interaction dimishes until there are two separate flames.  The range of separation distance where there is flame interaction is 

larger in microgravity.  For paper in normal gravity the flames were observed to be separated at 10 mm, while it was observed 

that in microgravity at 40 mm distance the flames were still connected (NASA Glenn). 

6.  Flame oscillations were observed forming both in microgravity and normal gravity at near extinction when the oxygen is 

being depleted, with the result of the flame base extinguishing.  Since the material is still hot, fuel still vaporizes and forms with 

oxygen a combustible mixture, so a flashback of the flame base can occur.  This further depletes the oxygen so that more of the 



flame base extinguishes, and the cycle repeats.  The oscillations continue with increasing amplitude, until the ambient oxygen 

concentration becomes too low to sustain any part of the flame. 
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Smoldering combustion in 
microgravity

• Relatively little investigated
• Peak temperatures
• Combustion products

 
7.  Smoldering combustion is a solid-phase combustion of porous materials.  Smoldering reaction and propagation rates are 

determined by the balance between the transport of oxygen to the reaction zone and the transport of energy to and from the 

reaction zone.  When heat losses are significant compared with the heat produced, the rate of heat loss is controlling and the 

smoldering is weak.  Generally, the oxygen transport is controlling smoldering which is more vigorous.  Smoldering can 

propagate slowly, undetected for long periods of time, and suddenly undergo transition to flaming.  In microgravity, the peak 

temperatures measured were slightly higher than in normal gravity (Jose Torero, Fernandez-Pello, University of California at 

Berkeley), presumably due to buoyant cooling in normal gravity.  Never-the-less, it was observed that the amount of carbon 

monoxide produced in microgravity was much larger than in normal gravity. 
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Combustion behavior in microgravity and 
its relation to spacecraft fire safety

• An upward flame propagation test performed under 
normal gravity would support flaming combustion under 
less severe oxygen concentration environments than 
those under which extinguishment would occur in a 
quiescent microgravity environment

• Melting of thermoplastics could generate bubbles with 
increased bursting strength in microgravity, when 
burning gaseous and/or molten fuel could be ejected 
forcibly

• Smoldering combustion may not be a lesser hazard in 
microgravity 
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