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Recently, three-dimensional Stirling engine simulations have been ac-

complished utilizing commercial Computational Fluid Dynamics software.

The validations reported can be somewhat inconclusive due to the lack

of precise time accurate experimental results from engines, export con-

trol/proprietary concerns, and the lack of variation in the methods uti-

lized. The last issue may be addressed by solving the same flow problem

with alternate methods. In this work, a comprehensive examination of the

methods utilized in the commercial codes is compared with more recently

developed high-order methods. Specifically, Lele’s Compact scheme and

Dyson’s Ultra Hi-Fi method will be compared with the SIMPLE and PISO

methods currently employed in CFD-ACE, FLUENT, CFX, and STAR-

CD (all commercial codes which can in theory solve a three-dimensional

Stirling model although sliding interfaces and their moving grids limit the

effective time accuracy). We will initially look at one-dimensional flows

since the current standard practice is to design and optimize Stirling en-

gines with empirically corrected friction and heat transfer coefficients in

an overall one-dimensional model. This comparison provides an idea of the

range in which commercial CFD software for modeling Stirling engines may

be expected to provide accurate results. In addition, this work provides a

framework for improving current one-dimensional analysis codes.
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Nomenclature

β Nondimensional Wavenumber

ε Turbulent Dissipation Rate,(m2/s3)

η Kolmogorov Length Scale,(m)

µ Dynamic (Molecular) Viscosity,(Ns ·m−2)

ν Kinematic Viscosity,(µ · ρ−1)

ρ Density,(kg ·m−3)

τw Surface Shear Stress,(kg ·m−1s−2)

c Constant Convective Velocity

c4o0 UHF Method - 4 point stencil - no derivatives

c4o1 UHF Method - 4 point stencil - one derivative

c4o2 UHF Method - 4 point stencil - two derivatives

c4o3 UHF Method - 4 point stencil - three derivatives

Cp Specific Heat Constant Pressure

Cv Specific Heat Constant Volume

G Complex Amplification Factor

k Wavenumber

L Length of Numerical Domain

r Courant Number

uτ Friction Velocity,(kg ·m−3)

v Von Neuman Number

CFL Courant-Friedrichs-Lewy

I. Introduction

Power conversion with free-piston Stirling engines1 promises to deliver high efficiency, low

mass solutions for longer and more varied space missions.2 In addition to using advanced

high-temperature materials to increase the Carnot temperature ratio, it is anticipated that

advanced computational fluid dynamics (CFD) will help to identify the following losses4–6

(also shown in figure 1):

1. Inefficient heat exchange and pressure loss in the heat exchangers (heater,regenerator,

and cooler)

2. Gas spring and working space loss due to hysterisis and turbulence,

3. Appendix gap losses due to pumping and shuttle effects,
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4. Mixing gas losses from unequal temperature distributions or losses from mixing of gas

streams, or elements of gas at different temperatures,

5. Conduction losses from the hot to cold regions

In addition, the following artificial numerical losses must be considered when computa-

tional simulations are performed (also shown in figure 1):

1. Moving/deforming mesh losses from repeated low order flow field interpolations,

2. Transient/Unsteady heat transfer and flow loss from inconsistent and inaccurate time

discretization,

3. Flow loss from low order approaches resulting in effectively adding artificial dissipation

terms along sliding interfaces, at structured/unstructured grid interfaces, and within

interior.

Minimizing those artificial losses is best accomplished through higher order approaches.7

While this approach is common in aeroacoustics, computational electromagnetics, and exte-

rior flow problems, high order techniques have not yet been applied to simulating a Stirling

device. Moreover, the following difficulties are often encountered when using high-order

approaches:

1. Generation of high-order, smooth, body-fitted grids around complex configurations can

be difficult.8

2. High-order formulations can lack nonlinear robustness.8

3. The general usefulness of high-order methods is limited by first order accurate shock

capturing.9

Fortunately, with the exception of the possibly random geometry in the regenerator, the

free-piston design is essentially smooth and admits curvilinear structured grids (with some

geometry simplification). The issue of nonlinear robustness (i.e. maintaining design accu-

racy with nonlinear equations) is an open issue, but preliminary results are encouraging.

And finally, the working gas is subsonic and shockless throughout the entire region10 (How-

ever, steep temperature gradients can exist at solid/fluid interfaces). For these reasons, a

high-order approach is investigated for ”whole engine” Stirling analysis and compared to

commonly used techniques.
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Figure 1. Schematic of Actual and Artificial Numerical Losses in a Free-Piston Convertor

II. Description of the Problem

The dual opposed configuration shown in figure 2 11,12 is being developed for multimission

uses.13

Figure 2. Dual Opposed Stirling Convertors Reduce Vibration

Many methods in general use stop at 4th order accuracy for time dependent problems

since they use Runge-Kutta methods. High-order Runge-Kutta methods become notoriously

difficult to derive because the number of nonlinear order conditions that need to be solved

grows exponentially (i.e., a 12th order method has 7813 nonlinear order conditions). The

advantages of using Runge-Kutta methods at orders less than 6 are commonly cited as
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flexibility, large stability limits, and ease of programming.14 The practical limit on their

order has been an impediment to the analysis of their use in high order approaches for time

dependent applications.15

In this paper we use a series of explicit, local, high order methods which have the same

order of accuracy in space as in time16,17 for inviscid flow (lower accuracy in time for viscous

flows). These methods use Hermite interpolation on stencils that are four points wide, and

a Cauchy-Kowalewski recursive procedure18 for obtaining time derivatives from the space

derivatives of the interpolant. The time derivatives are then used to advance the primitive

variables and their spatial derivatives in time with a Taylor series expansion. This general ap-

proach is called the Modified Expansion Solution Approximation (MESA) method19 and the

new finite volume variation of this is called the Ultra HI-FI (UHF) method.20 This method

can be used to derive and implement algorithms with arbitrarily high orders of accuracy

in multiple space dimensions if their complexity is properly managed and the computer’s

floating point precision is sufficiently high.21

First, some of the known exact solutions of the viscous Burger’s equation are provided and

the linear case is solved with both state-of-practice Compact schemes, new UHF methods,

and various commercial code solvers. The one-dimensional Navier-Stokes equations reduce

to the linear viscous Burger’s equation in certain circumstances and provide a means for

testing both heat transfer effectiveness and turbulent transition efficiency of each method.

III. Exact Solutions For Method Comparison

Since the nonlinear Navier-Stokes equations generally do not have exact solutions nor

known stability limits, preliminary development and testing of new numerical methods is best

accomplished by starting with the viscous Burger’s equation. This equation describes flow

behaviour in specialized circumstances, but more importantly, its mathematical properties

are very similar to the full Navier-Stokes equations and it admits exact solutions.

For future reference and convenience, some of the known exact solutions are shown below

(only the linear viscous Burger’s equation will be required in this work).

A. Complete Nonlinear Viscous Burger’s Equation

The viscous Burger’s equation is written as:

∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
(1)

where u is the convective velocity term and µ can be considered the dynamic viscosity.

Exact steady-state solution, limt→∞u(x, t) exists for the case with boundary conditions:
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u(0, t) = u0 (2)

u(L, t) = 0 (3)

and it is given by:

u = u0ū

[
1− exp[ūReL(x/L− 1)]

1 + exp[ūReL(x/L− 1)]

]
(4)

where ReL = u0L
µ

(note this is a modified Reynold’s number)

ū is a solution of the equation

ū− 1

ū + 1
= exp(−ūReL) (5)

Other solutions for the nonlinear viscous burgers equation are:

1.

ut + uux − µuxx = 0, µ = 0.1, x ∈ (0, 1) (6)

u(x, 0) = 0, u(1, t) = −tanh

(
1

2µ

)
, u(0, t) = 0 (7)

has exact solution

u(x, t) = −tanh

(
x

2µ

)
(8)

2. Fully nonlinear equation:

ut + uux −
1

2
(uu̇x)x = 0, x ∈ (0, 1) (9)

with initial and boundary conditions as:

u(x, 0) = expx, u(0, t) = 1, u(1, t) = e (10)

has the following exact solution u(x, t) = expx.

3. An exact solution of the nondimensional form of the Nonlinear Burger’s equationn22

∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
(11)
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Nondimensionalized by:

x∗ =
x

L
, u∗ =

uL

µ
, t∗ =

µ

L2
t (12)

producing:
u∗

t∗
+ u∗

∂u∗

∂x∗
=

∂2u∗

∂x∗2
(13)

One stationary solution is:

u∗ = − 2 sinh x∗

cosh x∗ − exp−t∗
(14)

B. Linear Viscous Burger’s Equation

For simplicity and more thorough stability analyses, the viscous Burger’s equation may be

linearized with constant convective velocity, c, and dynamic viscosity, µ:

∂u

∂t
+ c

∂u

∂x
= µ

∂2u

∂x2
(15)

The exact steady-state solution with the same boundary conditions as in Eqs.(2) and (3)

is:

u = u0

[
1− exp[RL(x/L− 1)]

1− exp(−RL)

]
(16)

where RL = cL
µ

(modified Reynolds number).

The exact solution for the linearized equation with initial condition, u(x, 0) = sin(kx),

and periodic boundary conditions is:

u(x, t) = exp(−k2µt) sin k(x− ct) (17)

This is useful for evaluating the temporal accuracy of a method and this will be used in

comparing Compact and UHF techniques.23

In addition, this equation form also describes the time-accurate temperature distribution

in a moving solid or within a moving fluid in a channel in which case µ = α = k
ρCv

is

interpreted as the thermal diffusivity, and T is the temperature:

∂T

∂t
+ u

∂T

∂x
= α

∂2T

∂x2
(18)

This will be used for comparing the heat transfer capabilities of Compact, UHF, and

commercial code solvers.
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C. 2-D Nonlinear Viscous Burgers’ Equation

The 2-D Burger’s equation with nonlinear convection terms,24

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v(

∂2u

∂x2
+

∂2u

∂y2
)− fx = 0 (19)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− v(

∂2v

∂x2
+

∂2v

∂y2
)− fy = 0 (20)

with

fx = − 1

(1 + t)2
+

x2 + 2xy

(1 + t)
+ 3x3y2 − 2vy (21)

fy = − 1

(1 + t)2
+

y2 + 2xy

(1 + t)
+ 3y3x2 − 2vx (22)

has exact solution:

u =
1

1 + t
+ x2y (23)

v =
1

1 + t
+ xy2 (24)

D. 2-D Linear Burger’s Equation

The 2D (Burger’s) linear convection and diffusion equation:25

ut + c(ux + uy)− µ(uxx + uyy) = 0, (x, y) ∈ (−1, 1)× (−1, 1); c = 1, µ = 0.01 (25)

with the initial condition u(x, y, 0) = sin(π(x + y)) and periodic boundary condition has

the exact solution is:

u(x, y, t) = exp−2πµt sin(π(x + y − 2ct)) (26)

Additional exact solutions may be found in the paper by Benton and Platzman.26

IV. Application of Compact Scheme

The currently accepted state-of-the-art approach to high fidelity numerical simulations

is based on Lele’s 6th order Compact scheme.27 This approach implicitly solves the spatial

derivative terms and utilizes standard Runge-Kutta time advance. Each time step requires

solving a tridiagonal matrix given by the equation:
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α

(
∂u

∂x

)
i−1

+

(
∂u

∂x

)
i

+ α

(
∂u

∂x

)
i+1

= a
ui+1 − ui−1

2∆x
+ b

ui+2 − ui−2

4∆x
(27)

with α = 1/3, a = 14/9, b = 1/9.

Similarly, the second order derivatives are found by:

α

(
∂2u

∂x2

)
i−1

+

(
∂2u

∂x2

)
i

+ α

(
∂2u

∂x2

)
i+1

= a
ui+1 − 2ui + ui−1

∆x2
+ b

ui+2 − 2ui + ui−2

4∆x2
(28)

with α = 2/11, a = 12/11, b = 3/11.

The 4th order Runge-Kutta method is described by:24

R(u) = −cux + µuxx (29)

u(1) = un +
∆t

2
Rn (30)

u(2) = un +
∆t

2
R1 (31)

u(3) = un + ∆tR2 (32)

un+1 = un +
∆t

6

(
Rn + 2R(1) + 2R(2) + R(3)

)
(33)

(34)

with

R(1) = R(u(1))

R(2) = R(u(2))

R(3) = R(u(3))

The single step 6th order Compact scheme with 4th order Runge-Kutta on a domain

[−4, 4] is given by:

un+1
i = (35)(

6296179542799261293r4

2934584609881498112
+ 98816474558753811vr3

18549839506204160
− 31068146188125r3

42158726150464
+ 55178557611v2r2

19381094656

)
u−4 +(

−287760797433vr2

133245025760
+ 324338625r2

2422636832
+ 401096399245v3r

583491009024

)
u−4 +(

−3588625v2r
3898048

+ 573327vr
1093840

− 75r
8701

− 1230500161v4

24196548096
− 268897v3

1714608
+ 16675v2

127008
− 11v

180

)
u−4 +(

−76938698802699r4

12527254840352
− 6211549394313vr3

860382166336
+ 20491256151r3

7918618736
− 186196891v2r2

40043584
+ 1236331119vr2

346090976
− 1463625r2

2502724

)
u−3 +
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(
+1778984341v3r

2210193216
+ 77947v2r

44296
− 65875vr

69608
+ 75r

1582
+ 454075v4

4148928
− 2032591v3

24004512
− 1025v2

3528
+ 25v

252

)
u−3 +(

12528089829r4

1124897312
+ 7466191437vr3

646417856
− 22282569r3

3652264
+ 441v2r2

484
− 18974931vr2

2860256
+ 103671r2

47432

)
u−2 +(

−111033673v3r
66975552

− 49v2r
66

+ 15479vr
6328

− 75r
308

− 2401v4

39366
+ 267775v3

889056
+ 49v2

162
− 25v

84

)
u−2 +(

−211569041160693r4

12527254840352
− 7860884553897vr3

860382166336
+ 85890653865r3

7918618736
+ 186196891v2r2

40043584
+ 2047213695vr2

346090976
− 13246263r2

2502724

)
u−1 +(

+3480659477v3r
2210193216

− 77947v2r
44296

− 198763vr
69608

+ 2637r
1582

− 454075v4

4148928
− 9562127v3

24004512
+ 1025v2

3528
+ 221v

252

)
u−1 +(

28605737830234834755r4

1467292304940749056
− 278097527037915r3

21079363075232
− 72837778155v2r2

9690547328
+ 8619732963r2

1211318416

)
u0 +(

+19447891v2r
5847072

− 50889r
17402

+ 2706289217v4

12098274048
− 55091v2

63504
+ 1

)
u0 +(

−211569041160693r4

12527254840352
+ 7860884553897vr3

860382166336
+ 85890653865r3

7918618736
+ 186196891v2r2

40043584
− 2047213695vr2

346090976
− 13246263r2

2502724

)
u1 +(

−3480659477v3r
2210193216

− 77947v2r
44296

+ 198763vr
69608

+ 2637r
1582

− 454075v4

4148928
+ 9562127v3

24004512
+ 1025v2

3528
− 221v

252

)
u1 +(

12528089829r4

1124897312
− 7466191437vr3

646417856
− 22282569r3

3652264
+ 441v2r2

484
+ 18974931vr2

2860256
+ 103671r2

47432

)
u2 +(

+111033673v3r
66975552

− 49v2r
66

− 15479vr
6328

− 75r
308

− 2401v4

39366
− 267775v3

889056
+ 49v2

162
+ 25v

84

)
u2 +(

−76938698802699r4

12527254840352
+ 6211549394313vr3

860382166336
+ 20491256151r3

7918618736
− 186196891v2r2

40043584
− 1236331119vr2

346090976
− 1463625r2

2502724

)
u3 +(

−1778984341v3r
2210193216

+ 77947v2r
44296

+ 65875vr
69608

+ 75r
1582

+ 454075v4

4148928
+ 2032591v3

24004512
− 1025v2

3528
− 25v

252

)
u3 +(

6296179542799261293r4

2934584609881498112
− 98816474558753811vr3

18549839506204160
− 31068146188125r3

42158726150464
+

55178557611v2r2

19381094656
+ 287760797433vr2

133245025760
+ 324338625r2

2422636832

)
u4 +(

−401096399245v3r
583491009024

− 3588625v2r
3898048

− 573327vr
1093840

− 75r
8701

− 1230500161v4

24196548096
+ 268897v3

1714608
+ 16675v2

127008
+ 11v

180

)
u4

The linearized viscous Burger’s equation (Eq. 15) is solved with this Compact scheme

with multiple domain sizes to demonstrate the dependence of the implicitly derived spatial

derivatives (and the stability limit) on the size of the domain. A Fourier stability analysis is

performed and the stability of the Compact scheme as a function of Courant (r = c∆t
∆x

), Von

Neumann (v = µ∆t
∆x2 ) numbers, and β = ∆xk is derived as:

<(G) = (36)

28605737830234834755r4

1467292304940749056
− 278097527037915r3

21079363075232
− 72837778155v2r2

9690547328
+ 8619732963r2

1211318416

+19447891v2r
5847072

− 50889r
17402

+ 2706289217v4

12098274048
− 55091v2

63504
+(

−211569041160693r4

6263627420176
+ 85890653865r3

3959309368
+ 186196891v2r2

20021792
− 13246263r2

1251362

)
cos(β) +(

−77947v2r
22148

+ 2637r
791

− 454075v4

2074464
+ 1025v2

1764

)
cos(β) +(

12528089829r4

562448656
− 22282569r3

1826132
+ 441v2r2

242
+ 103671r2

23716

)
cos(2β) +(

−49v2r
33

− 75r
154

− 2401v4

19683
+ 49v2

81

)
cos(2β) +(

−76938698802699r4

6263627420176
+ 20491256151r3

3959309368
− 186196891v2r2

20021792
− 1463625r2

1251362

)
cos(3β) +
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(
+77947v2r

22148
+ 75r

791
+ 454075v4

2074464
− 1025v2

1764

)
cos(3β) +(

6296179542799261293r4

1467292304940749056
− 31068146188125r3

21079363075232
+ 55178557611v2r2

9690547328
+ 324338625r2

1211318416

)
cos(4β)(

−3588625v2r
1949024

− 150r
8701

− 1230500161v4

12098274048
+ 16675v2

63504

)
cos(4β) + 1

The imaginary part of the amplification factor is:

=(G) = (37)(
7860884553897vr3

430191083168
− 2047213695vr2

173045488
− 3480659477v3r

1105096608
+ 198763vr

34804
+ 9562127v3

12002256
− 221v

126

)
sin(β)

+
(
−7466191437vr3

323208928
+ 18974931vr2

1430128
+ 111033673v3r

33487776
− 15479vr

3164
− 267775v3

444528
+ 25v

42

)
sin(2β)

+
(

6211549394313vr3

430191083168
− 1236331119vr2

173045488
− 1778984341v3r

1105096608
+ 65875vr

34804
+ 2032591v3

12002256
− 25v

126

)
sin(3β)

+
(
−98816474558753811vr3

9274919753102080
+ 287760797433vr2

66622512880
− 401096399245v3r

291745504512
− 573327vr

546920
+ 268897v3

857304
+ 11v

90

)
sin(4β)

The amplification factor is simply, |G| =
√
<(G)2 + =(G)2, and the range of stability

(green area) is shown in Fig. 3. Notice how the stable region changes as the domain size,

maxi (the number of grid points in each direction), changes. Explicit spatial derivative

operators do not exhibit this behavior since the stencil size remains constant regardless of

domain size.

V. Application of UHF Method

The MESA and Ultra Hi-Fi Methods are actually a procedure for designing ever more

accurate numerical methods in which additional information is stored at each cell or grid

point. For this comparison, the solution variable and up to it’s third spatial derivative will

be stored at each grid. The notation, c4od, represents an UHF method with a 4 point stencil

and only the solution variable and up to d derivatives on the grid. The basic procedure has

been previously published for inviscid problems.20

The c4o0 UHF method will use a 4 point interpolation stencil to determine spatial deriva-

tives as shown in Fig 4. A simple 1st order Taylor series in time is used:

un+1
i = un + ut(∆t) (38)

in which the time derivative is found from the governing equation (Eq. 15) to be:

∂u

∂t
= −cux + µuxx (39)

and the solution variables, u, ux, uxx, are interpolated to the center of the four-point
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(a) MAXI=2 (b) MAXI=3

(c) MAXI=4

Figure 3. Lele Compact Linear Viscous Burgers Equation Stability Range
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n
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Figure 4. UHF Staggered Grid Diagram

stencil using:

un
i =

1

16

(
−ui− 3

2
+ 9ui− 1

2
+ 9ui+ 1

2
− ui+ 3

2

)
(40)

un
xi

= −
−ui− 3

2
+ 27ui− 1

2
)− 27ui+ 1

2
+ ui+ 3

2

24∆x
(41)

un
xxi

= −
−ui− 3

2
+ ui− 1

2
+ ui+ 1

2
− ui+ 3

2

2∆x2
(42)

This results in a single time equation:

u
n+(1/2)
i =

(
µ∆t

2h2
− c∆t

24h
− 1

16

)
uui− 3

2
+
(
−µ∆t

2h2
+

9c∆t

8h
+

9

16

)
uui− 1

2
+(

−µ∆t

2h2
− 9c∆t

8h
+

9

16

)
uui+ 1

2
+
(

µ∆t

2h2
+

c∆t

24h
− 1

16

)
uui+ 3

2
(43)

And after two time steps, the original ”unstaggered” grid has been updated with the

following:

un+1
i = ui−3

(
µ∆t

2h2
− c∆t

24h
− 1

16

)2

+

2
(
−µ∆t

2h2
+

9c∆t

8h
+

9

16

)
ui−2

(
µ∆t

2h2
− c∆t

24h
− 1

16

)
+((

−µ∆t

2h2
+

9c∆t

8h
+

9

16

)2

+ 2
(
−µ∆t

2h2
− 9c∆t

8h
+

9

16

)(
µ∆t

2h2
− c∆t

24h
− 1

16

))
ui−1 +(

2
(
−µ∆t

2h2
− 9c∆t

8h
+

9

16

)(
−µ∆t

2h2
+

9c∆t

8h
+

9

16

)
+

2
(

µ∆t

2h2
− c∆t

24h
− 1

16

)(
µ∆t

2h2
+

c∆t

24h
− 1

16

))
ui +
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((
−µ∆t

2h2
− 9c∆t

8h
+

9

16

)2

+ 2
(
−µ∆t

2h2
+

9c∆t

8h
+

9

16

)(
µ∆t

2h2
+

c∆t

24h
− 1

16

))
ui+1 +

2
(
−µ∆t

2h2
− 9c∆t

8h
+

9

16

)(
µ∆t

2h2
+

c∆t

24h
− 1

16

)
ui+2

+
(

µ∆t

2h2
+

c∆t

24h
− 1

16

)2

ui+3 (44)

As was done with the Compact algorithm, a Fourier stability analysis is completed with

the real part of amplification factor:

<(G) = (1152)−1(−2920v2 + 288r(4r − 5) + 9
(
348v2 + 16(1− 4r)r + 63

)
cos(β) (45)

−18
(
12v2 + 16r(4r − 5) + 9

)
cos(2β) +

(
9(1− 8r)2 + 4v2

)
cos(3β) + 738)

And the imaginary part of the amplification factor:

=(G) =
1

48
v(−8r + (8r − 1) cos(β) + 5)(sin(2β)− 26 sin(β)) (46)

The amplification factor, |G| =
√
<(G)2 + =(G)2, is plotted as in Fig. 5 as a function

of Courant and Von Neumann numbers, and β = ∆xk. The left figure (a) unwraps the

polar plot in right figure (b). As β increases the amplification factor simply repeats. It has

been traditional to use a polar plot due to this property. However, as soon as derivative

information is stored on the grid, the amplification factor continues to vary as β > 2π. This

is due to the ability of these techniques to carry ultra-short wave information. Amplification

factors larger than one for any wavenumber imply it is an unstable method.

(a) Amplification - c4o0 (b) Polar Diagram

Figure 5. c4o0 - Linear Viscous Burgers Equation
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Following this same procedure, but adding additional derivatives on the grid to produce

methods, c4o1, c4o2, and c4o3 results in the algorithms shown in the appendix.

(a) r=v=.01 (b) r=v=.05

(c) r=v=.10 (d) r=v=.5

Figure 6. Ampification/Stability Factor Comparison

The full equations shown in the appendix are required to perform the Fourier stability

analysis to enable true method comparisons. The exact amplification factor is also shown

since we know the exact solution. Notice in Fig. 6 that the various UHF methods more

closely approach the exact ampification factor as the number of solution derivatives on the

grid increases. Since the UHF methods can resolve ultra-short waves, the wavenumber range

in the figure could be extended past k = 2π.

The stability region for all the UHF methods is shown in Fig. 7. This gives an indication
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(a) c4o1 (b) c4o2

(c) c4o3

Figure 7. UHF Linear Viscous Burgers Equation Stability Range
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of the allowable time step as the dynamic viscosity and convective terms vary. Notice (see

definition of Von Neuman number given earlier) the role viscosity plays in reducing time

step size. Fortunately, the viscosity, µ is a small term generally compared to convection, c.

The Compact scheme has larger allowable time steps as shown in Fig. 3 for a given grid.

However, more grid is required for the Compact scheme as shown in the next section and

despite this apparent advantage, a coarser grid actually results in an effectively larger time

step for the UHF methods.

VI. Application of the SIMPLE/PISO Methods

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) method28 and Pres-

sure Implicit with Splitting of Operators (PISO) method29,30 are the mainstay of commercial

fluid dynamics solvers.

(a) Segregated Process

Figure 8. Overview of Segregated Solution Technique

An overview of the SIMPLE method is:

• Start the iterative process by guessing the pressure field.

• Use those pressure values to determine the velocity from the momentum equations.

• Determine a pressure correction such that the continuity equation is satisfied.

• Find corresponding velocity corrections, and use new pressure and velocity.

• Repeat this until a velocity field is found that does satisfy continuity.
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The governing equations are linearized to produce a system of linear equations with one

equation for each cell in the domain. A point implicit (Gauss-Seidel) linear equation solver is

used in conjunction with an algebraic multigrid method to solve the resultant scalar system

of equations.

The time stepping is first order accurate implicit, and the spatial accuracy is second

order.

The PISO algorithm moves the repeated calculations required by SIMPLE inside the

solution stage of the pressure-correction equation to more closely satisfy the continuity and

momentum equations. The PISO method takes more time per iteration, but often requires

fewer iterations, particularly for transient problems as will be demonstrated next.

Finally, the stability limits of these two approaches are large (limited by the need for

accuracy) compared to the Compact and UHF methods due to implicit time-stepping.

18 of 33



VII. Nonlinear Navier Stokes – 1D

We will now test these techniques on an example of the one-dimensional Navier-Stokes

equations that reduces to a one-dimensional heat transfer problem governed by the linear vis-

cous Burger’s equation. This is what is solved in Sage/GLIMPS32 and HFAST33 to produce

reasonable one-dimensional Stirling analysis solutions in industry.

The one-dimensional Navier-Stokes equations can be written as:23

∂U

∂t
+

∂E

∂x
=

∂Ev

∂x
(47)

U =


ρ

ρu

Et

E =


ρu

ρu2 + p

(Et + p)u

Ev =


0

τxx

−uτxx + qx

 (48)

Et = ρ

(
e +

u2

2

)
τxx =

4

3
µux qx = −k

∂T

∂x
T =

p

ρR
k =

µcp

Pr
(49)

Sage/Glimps32 utilize a slightly different form:

∂U

∂t
+

∂E

∂x
=

∂Ev

∂x
+ Q (50)

U =


ρ

ρu

Et

E =


ρu

ρu2 + p

(Et + p)u

Ev =


0

0

qi

Q =


0

Cfρu

Q5

 (51)

Et = ρ

(
e +

u2

2

)
τxx =

4

3
µux qi = − < k >

∂T

∂x

ρ|u|
< ρ|u| >

T =
p

ρR
k =

µcp

Pr
(52)

Notice that Stoke’s stress tensor is replaced by source terms. This also simplifies the

numerics since only a single second derivative, ∂qi

∂x
, must be calculated compared to three

in Eq. 47. We will utilize the standard Navier-Stokes form for comparison with commercial

software. Extension of these ideas to the GLIMPS form is direct.

A. Convection and Diffusion

Few exact solutions exist for the Navier-Stokes equations and therefore validating commercial

codes is typically done with only approximate experimental information. One special case

that both has an exact solution and yet includes heat transfer physics relevant to oscillating

Stirling engines will be shown.
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First, commercial codes operate either in two or three dimensions. However, it is possible

to cajole the commercial code into solving a one-dimensional problem by solving the full

Navier-Stokes equations with an inherently one-dimensional problem such as flow through a

pipe with an initial temperature ”shock” as shown in Fig. 9.

u=1 m/su=1 m/s
300K

--
600K

0 m 2 m-2 m

Figure 9. Heat Transfer Test

This problem can be solved with either two or three-dimensional solvers and it reduces to

the one-dimensional Navier-Stokes Eq. 47. Since the density and velocity are constant, both

the continuity and momentum equations are satisfied. Only the energy equation actually

needs to be solved:

∂Et

∂t
+

∂

∂x

(
(ρCvT + p)u− 4

3
µuux + qx

)
= 0 (53)

Using, Et = ρCvT , and dropping out terms that are zero, we have the following reduced

form of the energy equation:

ρCv
∂T

∂t
= ρCvu

∂T

∂x
= k

∂2T

∂x2
(54)

Finally, dividing by ρCv and for essentially incompressible flows replacing Cv with Cp,

we have the following transport (linear viscous Burger’s equation):

∂T

∂t
+ u

∂T

∂x
= α

∂2T

∂x2
(55)

with the thermal diffusivity α = k
ρCp

.

Furthermore, commercial solvers utilize the dimensional form of the Navier-Stokes, but

by utlizing the following non-dimensionalization (∗ = nondimensional quantity):

T ∗ =
T

T0

, x∗ =
x

L
, t∗ =

t

τ0

, u∗ = u
τ0

L
, α∗ =

τ0

L2
α (56)

and using the following nondimensional boundary conditions:

T ∗(x∗, 0) = 2 or 1, x ∈ [−2, 2], t∗ = [0, 1],

u∗ = 1.0, ∆x∗ = .1, ∆t∗ = .01, α∗ = .03003 (57)
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We have an exact solution, by the separation-of-variables,34 (as N is large):

T ∗(x∗, t∗) = 1 + 0.5− 2

π

N∑
k=1

sin

[
(2k − 1)

π(x∗ − u∗t∗)

L

]
exp[−α∗(2k − 1)2π2t∗/L2]

2k − 1
(58)

And finally, by choosing the characteristic constants as:

τ0 = 1s, L = 1m, T0 = 300K (59)

We have the following problem definition for the commercial solvers:

x ∈ [−2m, 2m], T ∈ [300K, 600K], t ∈ [0s, 1s], u = 1m/s,

∆x = .1m, ∆t = .01s, α = .03003m2/s, ρ = 998.2kg/m2,

Cp = 4182J/(kg ·K), k = 125359J/(s ·K), p = 101325 Pa (60)

This problem is solved and the results are compared as various techniques are applied to

the problem. In Fig. 10, the exact solution is shown along with four UHF techniques, a 6th

order Compact scheme, a segregated spatially and temporally implicit method (SIMPLE)

used in Fluent, a coupled spatially and temporally implicit method (PISO) used in Fluent,

and a segregated central difference with a blended (averaged) Euler and Crank-Nicolson

technique used in CFD-ACE. Fluent only allows 1st order accuracy in time when moving

meshes are applied as when the Stirling engine is simulated. However, CFD-ACE allows for

up to 2nd order accuracy in time when the meshes are compressed with a spring analogy.

The best techniques in this test case are the Compact and c4o3 UHF schemes. The

commercially used solvers are noticeably less able to model time accurate heat transfer.

However, the coupled solver should be used when commercial codes are applied to oscillating

Stirling simulations and when available, 2nd order time accuracy should be used (as when

using CFD-ACE).

VIII. Fidelity and Turbulence Transition

Modeling turbulence transition is a difficult problem due to the large disparity in both

spatial and temporal scales caused when velocity gradients are high. In the Stirling engine

velocity gradients are high near walls and regions of sheared flow due to oscillating/reversing

flows. As the velocity gradients increase, the flow becomes rotational, leading to a vigorous

stretching of vortex lines, which cannot be supported in two dimensions.24 For this reason,

truly turbulent simulations cannot be done in one-dimension.
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(a) Bird’s View (b) Temperature Slope

(c) Close-Up (d) Commercial Comparison

(e) Lower Curve (f) Upper Curve

Figure 10. Heat Diffusion and Convection Comparison
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The Stirling engine exhibits turbulent and laminar behaviour simultaneously.35 It is

desirable therefore to avoid a Reynolds Averaged approach since the time averaged equations

combined with some turbulence model36–38 assumes turbulence everywhere. One promising

approach is Large Eddy Simulation (LES) in which the Navier-Stokes equations are solved

in time, but with spatial filtering applied, leaving the small eddies still unresolved. Since

small eddies are essentially isotropic, the modeling is much easier compared to Reynolds

time averaging. Moreover, the entire flow is bounded by walls making boundary condition

specification much easier than the typical open domain problems encountered in modeling,

for example, jet flow turbulence.

The smallest scales of turbulence are the Kolmogorov scales of length, time and velocity:39

η = (ν3/ε)1/4, τ = (ν/ε)1/2, v = (νε)1/4 (61)

where ν is the kinematic viscosity, and ε is the dissipation rate. The Reynolds number

in the Kolmogorov region, Re = vη/ν = 1, shows the ratio of inertial and visous forces is

unity because most of the energy is dissipated in this wavenumber region.

In small Stirling engines we can estime the smallest scales as follows. With the average

flow assumptions for Helium in the engine:

µ = 350e− 7(Ns/m2), ν = 502e− 6(m2/s), k = 278e− 3W/(mK),

α = 29.9341e− 6m2/s, Pr = 0.654, ω = 2πf = 502.655(rad/s),

Cp = 5.19e3J/(kgK), T = 700K, p = 2.6e6Pa, ρ = 1.78838(kg/m3) (62)

Then from West,40 for oscillating flow, the average thermal boundary layer thickness,√
2α/ω = .345115mm, and the average flow boundary layer thickness,

√
2ν/ω = 1.41329mm.

The maximum surface shear stress may be approximated with this information by (as-

suming average maximum flow speed of 10m/s and using the flow boundary layer thickness):

τw = µ
∆u

∆y
= .247649N/m2 (63)

The friction velocity, uτ =
√

τw

ρ
= .372125m/s, is then used in the following equation for

dissipation in channel flow:39

ε ≈ 2u2
τUm/.0253007m) = 54.7325m2/s3 (64)

23 of 33



Finally, we can estimate the Kolmogorv spatial wave length as:

η = (ν3/ε)1/4 = 1.23301mm (65)

Assuming a representative engine length of (1in. = 25.3007mm), the domain consists of

20 to 30 Kolmogorov wavelengths, or roughly 8000 regions (Kolmogorov boxes) in 3D where

isotropic turbulence modeling can be employed. This corresponds to a turbulent Reynolds

number of Reτ = uτ (.0253007m)/(2ν) = 9.37751. This is low Reynolds number flow and

appears ideal for applying Large Eddy Simulation.

One would like to model the smallest turbulent scales, which in the case of LES is the

Kolmogorov wavenumber range. The allowable time should also be of the same order as the

Kolmogorov time scale.

τ = (ν/ε)1/2 = .00302s (66)

This time scale is not prohibitive, since the time step size is already smaller than this in

current commercial simulations due to the numerical issues involving moving grids.

We would like to utilize the most efficient technique to minimize the computational cost.

We know the minimum wavelengths required to simulate turbulence in the Stirling engine

and the wave convection/dissipation problem solution from Eq. 17 is used to determine the

fewest grid points required for each method. The results are shown in Fig. 11.

This solution represents a traveling (convecting) wave with a dissipating amplitude. Many

methods will convect at the wrong speed (dispersive error) or will excessively dissipate the

amplitude (dissipative error).

A key measure of efficiency is how many grid points are required per wavelength to

propagate this wave within some predetermined error bound. As k, the wavenumber in

Eq. 17 , is increased, the number of grid points must increase to properly simulate the wave.

Currently, Compact schemes are regarded as requiring approximately 6 grid points per

wavelength for reasonable solutions. A comparison of the Compact scheme and the UHF

schemes with up to 3 spatial derivatives stored on the grid, as shown in the table (Fig. 11(b),

demonstrates the Compact scheme is comparable to method c4o1 (one solution derivative

per grid point). This is expected since the Compact scheme also utilizes 1st derivative

information. However, extending Compact schemes to include higher derivatives involves

complicated matrices which may be difficult or intractable to solve.

The c4o3 method can match the results of the Compact scheme using 16 times fewer grid

points per dimension. Specifically, one additional test of the c4o3 method with k = 8π and

∆x = .2, the error at t = 1 was 2.44291∗−5, which is more accurate than the Compact scheme

with considerably fewer grid points per wavelength. Note that the previous comparisons had
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(a) Fidelity Comparison

Method Spacing Error

c4o0 .1 2.54229 10−2

c4o0 .2 4.27563 10−2

c4o0 .4 4.68577 10−2

c4o1 .1 3.11163 10−6

c4o1 .2 2.96551 10−5

c4o1 .4 8.4702 10−4

c4o2 .1 1.0178 10−10

c4o2 .2 3.1935 10−9

c4o2 .4 6.41079 10−8

c4o3 .1 3.44169 10−15

c4o3 .2 2.27818 10−13

c4o3 .4 3.12925 10−11

Compact .1 1.0993 10−6

Compact .2 7.10929 10−5

Compact .4 5.31245 10−3

(b) Errors at t=1

Figure 11. Wave Propagation Fidelity

25 of 33



k = π and here it was multiplied by eight and we use half as many grid points for a net

change of sixteen grid points per wavelength.

Clearly, the UHF schemes are more efficient and can be formulated explicitly for easier

parallelization. This implies smoothly transitioning turbulent flows can be more efficiently

simulated with UHF techniques.

IX. Conclusion

One-dimensional Navier-Stokes equations are currently utilized for Stirling engine design

and optimization with reasonable success. Recent attempts at multi-dimensional simulations

have relied upon commercial solvers and this report examined that practice more closely.

This report has shown that the techniques used in commercial codes for simulating Stir-

ling engines are not as capable as more recently developed approaches available in the litera-

ture. Moreover, the unique environment of the Stirling engine in which flow is simultaneously

turbulent and laminar makes large eddy simulation desirable, while the low Reynold’s num-

ber, wall bounded flow provides for modest grid requirements and well defined boundary

conditions.

Despite the larger stability limit (4 times larger) of Compact schemes for a given grid

spacing, the UHF method results in an effective time-step that is 4 times larger than Compact

schemes since the grid can be 16 times coarser per dimension. The 6th order Compact schemes

performed well with the heat transfer test and apparently would work well in regions of

conjugate heat transfer. However, the Compact scheme is not as efficient at predicting

turbulent transition compared to UHF methods. The c4o3 method performs similarly to

the Compact scheme for steep temperature gradients (conjugate heat transfer) but is up to

163 = 4096 times more efficient when three-dimensional transitional flows need modeled.

It would be desirable to compare c4o4 methods and higher in the future. Future work

should examine utilizing UHF methods in a steady-harmonic formulation with Detached

Eddy Simulation and more complicated moving grid tests should be performed.
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X. Appendix

In what follows are the full equations used to time advance the solutions in this paper

and their stability amplification factors. These equations are lengthy, but are provided for

completeness and to allow for independent verification.

A. c4o1

The single step c4o1 is given by:

u
n+(1/2)
i = (67)(

−15µ3∆t3

h6 + 785cµ2∆t3

36h5 + 45c2µ∆t3

8h4 − 281c3∆t3

1728h3 + 45µ2∆t2

8h4 − 281cµ∆t2

288h3 − 27c2∆t2

128h2 − 27µ∆t
64h2 + 5c∆t

256h
+ 13

512

)
ui− 3

2

+
(

15µ3∆t3

h6 + 345cµ2∆t3

4h5 − 45c2µ∆t3

8h4 − 171c3∆t3

64h3 − 45µ2∆t2

8h4 − 513cµ∆t2

32h3 + 27c2∆t2

128h2 + 27µ∆t
64h2 + 405c∆t

256h
+ 243

512

)
ui− 1

2

+
(

15µ3∆t3

h6 − 345cµ2∆t3

4h5 − 45c2µ∆t3

8h4 + 171c3∆t3

64h3 − 45µ2∆t2

8h4 + 513cµ∆t2

32h3 + 27c2∆t2

128h2 + 27µ∆t
64h2 − 405c∆t

256h
+ 243

512

)
ui+ 1

2

+
(
−15µ3∆t3

h6 − 785cµ2∆t3

36h5 + 45c2µ∆t3

8h4 + 281c3∆t3

1728h3 + 45µ2∆t2

8h4 + 281cµ∆t2

288h3 − 27c2∆t2

128h2 − 27µ∆t
64h2 − 5c∆t

256h
+ 13

512

)
ui+ 3

2

+
(
−5µ3∆t3

h5 + 55cµ2∆t3

12h4 + 11c2µ∆t3

8h3 − 19c3∆t3
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384h
+ c∆t

256
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512

)
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2
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(
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2
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256
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2
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2

The c4o1 full step (two staggered half-steps) is:
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un+1
i = (69)(

770µ3∆t3

9h7 + 45cµ2∆t3

h6 − 785c2µ∆t3

36h5 − 15c3∆t3

8h4 − 785µ2∆t2

36h5 − 45cµ∆t2

4h4 + 281c2∆t2

576h3 + 281µ∆t
288h3 + 27c∆t

64h2 − 5
256h

)
ui− 3

2

+
(

210µ3∆t3

h7 − 45cµ2∆t3

h6 − 345c2µ∆t3

4h5 + 15c3∆t3

8h4 − 345µ2∆t2

4h5 + 45cµ∆t2

4h4 + 513c2∆t2

64h3 + 513µ∆t
32h3 − 27c∆t

64h2 − 405
256h

)
ui− 1

2

+
(
−210µ3∆t3

h7 − 45cµ2∆t3

h6 + 345c2µ∆t3

4h5 + 15c3∆t3

8h4 + 345µ2∆t2

4h5 + 45cµ∆t2

4h4 − 513c2∆t2

64h3 − 513µ∆t
32h3 − 27c∆t

64h2 + 405
256h

)
ui+ 1

2

+
(
−770µ3∆t3

9h7 + 45cµ2∆t3

h6 + 785c2µ∆t3

36h5 − 15c3∆t3

8h4 + 785µ2∆t2

36h5 − 45cµ∆t2

4h4 − 281c2∆t2

576h3 − 281µ∆t
288h3 + 27c∆t

64h2 + 5
256h

)
ui+ 3

2

+
(

70µ3∆t3

3h6 + 15cµ2∆t3

h5 − 55c2µ∆t3

12h4 − 11c3∆t3

24h3 − 55µ2∆t2

12h4 − 11cµ∆t2

4h3 + 19c2∆t2

192h2 + 19µ∆t
96h2 + 19c∆t

192h
− 1

256

)
ux

i− 3
2

+
(

210µ3∆t3

h6 + 45cµ2∆t3

h5 − 285c2µ∆t3

4h4 − 19c3∆t3

8h3 − 285µ2∆t2

4h4 − 57cµ∆t2

4h3 + 297c2∆t2

64h2 + 297µ∆t
32h2 + 99c∆t

64h
− 81

256

)
ux

i− 1
2

+
(

210µ3∆t3

h6 − 45cµ2∆t3

h5 − 285c2µ∆t3

4h4 + 19c3∆t3

8h3 − 285µ2∆t2

4h4 + 57cµ∆t2

4h3 + 297c2∆t2

64h2 + 297µ∆t
32h2 − 99c∆t

64h
− 81

256

)
ux

i+1
2

+
(

70µ3∆t3

3h6 − 15cµ2∆t3

h5 − 55c2µ∆t3

12h4 + 11c3∆t3

24h3 − 55µ2∆t2

12h4 + 11cµ∆t2

4h3 + 19c2∆t2

192h2 + 19µ∆t
96h2 − 19c∆t

192h
− 1

256

)
ux

i+3
2

The real part of c4o1 amplification factor:

<(G) = (13824−1)(32
(
1084v3 − 3(8r(1160r − 271) + 225)v + 216

)
cos(β) + (70)(

2248v3 + 972(80r − 3)v2 − 48r(6280r − 281)v−

270v − 648r(40r(8r − 3) + 9) + 351) cos(2β)−

48β
(
5760r3 + 48(400v − 51)r2 − 6

(
408v2 + 436v − 79

)
r + v((237− 436v)v + 90)

)
sin(β) +

81
(
2560r3 + 320(46v − 3)r2 − 24(2v(20v + 57)− 3)r+

6v
(
−76v2 + 6v + 45

)
+ 28β sin(β) + 81

)
−

3β
(
23040r3 + 2112(10v − 3)r2 − 24

(
264v2 + 38v − 19

)
r−

(2v − 3)
(
76v2 − 9

))
sin(2β))

The imaginary part of c4o1 amplification factor:

=(G) = (13824−1)(−81β
(
2560r3 − 1216(10v + 1)r2 − 8(2v(76v − 99)− 33)r+ (71)

3(2v + 1)
(
44v2 − 9

))
+

6β
(
9(82v − 39) + 4

(
−910v3 − 3(1104r − 139)v2 + 5460r(8r − 1)v+

6r(24r(40r − 23) + 139))) cos(β) +

3β
(
23040r3 + 2112(10v − 3)r2 − 24

(
264v2 + 38v − 19

)
r − (2v − 3)

(
76v2 − 9

))
cos(2β)

+2
(
19592v3 − 972(80r − 3)v2 − 6(8r(15560r − 2449) + 1845)v+

28 of 33



27(24r(40r(8r − 3) + 9) + 115)) sin(β)

+
(
2248v3 + 972(80r − 3)v2 − 48r(6280r − 281)v − 270v−

648r(40r(8r − 3) + 9) + 351) sin(2β))

B. c4o2

The single step c4o2 (with r = µ ∆t
∆x2 and v = c ∆t

∆x
is:

u
n+(1/2)
i = (72)(

2835r5 − 29575vr4

4
− 7875r4

8
− 7875v2r3

4
+ 113995vr3

144

)
ui− 3

2
+(

+4425r3

32
+ 113995v3r2

288
+ 13275v2r2

64
− 111115vr2

3456
− 2025r2

256

)
ui− 3

2
+(

+4425v4r
128

− 111115v3r
10368

− 2025v2r
256

+ 13297vr
18432

+ 1215r
4096

)
ui− 3

2
+(

−22223v5

41472
− 675v4

1024
+ 13297v3

110592
+ 1215v2

8192
− 155v

16384
− 383

32768

)
ui− 3

2
+(

−2835r5 + 250425vr4

4
+ 7875r4

8
+ 7875v2r3

4
− 148365vr3

16
− 4425r3

32

)
ui− 1

2
+(

−148365v3r2

32
− 13275v2r2

64
+ 98415vr2

128

)
ui− 1

2
+(

+2025r2

256
− 4425v4r

128
+ 32805v3r

128
+ 2025v2r

256
− 80919vr

2048
− 1215r

4096

)
ui− 1

2
+(

+6561v5

512
+ 675v4

1024
− 26973v3

4096
− 1215v2

8192
+ 32805v

16384
+ 16767

32768

)
ui− 1

2
+(

−2835r5 − 250425vr4

4
+ 7875r4

8
+ 7875v2r3

4
+ 148365vr3

16

)
ui+ 1

2
+(

−4425r3

32
+ 148365v3r2

32
− 13275v2r2

64
− 98415vr2

128

)
ui+ 1

2
+(

+2025r2

256
− 4425v4r

128
− 32805v3r

128
+ 2025v2r

256
+ 80919vr

2048
− 1215r

4096

)
ui+ 1

2
+(

−6561v5

512
+ 675v4

1024
+ 26973v3

4096
− 1215v2

8192
− 32805v

16384
+ 16767

32768

)
ui+ 1

2
+(

2835r5 + 29575vr4

4
− 7875r4

8
− 7875v2r3

4
− 113995vr3

144
+ 4425r3

32
− 113995v3r2

288

)
ui+ 3

2
+(

+13275v2r2

64
+ 111115vr2

3456
− 2025r2

256
+ 4425v4r

128
+ 111115v3r

10368

)
ui+ 3

2
+(

−2025v2r
256

− 13297vr
18432

+ 1215r
4096

+ 22223v5

41472
− 675v4

1024
− 13297v3

110592

)
ui+ 3

2
+(

+1215v2

8192
+ 155v

16384
− 383

32768

)
ui+ 3

2
+(

105h2r5 − 245h2r4

8
− 735

4
h2vr4 + 115h2r3

32
− 245

4
h2v2r3 + 805

48
h2vr3

)
uxx

i− 3
2

+(
+805

96
h2v3r2 − 149h2r2

768
+ 345

64
h2v2r2 − 745h2vr2

1152

)
uxx

i− 3
2

+(
+115

128
h2v4r − 745h2v3r

3456
+ 29h2r

4096
− 149

768
h2v2r + 29h2vr

2048
− 149h2v5

13824

)
uxx

i− 3
2

+(
−149h2v4

9216
+ 29h2v3

12288
− 9h2

32768
+ 29h2v2

8192
− 3h2v

16384

)
uxx

i− 3
2

+(
−945h2r5 + 3045h2r4

8
+ 27405

4
h2vr4 − 2235h2r3

32
+ 3045

4
h2v2r3

)
uxx

i− 1
2

+(
−15645

16
h2vr3 − 15645

32
h2v3r2 + 1863h2r2

256
− 6705

64
h2v2r2

)
uxx

i− 1
2

+
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(
+9315

128
h2vr2 − 2235

128
h2v4r+

3105
128

h2v3r − 1701h2r
4096

+ 1863
256

h2v2r − 5103h2vr
2048

+ 621h2v5

512

)
uxx

i− 1
2

+(
+621h2v4

1024
− 1701h2v3

4096
+ 729h2

32768
− 1701h2v2

8192
+ 729h2v

16384

)
uxx

i− 1
2

+(
−945h2r5 + 3045h2r4

8
− 27405

4
h2vr4 − 2235h2r3

32
+ 3045

4
h2v2r3 + 15645

16
h2vr3 + 15645

32
h2v3r2

)
uxx

i+1
2

+(
+1863h2r2

256
− 6705

64
h2v2r2 − 9315

128
h2vr2 − 2235

128
h2v4r − 3105

128
h2v3r − 1701h2r

4096
+ 1863

256
h2v2r + 5103h2vr

2048

)
uxx

i+1
2

+(
−621h2v5

512
+ 621h2v4

1024
+ 1701h2v3

4096
+ 729h2

32768
− 1701h2v2

8192
− 729h2v

16384

)
uxx

i+1
2

+(
105h2r5 − 245h2r4

8
+ 735

4
h2vr4 + 115h2r3

32
− 245

4
h2v2r3 − 805

48
h2vr3−

805
96

h2v3r2 − 149h2r2

768
+ 345

64
h2v2r2+

)
uxx

i+3
2

+(
745h2vr2

1152
+ 115

128
h2v4r + 745h2v3r

3456
+ 29h2r

4096
− 149

768
h2v2r − 29h2vr

2048

)
uxx

i+3
2

+(
+149h2v5

13824
− 149h2v4

9216
− 29h2v3

12288
− 9h2

32768
+ 29h2v2

8192
+ 3h2v

16384

)
uxx

i+3
2

+(
1015hr5 − 7945hr4

24
− 8925

4
hvr4 − 7945

12
hv2r3 + 4055hr3

96
+ 10535

48
hvr3

)
ux

i− 3
2

+

(
+10535

96
hv3r2 + 4055

64
hv2r2 − 5401hr2

2304
− 9995hvr2

1152
+
)
ux

i− 3
2

+(
4055
384

hv4r − 9995hv3r
3456

− 5401hv2r
2304

+ 355hr
4096

+ 1181hvr
6144

− 1999hv5

13824
− 5401hv4

27648

)
ux

i− 3
2

+(
+1181hv3

36864
+ 355hv2

8192
− 111h

32768
− 41hv

16384

)
ux

i− 3
2

+(
945hr5 − 2205hr4

8
+ 89775

4
hvr4 − 2205

4
hv2r3 + 555hr3

32
− 58695

16
hvr3

)
ux

i− 1
2

+(
−58695

32
hv3r2 + 1665

64
hv2r2 + 1377hr2

256
+ 44145

128
hvr2 + 555

128
hv4r

)
ux

i− 1
2

+(
14715
128

hv3r + 1377
256

hv2r − 6075hr
4096

− 38637hvr
2048

+ 2943hv5

512
+

459hv4

1024
− 12879hv3

4096
− 6075hv2

8192
+ 5103h

32768
+ 8019hv

16384

)
ux

i− 1
2

+(
−945hr5 + 2205hr4

8
+ 89775

4
hvr4 + 2205

4
hv2r3 − 555hr3

32
− 58695

16
hvr3 − 58695

32
hv3r2 − 1665

64
hv2r2

)
ux

i+1
2

+(
−1377hr2

256
+ 44145

128
hvr2 − 555

128
hv4r

)
ux

i+1
2

+(
14715
128

hv3r − 1377
256

hv2r + 6075hr
4096

− 38637hvr
2048

+ 2943hv5

512

)
ux

i+1
2

+(
−459hv4

1024
− 12879hv3

4096
+ 6075hv2

8192
− 5103h

32768
+ 8019hv

16384

)
ux

i+1
2

+(
−1015hr5 + 7945hr4

24
− 8925

4
hvr4 + 7945

12
hv2r3 − 4055hr3

96
+ 10535

48
hvr3 + 10535

96
hv3r2 − 4055

64
hv2r2+

)
ux

i+3
2(

5401hr2

2304
− 9995hvr2

1152
− 4055

384
hv4r − 9995hv3r

3456
+ 5401hv2r

2304
− 355hr

4096
+ 1181hvr

6144

)
ux

i+3
2(

−1999hv5

13824
+ 5401hv4

27648
+ 1181hv3

36864
− 355hv2

8192
+ 111h

32768
− 41hv

16384

)
ux

i+3
2

The double step from un
i to un+1

i can be immediately derived by using two single steps

above. The equations are ommitted due to length.
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1. c4o2 Amplification

The equations for the amplification factor of this method are sufficiently large that their full

form is not shown. Please see Ref.41 for the complete form.
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