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Microgravity droplet combustion experiments were performed in elevated concentrations of CO4 at
pressures of 1.0 atm, 3.0 atm, and 5.0 atm to examine the effects of a radiatively participating suppres-
sion agent in space applications. Methanol and n-heptane droplets, with an initial diameter of 2.0 mm
supported on a quartz fiber, were used in these experiments. The ambient Oy concentration was held
constant at 21% and the CO- concentrations ranged from 0% to a maximum of 70%, by volume with
the balance consisting of N5 . Results from the methanol tests showed slight decreases in burning rates
with increased CO, concentrations at all ambient pressures. The n-heptane tests show slight increases
in burning rates with increasing CO; concentrations at each pressure level. Instantaneous radiative heat
flux was also measured using both a broadband radiometer (i.e., wavelengths from 0.6 pm to 40.0 um)
and a narrowband radiometer (i.e., centered at 5.6 um with a filter width at half maximum of 1.5 um).
Radiative exchanges between the droplet and surrounding gases as well as the soot field produce de-
partures from the classical quasisteady theory which would predict a decrease in burning rates with
increasing CO4 concentrations in microgravity.

1. Introduction

It has long been recognized that radiative heat transfer can play an important role in the effec-
tiveness of gaseous extinguishing agents in low-gravity environments. The radiative properties of
the gas phase surrounding the fuel source may significantly alter Minimum Extinguishment Con-
centrations (MEC’s) which are often used as an engineering criterion for fire suppression. The
International Space Station currently employs COs for the fire suppression system and a similar
system remains a likely candidate for future extraterrestrial fire suppression systems because of its
ready availability and ease of cleanup after discharge. However, CO, also has strong absorption
bands in the infrared region of the electromagnetic spectrum and, as a consequence, may prove to
be a less efficient suppression agent in space applications where radiative thermal losses play a sig-
nificant role in flame quenching. If the gases surrounding a reduced-gravity flame absorb radiative
energy then the increased temperatures of the surrounding gases, which are not convected away
because of the absence of buoyant convection, will result in an increase in energy feedback to the
fuel.

The effectiveness of COs as a suppressant in space applications has been studied using a variety of
flame configurations and numerical models. An opposed-flow configuration was used to compare
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flame spread rates over solid fuels in the presence of different diluents [1]. In that study it was
found, when comparing MEC’s, that helium was a more effective suppressant than CO, . In a nu-
merical study using opposed jet-diffusion flames it was found that argon becomes more effective
than CO, as a suppressant in low stretch-rate environments [2]. In a recent numerical study inves-
tigating cup-burner flames in zero gravity it was found that radiative losses become the dominant
process in thermal quenching. In that study it was reported that the MEC for CO, increased by
32% compared to similar normal-gravity flames [3].

In contrast to those results, recent work investigating methanol droplets burning at elevated CO,
concentrations with a constant volume fraction of 21% O, showed little change in the ratio of the
radiative heat loss to the total heat release [4]. Here it was suggested that because of the small
length scales associated with the 2 mm fuel droplets the increased radiative emissions from the
radiating volume of CO, and product species were largely offset by decreases in flame temperature
resulting from the higher effective specific heat of the gas mixture. More recently, results from a
series of normal gravity experiments investigating n-heptane droplets in elevated concentrations of
COs in 21% O, have been reported [5]. This work showed a dramatic decrease in soot formation
in the presence of CO, and an initial decrease in radiative emissions up to the point when soot was
no longer present at which point radiative emissions began to increase.

A series of experiments designed to isolate the effects of the interaction between a radiatively par-
ticipating suppression agent and a low-gravity flame have been performed. In addition to elevating
ambient CO, concentrations, experiments have been performed at elevated pressures, effectively
varying radiative length scales, and with both non-sooting and sooting fuels (i.e., methanol and
n-heptane). These experiments serve as a follow-on to earlier work [4] and are a precursor to fu-
ture suppressant flight experiments planned for the International Space Station.

2. Experimental Procedure

Experiments were conducted using experimental hardware and approaches similar to that already
reported in earlier work [4, 6] and only an overview is presented here. All tests were performed in
the NASA Glenn Research Center’s Zero Gravity Facility (ZGF) allowing a microgravity duration
of approximately 5.0 seconds. Droplets of either methanol or n-heptane were suspended on a
110 pm quartz fiber. Initial droplet diameters were 2.0 mm =+ 0.15 mm for the n-heptane droplets
and were 2.0 mm =+ 0.20 mm for the methanol droplets. Ignition was accomplished with a hot-
wire igniter made using 29 gauge Kanthal wire and this was placed approximately 1.0 mm from
the droplet surface. The igniter was energized by a constant current of 4.3 amps for 1.6 seconds,
after which it was retracted from the flame zone by actuation of a rotary solenoid. Diagnostics
consisted of a wide-band radiometer (i.e., wavelengths ranging from 0.6 um to 40 um) and a
narrow-band radiometer (i.e., centered at 5.6 pm with a filter width at half maximum of 0.15 pum).
The sampling frequency for the two radiometers was 100 Hz. Two color cameras were used for
flame and droplet imaging and a digital image acquisition system was used to acquire images every
1/30th of a second.

Prior to each test, a target atmosphere was established through partial-pressure mixing of air with a
gas blend consisting of 21% O, and 79% CO, , by volume. This effectively displaces atmospheric
N, with CO, while holding the O, concentration constant at 21%. Using this approach, test atmo-
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spheres ranging from 0% CO; to 71% CO, were obtained for total pressures of 1 atm, 3 atm, and
5 atm by adding the required amount of air.

The test conditions, along with the initial droplet diameter, Dy and the average experimental
burning-rate constant, K.,,, are presented in Table 1 for both methanol and n-heptane. Initial
droplet diameters are determined from the droplet projected area while suspended in 1-g immedi-
ately prior to energizing the igniter. The volume of the suspended droplet is obtained by integrating
the projected area from the backlit image and rotating this about the axis of symmetry. An effective
droplet diameter is then calculated by assuming the volume of fuel is spherical in shape. The slope
of the square of the instantaneous droplet diameter, D(t)?, plotted against time after 0.75 seconds
from ignition is used to obtain average experimental burning-rate constants.

3. Results and Discussion

Droplet regression rates were measured and used in determining the average burning-rate con-
stants. These are compared with theoretical calculations at the various test conditions (i.e., pres-
sure and CO, concentrations) for each fuel type. Flame shapes are characterized by plotting the
ratio of flame diameter to droplet diameter, and representative images of the flames at 1.0 second
and 4.0 seconds after ignition are presented. Finally, peak radiation measurements are presented
for the broad-band radiometer at each of the ambient pressures and the ratio of the narrow-band
radiometer to broad-band measurement is compared at 1 atm and 5 atm ambient pressures.

3.1 Burning Rates

Theoretical burning-rate constants, K.,; , for each of the test conditions presented in Table 1 were
calculated using the following formula [7]:

A
Ko =8—"% - In(B+1). (1)
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The thermal conductivity, )\, , and the specific heat, C),, of the gas mixture of the inner region
between the droplet surface, 7, , and the flame, 7, , are calculated at an average temperature, T.
This temperature is given by T = (T, +1T3)/2 , where, T}, is the adiabatic flame temperature and 7},
is the fuel’s boiling temperature at the appropriate ambient test pressure. Variations of the droplet
density, p; , with 7j, at each test pressure were considered. The adiabatic flame temperature is
obtained using the Chemical Equilibrium with Applications [8] (“CEA”) computer code allowing
for dissociation of the various equilibrium reaction species for the different pressures and different
CO; concentrations at which the experiments were performed. The transfer number, 5B , defined
as the ratio of energy released from the combustion reaction to the energy required to evaporate
the liquid fuel, is given by the following formula when the temperature of the droplet is assumed
uniform and equal to the fuel’s boiling temperature, 75, and when it is assumed that the O, mass
fraction equals zero at the fuel surface (i.e., Y,; = 0) [9].
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Table 1: Microgravity droplet combustion tests performed at pressures of 1 atm,
3 atm, and 5 atm in 21% O, and ambient CO- concentrations ranging from 0% to 71%,

by volume.
methanol n-heptane

CO; Do (mm) Kz (mm?/s) CO; Do (mm) Kz (mm?/s)

P =1 atm P =1 atm
0% 1.90 0.54 0% 1.87 0.58
11% 1.81 0.54 10% 2.08 0.61
20% 1.97 0.54 10% 1.97 0.68
22% 1.96 0.54 11% 1.93 0.68
36% 1.85 0.54 16% 1.96 0.62
40% 1.91 0.50 21% 1.86 0.59
55% 1.85 0.52 31% 1.95 0.62
70% 2.03 0.52 40% 1.87 0.55
41% 2.08 0.57
50% 2.05 0.62
54% 1.97 0.61
55% 1.96 0.64
65% 2.03 0.60
70% 1.82 0.60

Py =3 atm Py =3 atm
0% 1.89 0.61 0% 1.97 0.94
21% 2.05 0.60 12% 1.87 0.90
35% 2.05 0.63 15% 2.08 0.96
50% 1.84 0.57 17% 2.02 0.91
70% 1.90 0.53 22% 1.97 0.90
30% 1.91 0.98
51% 1.87 1.05
65% 1.96 0.99
70% 2.06 0.95
77% 1.94 0.97

Py =5 atm Py =5 atm
0% 2.03 0.65 0% 2.02 1.04
20% 2.24 0.60 10% 1.87 1.02
41% 2.07 0.63 31% 2.01 1.12
51% 2.14 0.59 41% 1.89 1.19
69% 1.88 0.53 60% 1.92 1.10
70% 1.87 1.01
71% 2.01 1.13
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In the above formula, Y, ., , is the ambient oxygen mass fraction, L , is the heat of vaporization of
the liquid fuel, C,, , is the specific heat of fuel vapor, f , is the stoichiometric fuel/oxygen mass
ratio, and, A H , is the heat of reaction per unit mass. Values for L. were obtained for the different
values of T}, for each of the test pressures.

As recommended by Law and Williams [7] the thermophysical properties of the inner region’s
gas phase mixture were determined using only fuel vapor for the values of C),, and a composi-
tion comprising a mixture of fuel vapor, reaction products, and the ambient inerts (i.e., various
concentrations of CO, and N» depending on the test conditions). This can be summarized by the
following expressions:

Ag = 04 Ap + 0.6 ( Aprrinerss) 3)

Cpg = Lpf 4)

In Figure 1 experimental burning-rate constants for methanol are plotted against the theoretical
burning-rate constants. Results show reasonably good agreement between experiment and the-
ory with all points falling within 10% error bands, which are shown on the plot. This agreement
even holds at the higher test pressures suggesting that the d?-law theory captures most of the
physics. This is understandable because during methanol droplet combustion very little soot for-
mation was observed and radiation effects play a minor role for initial droplet diameters below
2 mm. A similar observation was reported by Bae and Avedisian [10] for nonane droplets burning
in helium/nitrogen environments. Their experimental results showed that when the helium concen-
trations in the ambient were increased beyond a certain level, soot formation was suppressed due
to lowered flame temperatures and the burning rate followed the classical d?-law behavior.

In Figure 2, experimental burning-rate constants for n-heptane are plotted against theoretical burning-
rate constants. Here results show a substantial increase in burning rate with ambient pressure; as
much as 79% for n-heptane droplets burning in air at 5 atm compared to 1 atm. Clearly the sim-
plified d?-law theory is not able to predict the increase in burning rate with pressure. At higher
pressures n-heptane droplets soot profusely even at increased CO, concentrations leading to an in-
crease in luminous radiation (see Figure A-2). This increased radiation could lead to heat loss from
the flame zone reducing the burning rate, or, the fuel droplet could absorb an increased amount of
radiant energy from the gas phase causing an increase in burning rate [11]. Earlier studies investi-
gating the effects of initial droplet size of sooting droplets showed that an increase in sooting with
initial droplet size actually decreases the burning rate. However, in this study where an increase
in sooting is brought about by increasing ambient pressures, the burning rate increases with the
increased sooting propensity.

This observation might lead one to conclude that an increased radiation absorption by the droplet
causes this increase in burning rate. However, we have also observed that at higher pressures the
flame shapes are not spherical and are highly distorted with agglomerated soot particles breaking
through the flame. The soot particle dynamics induces mixing in the gas phase and causes non-
spherical soot-shell motions which may also enhance the heat transfer to the droplet surface leading
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Figure 1: Experimental burning rates for methanol droplets plotted against theoretical burning rates
with X o2 ranging from 0% to 70% (mole fraction), D, = 2.0 mm=+0.20 mm, and ambient pressures
at 1 atm, 3 atm, and 5 atm. Experimental results are within + 10% of the theoretical calculations

as shown by the upper and lower error bands at + 10% of the theoretical values.

13

1.2

11

1.0

0.9

0.8

Kexp (

0.7

0.6

0.5

0.4

Qe

3‘0

5 atm:

1 atm:
3 atm:

( 0% CO2, 4 0% -40% CO2,
( AN0% CO2, A 0% - 40% CO2,
( 00%CO2, M 0% -40% CO2,

€ >40% CO2)
A > 40% CcO2)
W >40% CO2)

0.4

0.5

0.6 0.7 0.8

2
mm
Keal (
S

)

0.9 1.0 11

13

Figure 2: Experimental burning rates for n-heptane droplets plotted against theoretical burning
rates with X ranging from 0% to 70% (mole fraction), D, = 2.0 mm =+ 0.15 mm, and ambient
pressures at 1 atm, 3 atm, and 5 atm. Experimental results for 1 atm are within + 10% of theoretical
calculations as shown by upper and lower error bands at + 10% of theoretical values.
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to an increased observed burning rate. It is also interesting to note that at a given pressure the
burning rate increases by a small amount with increasing concentrations of CO, , which is a trend
not seen in the methanol experiments.

3.2 Flame Shape

Flame shape is characterized by plotting the ratio of flame diameter, Dy , to the droplet diameter,
d , against time and this is presented in Figure 3 for methanol droplets. At 1 atm there is a slight
decrease in flame standoff ratio as the CO, concentration is increased. The flame standoff ratio
remains almost a constant with time indicating quasi-steady burning behavior. At higher ambient
pressure (see Figure 3b) the flame standoff ratio is practically independent of the CO, concentration
and slightly lower compared to the one atmospheric cases. Furthermore, the standoff ratio initially
increases with time indicating unsteady burning behavior caused by a longer droplet heating period
due to increased boiling point of methanol with pressure.

Figure 4 shows the flame standoff ratio plotted against time for heptane at 1 atm and 5 atm. At 1
atm the flame standoff ratio is practically independent of CO, concentration and increases steadily
throughout the burning period. At 5 atm the standoff ratios increase much more steeply with time
and there is considerable variation with CO, concentration. The steeper increase is primarily due
to gas phase unsteadiness inherent with heptane due to its stoichiometry. One the other hand, the
variations with CO4 can be attributed to the difficulties in exactly locating the flame front from
the experiment video images. At higher pressures n-heptane soots profusely and the soot shell
develops instabilities leading to a non-spherical flame appearance making it difficult to precisely
locate the flame front.

Typical methanol and n-heptane flame images at different CO, concentrations at both 1 atm and
5 atm are shown in Figures A-1 and A-2 in the Appendix. It can be seen from these images that
there is evidence of incipient sooting for methanol at 5 atm in 0% CO, concentration which begins
to disappear as the CO, concentration is increased. The flame images for n-heptane at 1 atm show
significant sooting in air which diminishes as CO, concentrations are increased. However, at 5 atm
the sooting tendency, although somewhat diminished with increasing CO, concentrations, was still
very pronounced for all ambient CO, concentrations.

3.3 Flame Radiation

Plots of the maximum radiant flux measured by the broad-band radiometer as a function of CO,
concentration are shown in Figure 5 for methanol and heptane at 1 atm, 3 atm, and 5 atm. For
methanol there is little variation in the maximum radiant flux with pressure and this decreases
only slightly with increased CO, . This is understandable because, as explained earlier, there is
little variation in the sooting intensity with pressure for methanol and the reduction in maximum
radiant output can be attributed to the reduction in flame temperature with increased CO, . On
the other hand, the overall maximum radiant output is higher for n-heptane compared to methanol
and it shows a substantial increase with pressure. This is primarily due to the increased sooting of
heptane droplets with pressure. The residence time, ¢,.., for fuel molecules in the region between
the droplet surface and the flame varies as, t,., ~ P/K? [10]. For n-heptane, P/K?, increases

7
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Figure 3: Ratio of flame diameter, Dy , to droplet diameter, d , for methanol flames in 1 atm (a) and 5 atm (b)
with ambient X o2 mole fractions ranging from 0% (dashed blue curve) to 70% (solid blue curve).
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Figure 4: Ratio of flame diameter, D; , to droplet diameter, d , for n-heptane flames in 1 atm (a) and
5 atm (b) with ambient X2 mole fractions ranging from 0% (dashed blue curve) to 71% (solid blue curve).
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Figure 5: Maximum broad-band radiation from methanol flames (a) and n-heptane flames (b) with O, mole
fraction constant at 21% plotted against CO, mole fractions ranging from 0% to 70% and at pressures of
1 atm, 3 atm, and 5 atm.

as we go from 1 atm to 5 atm pressure and consequently the soot formation and its broad-band
radiation increases.

It is interesting to plot the ratio of the narrow-band radiation, which has been selectively filtered
to detect radiation from the water vapor, to the broad-band radiation as a function of CO, con-
centrations. This is shown for methanol in Figure 6 and for n-heptane in Figure 7 for both 1 atm
and 5 atm. Here it is seen that there is a slight increase in the ratio of narrow-band to broad-band
radiation with increased CO, concentrations at 1 atm and a more pronounced increase in this ratio
at 5 atm. For heptane droplets, where luminous radiation from soot dominates, the changes in this
radiation ratio are not as substantial compared to methanol as one might expect. Further studies
are needed to quantify these observations.

4. Concluding Remarks

Microgravity droplet combustion experiments were performed in elevated concentrations of CO4
at pressures of 1.0 atm, 3.0 atm, and 5.0 atm to examine the effects of a radiatively participating
suppression agent in space applications. Methanol and n-heptane droplets, with an initial diameter
of 2.0 mm were used in these experiments. The ambient O, concentration was held constant at
21% and the CO, concentrations ranged from 0% to a maximum of 71%, by volume, with the
balance consisting of N5 .

Results from the methanol tests show a slight decrease in burning rates with increased CO, con-
centrations at all ambient pressures. The experimental results correlate, at all test pressures, within
10% of the theoretical results calculated using the d?-law formulation. This close correlation sug-
gests that the d*-law captures most of the physics for methanol droplets with initial diameters of
2.0 mm burning in high ambient CO, concentrations at pressures ranging from 1 atm to 5 atm.

The n-heptane tests show slight increases in burning rates with increasing CO, concentrations at
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Figure 6: Ratio of narrow-band radiation to broad-band radiation for methanol flames in 1 atm (a) and 5 atm
(b) with ambient concentrations of CO, varying from 0% to 70%.
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Figure 7: Ratio of narrow-band radiation to broad-band radiation for n-heptane flames in 1 atm (a) and 5
atm (b) with ambient concentrations of CO, varying from 0% to 70%.
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each pressure level. The correlation of experimental results with theoretical calculations is within
10% for all CO5 concentrations at 1 atm. However, a significant departure from the simplified the-
oretical predictions is observed at the higher test pressures of 3 atm and 5 atm. At these pressures
sooting increases and this has a significant impact on the burning rates. Instabilities in the soot shell
quickly develop resulting in greater mixing of the gases in the inner region and this, combined with
the increased radiation from soot, increases the heat transferred to the droplet surface.

Flame shapes are characterized by plots of the ratio of flame diameter to droplet diameter. Results
show little dependency with increased CO- concentrations at both 1 atm and 5 atm for both fuels.
However, for n-heptane at 5 atm the flame standoffs show considerable variations with increasing
COs concentrations. This is due, in part, to the gas phase unsteadiness inherent with n-heptane
flames and, in part, to the difficulty in accurately defining flame diameters due to the increased
presence of soot.

The maximum radiation from the broad-band radiometer at each of the test pressures was plotted
against the CO, concentrations. The methanol tests showed no pressure effect on the maximum
radiation whereas the n-heptane tests show significant increases with pressure. When the ratio of
narrow-band radiation to broad-band radiation (i.e., the ratio of water vapor emissions to broad-
band emissions) is plotted against time for a range of CO, concentrations at 1 atm and 5 atm
there is a clear increase with CO, concentrations in the methanol flames that is not as apparent
with the n-heptane flames. The changes in the ratio of narrow-band to broad-band radiation with
increased CO, appear to be dominated by the changes in sooting intensity as CO, concentrations
are increased; however, this requires further study.
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Methanol -1 atm Methanol -1 atm
t= 1s afterignition t= 4s after ignition

(a) 11% CO2 (b) 22% CO2 (a) 11% CO2 (b) 22% CO2

(c) 55% CO2 (d) 70% CO2 (c) 55% CO2 (d) 70% CO2

Methanol -5 atm Methanol -5 atm
t= 1s afterignition t= 4s afterignition

(@) 0% CO2 (b) 20% CO2

(b) 20% CO2

(c) 51% CO2 (d) 69% CO2 (c) 51% CO2 (d) 69% CO2

Figure A-1 Methanol droplet flames in 1 atm and 5 atm with ambient concentrations of CO,
varying from 0% to 70% and with time after ignition at 1 second (left) and 4 seconds (right).
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n-Heptane -1 atm n-Heptane -1 atm
t= 1s afterignition t= 4s afterignition
(a) 0% CO2 10% CO2 (a) 0% CO2 (b) 10% CO2
(c) 54% CO2 70% CO2 (c) 54% CO2 (d) 70% CO2
n-Heptane -5 atm n-Heptane -5 atm

t= 1s afterignition

0% CO2 31% CO2 (d) 0% CO2 (d) 31% CO2

(c) 60% CO2 (d) 71% CO2 (c) 60% CO2 (d) 71% CO2

t= 4s afterignition

Figure A-2 Heptane droplet flames in 1 atm and 5 atm with ambient concentrations of CO,
varying from 0% to 70% and with time after ignition at 1 second (left) and 4 seconds (right). A
dashed circle is overlaid on the actual outer edge of the flame for the 1 atm tests at 54% CO,
and 71% CO, at 4 seconds following ignition to highlight the positions of these extremely faint
flames.
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