1	Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately					
2	sulfur-reducing archaeon from a deep-sea hydrothermal vent					
3						
4	Elena V. Pikuta, ¹ Damien Marsic, ² Takashi Itoh, ³ Asim K. Bej, ⁴ Jane Tang, ⁵ William					
5	B. Whitman, ⁶ Joseph D. Ng, ² Owen K. Garriott, ⁷ and Richard B. Hoover. ¹					
6						
7	Authors for correspondence: Elena V. Pikuta Tel: +1 256 652-2965,					
8	e-mail: <u>elenapikuta@hotmail.com</u> ; Richard B. Hoover Tel: +1 256 9617770 e-mail:					
9	Richard.Hoover@NASA.GOV					
10						
11	¹ Astrobiology Laboratory, NASA/NSSTC, VP62, 320 Sparkman Dr., Huntsville, AL 35805,					
12	USA.					
13	² Laboratory for Structural Biology, Department of Biological Sciences, The University of					
14	Alabama in Huntsville, MSB 221, Huntsville, AL 35899, USA.					
15	³ Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako-shi,					
16	Saitama 351-0198, Japan.					
17	⁴ Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294,					
18	USA.					
19	⁵ United State Department of Agriculture, Monitoring Programs Office, 8609 Sudley Rd.,					
20	suite 206, Manassas, VA 20110, USA.					
21	⁶ Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA.					
22	⁷ Department of Biological Sciences, UAH, Huntsville, AL 35899, USA.					
23						

24	A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain
25	OGL-20P ^T , was isolated from "black smoker" chimney material from the
26	Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 °N, 33.9 °W).
27	The cells of strain OGL-20 P^{T} have an irregular coccoid shape and are motile
28	with a single flagellum. Growth was observed within the pH range 5.0–8.5
29	(optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3 %), and
30	temperature range 55-94 °C (optimum 83-85 °C). The novel isolate is strictly
31	anaerobic and obligately dependent upon elemental sulfur as an electron
32	acceptor, but it does not reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate.
33	Proteolysis products (peptone, bacto-tryptone, casamino-acids, and yeast
34	extract) are utilized as substrates during sulfur-reduction. Strain OGL-20P ^T is
35	resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but
36	sensitive to tetracycline and rifampicin. The G+C content of DNA is 52.9 mol%.
37	The 16S rRNA gene sequence analysis revealed that strain OGL-20P ^T is closely
38	related to Thermococcus coalescens and related species, but no significant
39	homology by DNA-DNA hybridization was observed between those species and
40	the new isolate. On the basis of physiological and molecular properties of the
41	new isolate, we conclude that strain OGL-20P ^T represents a new separate species
42	within the genus Thermococcus, and propose the name Thermococcus
43	<i>thioreducens</i> sp. nov. The type strain is OGL-20P ^T (= ATCC BAA-394 ^T = JCM
44	$12859^{\mathrm{T}} = \mathrm{DSM} \ 14981^{\mathrm{T}}$).
45	

The Gen Bank accession number for the 16S rRNA gene sequence of strain

49	The genus Thermococcus was created in 1983, and currently 25 species have been							
50	validly published. All members of this genus are characterized by a thermophilic							
51	nature, anaerobiosis with sulfur-type respiration and sometimes sulfur stimulation for							
52	fermentation (Zillig, 1992; Zillig & Reysenbach, 2002). The typical ecological systems							
53	for the habitat of Thermococcus species include geothermal springs (volcanic							
54	fumaroles, geysers, and deep-sea hydrothermal vents), deep subsurface biosphere such							
55	as deep crustal rocks and aquifers and high-temperature oil wells (Stetter et al., 1993;							
56	Takahata et al., 2000; Miroshnichenko et al., 2001). Most species of the genus							
57	Thermococcus are marine and have an optimum NaCl concentration of about 3 %							
58	(w/v), but there are also fresh-water species, e.g. T. zilligii (Ronimus et al., 1997) and							
59	T. waiotapuensis (González et al, 1999). Most members of the Thermococcus genus							
60	grow optimally at neutral or slightly acidic pH, and only T. alkaliphilus is capable of							
61	growth at pH 10.5 with optimum around 9.0 (Keller et al., 1995). The minimum							
62	temperature for growth of <i>Thermococcus</i> is 50 °C and the maximum is about 95 °C as							
63	for T. celer, T. litoralis, and T. fumicolans (Zillig et al., 1983; Neuner et al., 1990;							
64	Godfroy et al., 1996). Many species of the genus Thermococcus have been isolated							
65	from deep-sea hydrothermal vents with environmental pressures in excess of 200							
66	atmospheres. Obligate dependence upon pressure was determined at 95-100 $^{\circ}$ C for <i>T</i> .							
67	barophilus (Marteinsson et al., 1999). The most radioresistant hyperthermophilic							
68	archaeon, T. gammatolerans, is capable of surviving 30 kGy γ-ray irradiation (Jolivet							
69	et al., 2003). Most species of the genus Thermococcus are sulfur reducing organisms,							

70	however, Slobodkin et al. (1999) reported dissimilatory reduction of Fe(III) by							
71	Thermococcus sp.T642. In this article we describe a novel hyperthermophilic archaeon							
72	Thermococcus thioreducens sp. nov., which is an obligate sulfur-reducer, and was							
73	isolated from the Rainbow deep-sea hydrothermal vent site in the Mid-Atlantic Ridge.							
74								
75	"Black Smoker" chimney material samples were collected in October 1999 from							
76	2,300 meter depth in the Rainbow hydrothermal vent field (36.2 $^{\circ}$ N; 33.9 $^{\circ}$ W) about							
77	800 km southwest of the Azores on the Azorean segment of the Mid-Atlantic Ridge.							
78	Remote manipulators (on the Mir submersible launched from the Russian							
79	oceanographic research vessel Akademik Mstislav Keldysh) were used to place the							
80	samples on a collection tray for return to the surface. After a brief exposure to the							
81	ambient atmosphere during the submersible recovery out of the water, the samples							
82	were hermetically sealed in sterile vessels with screw caps and maintained at 4 $^{\rm o}{\rm C}$ in							
83	an insulated cooler during transport to the Astrobiology Laboratory of the NASA,							
84	Marshall Space Flight Center. Strain OGL-20P ^T was isolated from a sample of black							
85	colored fine-grained sand and mud (neutral pH, $3 \% (w/v)$ salinity) that contained							
86	chimney debris material and organic sediments.							
87	The enrichment, isolation, and cultivation of the new isolate were performed in a							
88	liquid medium under a highly purified 100 % nitrogen atmosphere. The basal medium							
89	contained g l ⁻¹ : KH ₂ PO ₄ , 0.3; MgCl ₂ ·6H ₂ O, 0.1; KCl, 0.3; NH ₄ Cl, 1.0; NaHCO ₃ , 0.2;							
90	CaSO ₄ ·7H ₂ O, 0.005; NaCl, 30.0; Na ₂ S·9H ₂ O, 0.4; yeast extract, 0.5; sulfur powder,							
91	10.0, peptone, 5.0, and resazurin, 0.001. The medium was supplemented with 2 ml of							
92	vitamin solution (Wolin et al., 1963) and 1 ml of trace element solution as described							

earlier (Pikuta *et al.*, 2000). The final pH^{22C} of the medium after autoclaving was 7.2-7.4.

95	Unless otherwise noted, enrichment and pure cultures were grown in 10 ml of medium						
96	in Hungate tubes under one atmosphere of N_2 (100 %). All transfers and samplings of						
97	cultures were performed with sterile syringes. The medium was sterilized at 121 $^{\circ}$ C for						
98	60 min and after adding sulfur to the tubes under an atmosphere of 100 % nitrogen an						
99	additional sterilization was performed at 110 °C for 30 min. All incubations for						
100	physiology description were carried out at 83 °C. One half gram of sample L-20 was						
101	injected into the medium and incubated for 24 h. A pure culture of strain OGL-20P ^T						
102	was obtained after repeated serial dilutions. The culture on the 10^{-9} dilution with the						
103	monotypic morphology was chosen for the following "roll-tube" serial dilutions						
104	purification. Growth of colonies occurred after 2-3 days incubation on 3 $\%$ (w/v) Difco						
105	agar in Hungate tubes at 70 $^{\circ}$ C. One colony on the 10 ⁻⁸ dilution tube was chosen for						
106	consequent purification and designated as strain OGL-20P ^T . The colonies of strain						
107	OGL-20P ^T on the surface of the agar were whitish-cream in color, glossy and shining,						
108	with a round shape (~1.5 mm diameter), irregular cleaved edges and convex with						
109	denser raised conic center. In deep agar, colonies had a convex-convex lenticular						
110	shape.						
111	Phase-contrast microscopy revealed the cells of strain OGL-20P ^T were irregular,						
112	motile cocci with diameter 0.7 to 1.7 μ m. Some of the time the cells looked as						
113	diplococci or conglomerates of 10-15 cells. Transmission Electron Microscopy was						
114	carried out using a JEOL TEM 100 CX II operating at 80 kV. Negative staining was						

115	performed using a uranyl acetate procedure as described previously (Pikuta et al.,							
116	2003). TEM images showed the presence of a single flagellum (Fig. 1).							
117	Culture growth was measured by direct cell counting under a phase-contrast							
118	microscope (Fisher Micromaster, USA), by measuring sulfide produced from sulfur in							
119	the process of growth (Truper & Schlegel, 1964), or by estimating an increase in							
120	optical density at 595 nm (Genesis 5; Spectronic Instruments, USA). The pH of the							
121	medium was adjusted to defined values with sterile stock solutions of 6 N HCl or 6 N							
122	NaOH under a flow of N_2 and measured using a pH meter (model 230 Aplus, Orion,							
123	USA) calibrated at 22 °C. All measurements were performed after cooling the culture							
124	samples to room temperature. The temperature range for growth was determined in the							
125	liquid medium at pH 7.3. The effect of NaCl concentration on growth was determined							
126	in the liquid medium containing 0.0, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, and 10.0 % (w/v) NaCl.							
127	NaCl requirement was studied using a modified medium, in which NaHCO3 was							
128	replaced with K_2CO_3 and Na_2S was replaced with K_2S . Growth of strain OGL-20P ^T							
129	was observed in the temperature range of 55 to 95 °C, with optimum between 83 and							
130	85 °C. Strain OGL-20P ^T survived during 30 minutes at 101 °C, but incubation at 103							
131	$^{\circ}$ C during 2 h killed the cells. Growth of strain OGL-20P ^T was observed within the pH							
132	range of 5.0-8.5, with optimum pH at 7.0; within NaCl concentration range of 1 to 5 $\%$							
133	(w/v) with optimum of 3 % (w/v). No growth was detected for NaCl concentrations							
134	below 0.5 % or above 7 % (w/v). The doubling time measured by direct cell counting							
135	under a phase-contrast microscope for a fresh culture of OGL-20P ^T incubated at							
136	optimal conditions was 30 minutes.							

137	Strain OGL-20P ^T was found to be strictly anaerobic. The catalase activity, which was
138	tested as described by Smilbert & Krieg (1994), showed negative reaction. The
139	utilization of various electron acceptors was studied in a medium containing peptone
140	(5g l ⁻¹) as an electron donor. Electron acceptors were added in the form of autoclaved
141	or filter-sterilized stock solutions. The final concentrations of electron acceptors were
142	the following (mM): Na ₂ SO ₄ , 20; Na ₂ SO ₃ , 5; Na ₂ S ₂ O ₃ *5H ₂ O, 10; NaNO ₃ , 10;
143	Fe(OH) ₃ , 100; and S ^o , 300. Amorphous FeOOH suspension (iron gel) was prepared by
144	neutralizing a 0.4 M solution of FeCl ₃ to pH 7 by 10 N NaOH as described previously
145	(Lovley & Phillips, 1986). Only elemental sulfur was used as an electron acceptor,
146	which resulted in the production of hydrogen sulfide (15-20 mM). No growth was
147	observed in the absence of sulfur on all tested substrates.
148	The ability of the new archaeon to utilize various substrates was tested by using the
149	liquid medium supplemented with autoclaved or filter-sterilized substrates to a final
150	concentration of 5 g l^{-1} . The substrate utilization was tested by cultivation of strain
151	OGL-20P ^T during 1-6 days on different substrates and growth was detected under a
152	microscope and by measurement of hydrogen sulfide. Growth was observed on
153	proteolysis products: peptone, bactotryptone, casamino acids, and yeast extract. No
154	growth was observed in the presence of glucose, fructose, maltose, sucrose, D-
155	mannitol, glycerol, methanol, ethanol, butyrate, propionate, acetate, formate, lactate,
156	pyruvate, citrate, and separate amino acids (L- and D- leucine, L- and D-methionine,
157	L- and D- histidine HCl, L- cysteine, L- proline, L- lysine, L- cystine, glycine, L-
158	glutamine, L- alanine, L- serine, L- tyrosine, L- phenylalanine, L- valine, L-
159	isoleucine, L- tryptophan, L- arginine).

160	End products o	of sulfur respiration in	the liquid phase were	determined by HPLC.

- 161 Separation was done on Aminex HPX-87H (BioRad) column with 5 mM H₂SO₄ as the
- 162 mobile phase. Gases were measured with a gas chromatograph 3700 (Varian) equipped
- 163 with Porapak Q column and TCD detector. Nitrogen was used as the gas carrier.
- 164 Acetate (2.1 mM) and ethanol (3.7 mM) were detected in the liquid phase as minor end
- 165 products. Hydrogen sulfide (more than 20 mM) and traces of hydrogen and CO_2 were
- 166 measured in the gas phase during the growth of $OGL-20P^{T}$.
- 167 Antibiotic susceptibility was determined by transferring an exponentially growing
- 168 culture into the basal medium containing filter-sterilized antibiotics at a concentration
- 169 of 100 μg ml⁻¹ (chloramphenicol, rifampin) or 250 μg ml⁻¹ (ampicillin, tetracycline,
- 170 kanomycin, and gentamycin). Before incubation at 83 °C, antibiotic-containing
- 171 cultures were pre-incubated at 37 °C for 12 h. Strain OGL-20P^T was resistant to
- ampicillin, gentamycin, kanamycin and chloramphenicol (growth without changes of
- 173 morphology and motility), but was sensitive to tetracycline and rifampin.
- 174 Genomic DNA was isolated through a standard phenol / chloroform extraction
- 175 followed by ethanol precipitation (Sambrook *et al.*, 1989). The G+C content of DNA
- 176 was determined by HPLC (Mesbah *et al.*, 1989). Details of the procedure were
- described previously (Hoover *et al.*, 2003). The result reported was the mean of two
- 178 determinations for each of two degradations of the archaeal DNA. The G+C content
- 179 of the genomic DNA of strain OGL-20P^T was $57.2 \pm 0.2 \text{ mol}\%$ (mean \pm SD, n = 6).
- 180 The 16S rRNA gene of strain OGL- $20P^{T}$, along with a part of 23S rRNA gene and the
- 181 spacer region, was selectively amplified with the following primers: 5'-
- 182 TCCGGTTGATCCTGCCGG-3' (forward) and

183 5'-CTTTTCCTGCGGGTACTAAG-3' (reverse). PCR was performed with 30 pmol of each primer in a 50 µl volume, using 2 U ThermalAce DNA polymerase 184 185 (Invitrogen, USA) in the provided buffer. The thermal cycling profile was as follows: 186 3 min at 95°C initial denaturation, followed by 30 cycles of 45 s denaturation at 95 °C, 45 sec annealing at 57 °C and 4 min extension at 72 °C, with a final extension step 187 at 72 °C during 15 min. The amplified fragment was extracted from a 1.5 % agarose 188 189 gel using the Qiaquick extraction kit (Qiagen, USA), and then subcloned using the 190 Zero Blunt TOPO PCR Cloning kit (Invitrogen, USA). Six clones were sequenced in 191 both directions using the dye terminator AmpliTag FS cycle sequencing kit (Applied 192 Biosystems, USA) with both vector-based primers and primers specific to 16S 193 internal sequence (designed by us). The 16S rRNA sequence of strain OGL-20P^T was aligned with closely related 194 195 sequences found in GenBank after a BLAST search (Altschul et al., 1990), using 196 ClustalW (Thompson et al. 1994). Pairwise distances were computed with MEGA 197 version 3.1 (Kumar et al., 2004) using the Jukes-Cantor model (Jukes & Cantor, 198 1969). An unrooted phylogenetic tree was constructed with the same MEGA program 199 using the Neighbor-Joining method (Saitou & Nei, 1987). 200 A sequence covering 1885 nucleotides, including most (1452) of the 16S rRNA gene, the tRNA^{Ala} gene and a part of the 23S rRNA gene, was obtained after amplification 201

202 of strain OGL-20 P^{T} DNA. The 16S rRNA gene sequence corresponds to positions 37-

203 1496 of the *Pyrococcus furiosus* 16S rRNA sequence (accession number U20163)

used as a reference. A BLAST search against the Genbank database revealed a high

similarity (> 97 %) with sequences from the *Thermococcus* genus. A phylogenetic

206dendrogram showing the relationship of strain OGL-20PT to the 11 closest species207was constructed, based on 1400 common nucleotide sites (Fig. 2). Pairwise distances208between the OGL-20PT sequence and its closest neighbors were 0.003, 0.006, 0.006209and 0.007 for *T. coalescens, T. celer, T. hydrothermalis* and *T. barossii* respectively210based on the same 1400 nucleotide sites. The sequence of the 16S rRNA gene of211strain OGL-20PT was deposited in GenBank under accession number AF394925.

213 closest *Thermococcus* species were determined as described previously (Pikuta *et al.*,

Homologies of genomic DNA between the new isolate and the phylogenetically

214 2006). The DNA-DNA hybridization values with labeled DNA from strain OGL-

215 $20P^{T}$ were as follows: *T. celer* JCM 8558^T: 14 %, *T. barossii* ATCC BAA-1085^T: 17

216 %, T. hydrothermalis $AL662^{T}$: 16 %, T. kodakaraensis ATCC BAA-918^T: 5 %, T.

217 profundus ATCC 51592^T: 4 %, T. acidaminovorans DSM 11906^T: 5 %, T. stetteri

218 DSM 5262^T: 4 %, *T. peptonophilus* ATCC 700098^T: 5 %, *T. gorgonarius* ATCC

219 700654^T: 5 %, *T. coalescens* JCM 12540^T: 13 %, and '*T. radiotolerans*' JCM 11826^T:

220 18 %.

221

212

Almost half of the *Thermococcus* species were isolated from deep-sea hydrothermal vents with high pressure conditions (200-350 atmospheres), located in different parts of the world (Kobayashi *et al.*,1994; Huber *et al.*,1995; Godfroy *et al.*,1996; Godfroy *et al.*,1997; Canganella *et al.*,1998; Duffaud *et al.*,1998; Grote *et al.*,1999). Strain OGL-20P^T was also isolated from a deep-sea ecosystem, characterized by high pressure (230 atmospheres), localized high temperatures (300 to 400 °C within the Black Smoker vents), and very high thermal gradients, (temperature drops to 2 °C a 229 few centimeters away from the "chimney"). As the "smoke" condenses above the 230 vent, the precipitated minerals are also spread around the nearby ocean floor; black 231 color pyrites (FeS) surrounding Black Smokers is a result of interaction of sulfide with iron: orange color is a result of a trivalent iron (Fe^{+3}) appearance. Unpigmented 232 233 invertebrates (shrimps, crabs, and worms) represent multicellular organisms in the 234 ecosystem. Their energy source is partially provided by the metabolism of 235 microorganisms (in our laboratory the cells with morphology similar to the new 236 archaeon were found in the intestines of shrimps with a strong smell of sulfur.) Strain OGL-20P^T is a hyperthermophilic, heterotrophic, sulfur-dependent, coccoid 237 238 archaeon inhabiting a deep-sea hydrothermal system in the Mid-Atlantic Ridge. In 239 line with those properties, comparison of the 16S rRNA gene places the strain in a

240 clade of the eurvarchaeotic order, the order *Thermococcales*, and most related to the 241 genus Thermococcus. Currently, the genus Thermococcus contains 25 validly 242 published species, which are separated into two major clades represented by T. celer 243 and T. litoralis, and two independent lineages of T. barophilus and T. atlanticus. The 244 separation of the two major clades is also supported by the DNA base composition. The strain OGL-20 P^{T} is included in the clade represented by *T. celer*. Comparison of 245 strain OGL-20P^T with closest neighbors on the phylogenetic tree showed a 16S rRNA 246 sequence difference of less than 1 %. However, the DNA-DNA- hybridization 247 248 showed less than 20 % similarity with them. Phenotypic and genotypic differences between strain OGL-20P^T and the closest species are shown in comparative table1. 249

250 On the basis of comparative data about morphology, physiology and genomic 251 characteristics we conclude that strain OGL-20P^T represents a separate taxon on the

252	species level. The name <i>Thermococcus thioreducens</i> sp. nov., is proposed for the new
253	species.
254	
255	Description of Thermococcus thioreducens sp. nov.
256	
257	Thermococcus thioreducens (thi.o.re.du'cens. Gr. n. thion sulfur, L. part. adj.
258	reducens reducing, N.L. part. adj. thioreducens reducing sulfur).
259	
260	Cells are irregular cocci with 0.7- 1.8 μ m diameter, motile by single flagellum.
261	Heterotroph, strict anaerobe. Obligately dependent from elemental sulfur. Catalase
262	negative. Grows on peptone, bacto-tryptone, casamino acids, yeast extract as electron
263	donors. No growth on D-glucose, fructose, maltose, sucrose, D-mannitol, glycerol,
264	methanol, ethanol, butyrate, propionate, acetate, formate, lactate, pyruvate, citrate and
265	amino acids. Thiosulfate, sulfite, sulfate, iron (III) or nitrate cannot support growth as
266	electron acceptors. Cells are hyperthermophiles growing between 55 $^{\circ}$ C and 94 $^{\circ}$ C
267	with optimum at 83- 85 °C, and pH range 5.0 - 8.5 (optimum 7.0), and with NaCl
268	concentration (w/v) range 1 - 5 % (optimum 3 %) The doubling time is 30 min. The
269	main end product of growth with peptone and sulfur is H_2S (more than 20 mM);
270	minor end products are: CO ₂ , H ₂ (0.05 mM), acetate (2 mM), ethanol (3.7 mM).
271	Sensitive to tetracycline and rifampin. The G+C content of DNA is 52.9 mol%
272	(HPLC).

273	Source of isolation: deep sea "Black Smoker" chimney debris in mud at Rainbow					
274	hydrothermal vent site at 2,300 meters depth in Atlantic Ocean off the coast of the					
275	Azores.					
276	Type strain: <i>Thermococcus thioreducens</i> OGL-20P ^T (= JCM 12859^{T} = DSM 14981^{T}					
277	= ATCC BAA-394 ^T).					
278						
279						
280	ACKNOWLEDGEMENTS					
281						
282	We are grateful to Dr. V. Kevbrin, Prof. M. Farmer & Prof. J. Shields (University of Georgia, Athens,					
283	GA) for their help with measuring end products and Transmission Electron Microscopy. We thank					
284	Prof. Hans G. Trüper for help with nomenclature. We appreciate the assistance of Drs. Anatoly					
285	Sagalevitch, Alla Lein & Nikolai Pimenov (Institute of Oceanography & Institute of Microbiology,					
286	RAS) in sample collection. We thank Richard Garriott for partially funding of the expedition. We					
287	acknowledge the NASA JSC Astrobiology Institute for Biomarkers in Astromaterials for supporting					
288	this research. Our gratitude also extends out to the University of Alabama in Huntsville Mini-Grant					
289	program for supporting extremophile research.					
290						
291	REFERENCES					
292						
293	Atomi, H. Fukui, T., Kanai, T., MorikAWA, M. & Imanaka, T. (2004).					
294	Description of Thermococcus kodakaraensis sp. nov., a well studied					
295	hyperthermophilic archaeon previously reported as <i>Pyrococcus</i> sp. KOD1. Archaea 1,					
296	263-267.					

297	Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic					
298	local alignment search tool. J Mol Biol 215, 403-410.					
299	Canganella, F., Jones, W. J., Gambacorta, A. & Antranikian, G. (1998).					
300	Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two					
301	novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site.					
302	Int J Syst Bacteriol 48, 1181-1185.					
303	Dirmeier, R., Keller, M., Hafenbradl, D., Braun, F. J., Rachel, R., Burggraf, S. &					
304	Stetter, K. O. (1998). Thermococcus acidaminovorans sp. nov., a new					
305	hyperthermophilic alkaliphilic archaeon growing on amino acids. Extremophiles 2,					
306	109-114.					
307	Duffaud, G. D., d`Hennezel, O. B., Peek, A. S., Reysenbach, AL. & Kelly, R.					
308	M. (1998). Isolation and characterization of Thermococcus barossii, sp. nov., a					
309	hyperthermophilic Archaeon isolated from a hydrothermal vent flange formation. Syst					
310	<i>Appl Microbiol</i> 21 , 40-49.					
311	Godfroy, A., Meunier, JR., Guézennec, J., Lesongeur, F., Raguénès, G.,					
312	Rimbault, A. & Barbier, G. (1996). Thermococcus fumicolans sp. nov., a new					
313	hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North					
314	Fiji Basin. Int J Syst Bacteriol 46, 1113-1119.					
315	Godfroy, A., Lesongeur, F., Raguénès, G., Quérellou, J., Antoine, E., Meunier, J.					
316	-R., Guézennec, J. & Barbier, G. (1997). Thermococcus hydrothermalis sp. nov., a					
317	new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J					
318	Syst Bacteriol 47, 622-626.					

319	González, J. M.,	Kato, C. & Horik	oshi, K. (1995). <i>T</i>	hermococcus p	eptonophilus	sp.
-----	------------------	------------------	---------------------------	---------------	--------------	-----

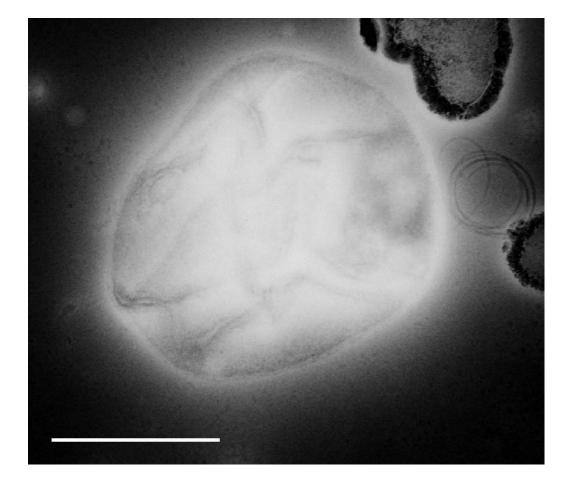
- 320 nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea
- 321 hydrothermal vents. Arch Microbiol **164**, 159-164.
- 322 Grote, R., Li, L., Tamaoka, J., Kato, C., Horikoshi, K. & Antranikian, G. (1999).
- 323 *Thermococcus siculi* sp. nov., a novel hyperthermophilic archaeon isolated from a
- deep-sea hydrothermal vent at the Mid-Okinawa Trough. *Extremophiles* **3**, 55-62.
- 325 Huber, R., Stöhr, J., Hohenhaus, S., Rachel, R., Burggraf, S., Jannasch, H. W. &
- 326 Stetter, K. O. (1995). *Thermococcus chitonophagus* sp. nov., a novel, chitin-
- 327 degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent
- 328 environment. Arch Microbiol 164, 255-264.
- 329 Hoover, R.B., Pikuta, E.V., Bej, A.K., Marsic, D., Whitman, W.B., Tang, J. &
- 330 **Krader, P. (2003).** *Spirochaeta americana* sp. nov., a new haloalkaliphilic,
- 331 obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J
- 332 *Syst Evol Microbiol* **53**, 815-821.
- Jolivet, E., L'haridon, S., Corre, E., Forterre, P. & Prieur, D. (2003).
- 334 *Thermococcus gammatolerans* sp. nov., a hyperthermophilic archaeon from deep-sea
- 335 hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53, 847-
- 336 851.
- Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian
- 338 Protein Metabolism, vol 3, pp 21-132. Edited by H. N. Munro. New York. Academic
- 339 Press.

340	Keller, M., Braun, FJ., Dirmeier, R., Hafenbradl, D., Burggraf, S., Rachel, R.	
341	& Stetter, K.O. (1995). Thermococcus alcaliphilus sp.nov., a new hyperthermophilic	
342	archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164, 390-395.	
343	Kobayashi, T., Kwak, Y. S., Akiba, T., Kudo, T. & Horikoshi, K. (1994).	
344	Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from	
345	deep-sea hydrothermal vent. Syst Appl Microbiol 17, 232-236.	
346	Kumar, S., Tamura, K. & Nei, M. (2004). MEGA3: Integrated software for	
347	Molecular Evolutionary Genetics Analysis and sequence alignment, Brief Bioinform	
348	5 , 150-163.	
349	Kuwabara, T., Minaba, M., Iwayama, Y., Inouye, I., Nakashima, M., Marumo,	
350	K., Maruyama, A., Sugai, A., Itoh, T., Ishibashi, J., Urabe, T. & Kamekura, M.	
351	(2005). Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon	
352	from Suiyo Seamount. Int J Syst Evol Microbiol 55, 2507-2514.	
353	Lovley, D. R. & Phillips, E.J.P. (1986). Organic matter mineralization with	
354	reduction of ferric iron in anaerobic sediments. Appl Environ Microbiology 51, 683-	
355	689.	
356	Marteinsson, V. T., Birrien, JL., Reysenbach, AL., Vernet, M., Marie, D.,	
357	Gambacorta, A., Messner, P., Sleytr, U. B. & Prieur, D. (1999). Thermococcus	
358	barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under	
359	hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49, 351-	
360	359.	

361	Mesbah, M., Premachandran, U. & Whitman, W. B. (1989). Precise measurement	
362	of the G+C content of deoxyribonucleic acid by high-performance liquid	
363	chromatography. Int J Syst Bacteriol 39, 159-167.	
364	Miroshnichenko, M. L., Bonch-Osmolovskaya, E. A. , Neuner, A., Kostrikina, N.	
365	A., Chernyh, N. A. & Alekseev, V. A. (1998). Thermococcus stetteri sp. nov., a new	
366	extremely thermophilic marine sulfur-metabolizing archaebacterium. Appl Microbiol	
367	12 , 257-262.	
368	Miroshnichenko, M. L., Gongadze, G. M., Rainey, F. A., Kostyukova, A. S.,	
369	Lysenko, A. M., Chernyh, N. A. & Bonch-Osmolovskaya, E. A. (1998).	
370	Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.:	
371	heterotrophic extremely thermophilic archaea from New Zealand submarine hot	
372	vents. Int J Syst Evol Microbiol 48, 23-29.	
	Miroshnichenko, M. L., Hippe, H., Stackebrandt E., Kostrikina, N. A., Chernyh,	
373	Miroshnichenko, M. L., Hippe, H., Stackebrandt E., Kostrikina, N. A., Chernyh,	
373 374	Miroshnichenko, M. L., Hippe, H., Stackebrandt E., Kostrikina, N. A., Chernyh, N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A.	
374	N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A.	
374 375	N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A. (2001). Isolation and characterization of <i>Thermococcus sibiricus</i> sp. nov. from a	
374 375 376	N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A. (2001). Isolation and characterization of <i>Thermococcus sibiricus</i> sp. nov. from a Western Siberia high-temperature oil reservoir. <i>Extremophiles</i> 5 , 85-91.	
374 375 376 377	 N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A. (2001). Isolation and characterization of <i>Thermococcus sibiricus</i> sp. nov. from a Western Siberia high-temperature oil reservoir. <i>Extremophiles</i> 5, 85-91. Neuner, A., Jannasch H. W., Belkin S. & Stetter, K.O. (1990). <i>Thermococcus</i> 	
 374 375 376 377 378 	 N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A. (2001). Isolation and characterization of <i>Thermococcus sibiricus</i> sp. nov. from a Western Siberia high-temperature oil reservoir. <i>Extremophiles</i> 5, 85-91. Neuner, A., Jannasch H. W., Belkin S. & Stetter, K.O. (1990). <i>Thermococcus litoralis</i> sp. nov.: a new species of extremely thermophilic marine archaebacteria. 	
 374 375 376 377 378 379 	 N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A. (2001). Isolation and characterization of <i>Thermococcus sibiricus</i> sp. nov. from a Western Siberia high-temperature oil reservoir. <i>Extremophiles</i> 5, 85-91. Neuner, A., Jannasch H. W., Belkin S. & Stetter, K.O. (1990). <i>Thermococcus</i> <i>litoralis</i> sp. nov.: a new species of extremely thermophilic marine archaebacteria. <i>Arch Microbiol</i> 153: 205-207. 	
 374 375 376 377 378 379 380 	 N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A. (2001). Isolation and characterization of <i>Thermococcus sibiricus</i> sp. nov. from a Western Siberia high-temperature oil reservoir. <i>Extremophiles</i> 5, 85-91. Neuner, A., Jannasch H. W., Belkin S. & Stetter, K.O. (1990). <i>Thermococcus</i> <i>litoralis</i> sp. nov.: a new species of extremely thermophilic marine archaebacteria. <i>Arch Microbiol</i> 153: 205-207. Pikuta, E. V., Lysenko, A. M., Suzina, N, Osipov, G.A., Kuznetsov, B., Tourova. 	
 374 375 376 377 378 379 380 381 	 N. A., Jeanthon, C., Nazina, T. N., Belyaev, S. S. & Bonch-Osmolovskaya, E. A. (2001). Isolation and characterization of <i>Thermococcus sibiricus</i> sp. nov. from a Western Siberia high-temperature oil reservoir. <i>Extremophiles</i> 5, 85-91. Neuner, A., Jannasch H. W., Belkin S. & Stetter, K.O. (1990). <i>Thermococcus</i> <i>litoralis</i> sp. nov.: a new species of extremely thermophilic marine archaebacteria. <i>Arch Microbiol</i> 153: 205-207. Pikuta, E. V., Lysenko, A. M., Suzina, N, Osipov, G.A., Kuznetsov, B., Tourova. T., Akimenko, V. K. & Laurinavichus, K. S. (2000). <i>Desulfotomaculum</i> 	

384	Pikuta, E. V., Hoover, R. B., Bej, A. K., Marsic, D., Detkova, E. N., Whitman, W.	
385	B. & Krader, P. (2003). Tindallia californiensis sp. nov., a new anaerobic,	
386	haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California.	
387	Extremophiles 7, 327-334.	
388	Pikuta, E. V., Itoh, T., Krader, P., Tang, J., Whitman, W. B., and Hoover, R. B.	
389	(2006). Anaerovirgula multivorans gen. nov., sp. nov., a novel spore-forming,	
390	alkaliphilic anaerobe isolated from Owens Lake, California. Int J Syst Evol Microbiol	
391	53 , 2623-2629.	
392	Ronimus, R. S., Reysenbach, AL., Musgrave, D. R. & Morgan, H. W. (1997).	
393	The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA	
394	gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus	
395	zilligii sp. nov. Arch Microbiol 168, 245-248.	
396	Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for	
397	reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.	
398	Sambrook, J., Fritch, E. F. & Maniatis, T. (1989). Molecular Cloning: A	
399	Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.	
400	Slobodkin, A. I., Jeanthon, C., L'Haridon, S., Nazina, T., Miroshnichenko, M.,	
401	& Bonch-Osmolovskaya, E. (1999). Dissimilatory reduction of Fe(III) by	
402	thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western	
403	Siberia. Curr Microbiol 39, 99-102.	
404	Smilbert, R. M. & Krieg, N. R. (1994). Phenotypic characterization. In Methods for	
405	general and molecular microbiology, pp. 611-654. Edited by R. G. Gerhardt, Murray	

- 406 E., Wood W. A., & Krieg N. R. American Society for Microbiology: Washington,
- 407 D.C.


408 Stetter, K. O., Huber, R., Blochl, E., Kurr, M., Eden, R. D., Fielder, M., Cash, H.

- 409 & Vance, I. (1993). Hyperthermophilic archaea are thriving in deep North Sea and
- 410 Alaskan oil reservoirs. *Nature* **365**, 743-745.
- 411 **Takahata, Y., Nishijima, M., Hoaki, T. & Maruyama, T. (2000).** Distribution and
- 412 physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in
- 413 Niigata, Japan. *Appl Environ Microbiol* **66**,73-79.
- 414 Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W: improving
- 415 the sensitivity of progressive multiple sequence alignment through sequence
- 416 weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids*
- 417 *Res* **22**, 4673-4680.
- 418 **Trüper, H. G. & Schlegel, H. G. (1964).** Sulfur metabolism in *Thiorhodaceae*: I.
- 419 Quantitative Measurements on growing cells of *Chromatium okenii*. Antonie van
- 420 Leeuwenhoek **30**, 225-238.
- 421 Wolin, E. A., Wolin, M. J., & Wolfe, R. S. (1963). Formation of methane by
- 422 bacterial extracts, J. Biol. Chem. 238, 2882-2886.
- 423 Zillig, W., Holz, I., Janekovic, D., Schäfer, W. & Reiter, W. D. (1983). The
- 424 Archebacterium *Thermococcus celer* represents, a novel genus within the
- 425 Thermophilic branch of the Archaebacteria. *Syst Appl Microbiol* **4**, 88-94.
- 426 **Zillig, W. (1992).** The order Thermococcales. In: *The Prokaryotes*. 2nd edn., Vol 1,
- 427 pp. 702-706. Edited by A. Balows, H. Truper, M. Dworkin, W. Hander, & K.H.
- 428 Schleifer. New York: Springer-Verlag Inc.

429	Zillig, W. & Reysenbach A. –L	. (2002). Class IV. Thermococci class nov. In
-----	-------------------------------	---

- 430 Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1. pp. 342-346. Edited by
- 431 D. R. Boone & R. W. Castenholz: New York: Springer.

FIGURES

- **Fig. 1.** TEM image by negative staining of cell of strain OGL-20P^T with single coiled 437 flagellum. Bar = $0.5 \mu m$.

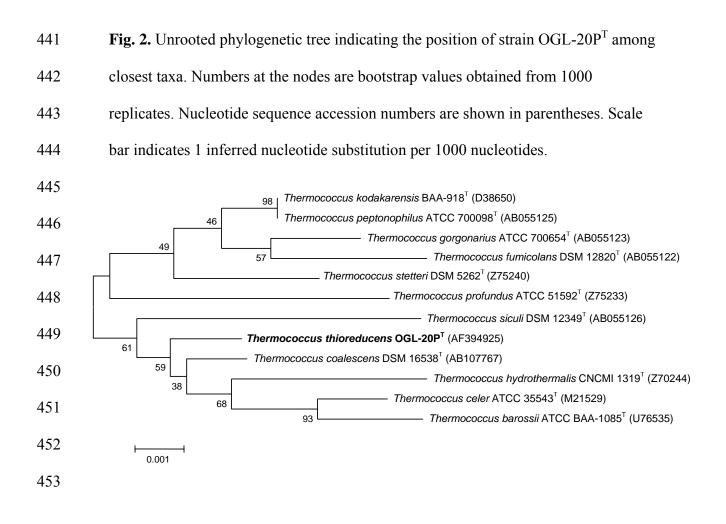


Table 1. Comparative table for strain OGL-20PT and phylogenetically closest species.

"+" - positive test; "-" – negative test; "(+)" – weak growth; ND – no data. Genome size was detected as described previously (Hoover *et al.*, 2003). ⁸ - stimulatory only.