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Abstract 

An existing volume grid generation procedure, AFLR3, was successfully modified to generate anisotropic 
tetrahedral elements using a directional metric transformation defined at source nodes. The procedure can be 
coupled with a solver and an error estimator as part of an overall anisotropic solution adaptation methodology. It is 
suitable for use with an error estimator based on an adjoint, optimization, sensitivity derivative, or related approach. 
This offers many advantages, including more efficient point placement along with robust and efficient error 
estimation. It also serves as a framework for true grid optimization wherein error estimation and computational 
resources can be used as cost functions to determine the optimal point distribution. Within AFLR3 the metric 
transformation is implemented using a set of transformation vectors and associated aspect ratios. The modified 
overall procedure is presented along with details of the anisotropic transformation implementation. Multiple two- 
and three-dimensional examples are also presented that demonstrate the capability of the modified AFLR procedure 
to generate anisotropic elements using a set of source nodes with anisotropic transformation metrics. The example 
cases presented use moderate levels of anisotropy and result in usable element quality. Future testing with various 
flow solvers and methods for obtaining transformation metric information is needed to determine practical limits and 
evaluate the efficacy of the overall approach. 

 
1. Introduction 
Widespread access to high-performance-computing at reasonable costs combined with maturing 
CFD technology has led to extensive use of CFD simulations throughout industry. Within the 
aerospace community the complexity of configurations and physics being considered has 
steadily increased along with computational power. At present, one of the limiting issues in 
large-scale CFD simulations is the grid generation process and in particular optimization of the 
grid resolution throughout the field. This work explores the modification of an existing grid 
generation procedure, AFLR3, to address the grid optimization problem. Specifically, anisotropic 
solution adaptation was added to optimize the grid using directional metric transformations. The 
metric terms can be obtained from an adjoint or optimization based error estimation 
methodology. This approach offers many advantages, including more efficient point placement 
along with robust and efficient error estimation. It also serves as a framework for true grid 
optimization wherein error estimation and computational resources can be used as cost functions 
to determine the optimal point distribution.  

AFLR3 (Advancing-Front/Local-Reconnection) is a state-of-the-art, well proven, and tested 
unstructured grid generator that is widely used throughout in the aerospace community for CFD 
simulations. AFLR3 uses a combination of automatic point creation, advancing-normal point 
placement, advancing-front point placement and connectivity optimization schemes to generate a 
high-quality tetrahedral/pentahedral grid. A valid grid is maintained throughout the AFLR grid 
generation process. This provides a framework for implementing efficient local search operations 
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using a simple data structure. It also provides a means for smoothly distributing the desired point 
spacing in the field using a point distribution function. This function is propagated through the 
field by interpolation from the boundary point spacing or by a specified growth normal to the 
boundaries. Points are generated using either advancing-front type placement for isotropic 
elements within the field or advancing-normal type point placement for surface orientated high-
aspect ratio elements within boundary-layer regions. The connectivity for new points is initially 
obtained from direct subdivision and then optimized by iteratively using local-reconnection 
subject to a quality criterion. A combined Delaunay and min-max type (minimize the maximum 
angle) criterion is used. The overall procedure is applied repetitively until a complete field grid is 
obtained. High-quality isotropic and high-aspect ratio element two- and three-dimensional grids 
have been efficiently generated about geometrically complex configurations using this 
procedure. 

AFLR3 currently includes an isotropic solution adaptation procedure that uses a set of adaptation 
sources derived from a user-defined error-estimate. For high-resolution adaptation available 
computing resources limit this mode of adaptation, as the overall grid size can quickly become 
prohibitive for large-scale simulations. An anisotropic solution adaptation/grid optimization 
scheme is needed to increase the level of resolution possible for a given computing resource 
budget. 

AFLR3 does include some of the basis for an anisotropic adaptation/optimization scheme. For 
cases with high-aspect-ratio quad surface faces, e.g. near the leading edge of a wing, directional 
transformation metrics are used. These metrics are defined at the surface and propagated into the 
field to account for surface anisotropy and allow the local-reconnection procedure to work 
properly for Delaunay and other optimization criteria. This approach allows for very high-aspect-
ratio quad surface faces and has been evaluated at ratios up to 10000:1. In the present work the 
field generation procedure was modified to allow for grid re-generation using directional metric 
transformations. 
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2. Anisotropic Transformation Implementation 
The use of anisotropic transformation metrics within the field generation requires significantly 
more modification to the overall procedure than in the case of surface based metrics. Point 
placement, distance checking, interpolation, along with local-reconnection must all be modified 
to incorporate transformation metrics. Within AFLR3 the transformation metrics are defined by a 
set of transformation vectors and associated aspect ratios. Transformation properties are input to 
AFLR3 in the form of adaptation sources. For each source node, the coordinate location, desired 
isotropic point spacing, and transformation properties are specified. The source nodes can be 
directly inserted into the initial tessellation of the boundary surface points or they can be inserted 
into an oct-tree based background grid for interpolation within the field. 

The overall grid generation procedure with modifications for anisotropic field grid generation is 
described below. 

1) Specify point spacing on the boundary surface. 
2) Generate a boundary surface grid. 

3) Generate a valid initial tessellation of the boundary surface points only and recover all 
boundary surfaces. Use transformation properties defined by the aspect ratio of the surface 
grid faces to obtain the initial tessellation. 

4) Assign a point distribution function to each boundary point based on the local point spacing. 

5) Either insert the source nodes directly into the initial tessellation or create an oct-tree based 
source node background grid. 

6) Initialize the transformation properties at boundary points. 
7) For high-aspect-ratio boundary-layer elements, generate points using advancing-normal type 

point placement. Points are generated one layer at a time from the boundaries by advancing 
along normals dependent upon the boundary surface geometry. 

8) For field elements outside the boundary-layer region, generate points using advancing-front 
type point placement with the “ideal” location defined in a local transformed space from the 
source node based transformation properties. 

9) Interpolate the point distribution function and source node based transformation properties 
for new points from the containing elements and/or oct-tree based source node background 
grid. 

10) Reject new points that are too close to other new points using distance checks in transformed 
spaced defined by the source node based transformation properties. 

11) Insert the accepted new points by directly subdividing the elements that contain them. 
12) Optimize the connectivity using local-reconnection. For each existing and possible element 

pair, compare the reconnection criterion for all reasonable configurations and reconnect using 
the most optimal one. Evaluate the quality criterion in transformed spaced defined by the 
source node based transformation properties. Repeat this local-reconnection process until no 
elements are reconnected. A combined Delaunay and min-max type criterion is used to 
improve the overall grid quality and overcome problems associated with optimum local states 
that are far from globally optimum. 
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13) Repeat the point generation and local-reconnection process, steps 8 through 12, until no new 
points are generated. 

14) Smooth the coordinates of the field grid with the “ideal” location defined in transformed 
space from the source node based transformation properties. 

15) Optimize the connectivity using the local-reconnection process (step 12). 
Within AFLR3 anisotropic metric transformation is implemented using a local transformation 
that is defined by a set of orthogonal transformation vectors and corresponding aspect ratios. For 
two-dimensions, a circle in local transformed space will map to an ellipse in physical space. A 
set of transformation vectors ( Τu, Τ v) and corresponding aspect ratios (αu, α v) along with an 
associated physical space ellipse are illustrated in Fig. 1 for two-dimensional space. 

 
Fig. 1. Transformation ellipse and vectors for 2D. 

For three-dimensions, a sphere in local transformed space will map to an ellipsoid in physical 
space. A set of transformation vectors ( Τu, Τv, Τw) and corresponding aspect ratios (αu, α v, αw) 
along with an associated physical space ellipsoid are illustrated in Fig. 2 for three-dimensional 
space. 

 
Fig. 2. Transformation ellipsoid and vectors for 3D. 
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The transformation vectors are defined as a set of orthogonal unit vectors given by the following. 
| Τu|  = 1, | Τ v| = 1, | Τw|  = 1      (1) 

Τu = Τ v  Τw        (2) 

A corresponding set of aspect ratios (αu, α v, αw) is used to determine the magnitude of the 
transformation in each direction. The aspect ratios are ratios of the ellipsoid semi-axes (A, B, C), 
given by 

αu = (Α  / A) = 1       (3) 

α v = (A / B) ≥ 1       (4) 

αw = (A / C) ≥  1       (5) 

As defined above, the ellipsoid semi-axis in the u-direction (A) is always the longest semi-axis. 
In two-dimensions, assuming the two-dimensional space is the x-y plane, the w-direction vector 
is defined simply as the unit vector in the z-direction and the w-direction aspect ratio (αw) is one. 
The local magnitude of the semi-axes is dependent upon the local point spacing. Within AFLR, a 
distribution function (δf) is used to determine point spacing. It is equivalent to the isotropic point 
spacing and is initially determined from the point spacing of the input surface grid. As new field 
points are created within AFLR the distribution function is propagated by interpolation from 
existing points and/or source nodes (if any are specified as part of the input). With anisotropic 
transformation, the transformation vectors and corresponding aspect ratios are also propagated. 
As implemented, the distribution function (or isotropic spacing) should be interpreted as 
specifying the maximum local point spacing in any direction. And, the anisotropic 
transformation should be interpreted as specifying the minimum local spacing in particular 
directions. At any given point the actual length of the ellipsoid semi-axes (equivalent to spacing 
in each direction) can be obtained from the aspect ratios and the distribution function. 

A = αu · δf        (6) 

B = α v · δf        (7) 

C = αw · δf        (8) 

For grid generation, anisotropic transformation need only be applied to displacement vectors for 
the difference in coordinates between points. Several grid generation related geometric 
operations involve a displacement vector (ΔX =Xi − Xj) between two points, e.g. distance 
between points, local-reconnection criterion, boundary normal vector, face area vector, and 
element volume. To account for anisotropic transformation the displacement vector is modified 
using the following transformation equations to obtain the final transformed displacement vector 
(ΔX''). 

ΔX'' = ΔX + Τ v (α v − 1) ( Τ v • ΔX) + Τw (αw − 1) ( Τw • ΔX) (9) 

The transformation equation can be written as a sequence of equations for each transformation 
direction, if the transformation vectors are orthogonal. 

ΔX' = ΔX + Τ v (α v − 1) ( Τ v • ΔX)      (10) 

ΔX'' = ΔX' + Τw (αw − 1) ( Τw • ΔX')     (11) 
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Averaging or interpolation is required to obtain the transformation vectors and aspect ratios at 
the appropriate location for the transformation equations above. Interpolation is also required to 
evaluate those quantities at the location of new points. If sources are used then these quantities 
and the distribution function are interpolated from nearby sources. Alternatively, or without 
sources, they are interpolated from the existing element that contains the location. 

For cases with sources, the nearby sources are determined from an oct-tree search. Weighted 
averages of the quantities at nearby sources are then determined. Given a location ( Xi) and a 
nearby source location ( Xsrc), the displacement vector (ΔXi,src) and distance between them 
(Δsi,src) are given by the following. 

ΔXi,src = | X i −  Xsrc|        (12) 

Δsi,src = |ΔXi,src |        (13) 

The distribution function associated with a given source can then be obtained using geometric 
growth from the source by 

δfi,src = δfsrc + (µ · Δsm,i,src −  Δsm,i,src)     (14) 

where µ  is the geometric growth rate and Δsm,i,src is a limited distance from the source location. 
The distance is limited by a no-growth exclusion zone defined as 

Δsm = max (Δsi,src − γ · δfsrc, 0)      (15) 

where γ  is the exclusion zone factor. Note that within AFLR the geometric growth rate and 
exclusion zone factor for sources are equivalent to the parameters cdfrsrc and cdfssrc. The 
transformation aspect ratios can be obtained in a manner similar to the distribution function. 

α v,i,src = max (α v,src / [1 + α v,src (δfi,src −  δfsrc) / δfsrc], 1)   (16) 

αw,i,src = max (αw,src / [1 + αw,src (δfi,src −  δfsrc) / δfsrc], 1)   (17) 

The transformation vectors associated with a source are simply the values defined at the source. 

Τ v,i,src = Τ v,src         (18) 

Τw,i,src = Τw,src        (19) 

All of the quantities associated with the given source are weighted by the inverse of the distance 
from the source squared and then summed for all sources nearby the given location. The 
resulting set of summation equations for sources are listed below. 

ω i,src = Δsi,src -2       (20) 

δfi,src = ∑(ω i,src · δfi,src) / ∑ω i,src     (21) 

α v,i,src = ∑(ω i,src · α v,i,src) / ∑ω i,src     (22) 

αw,i,src = ∑(ω i,src · αw,i,src) / ∑ω i,src     (23) 

Τ v,i,src = ∑(σv,i,src · ω i,src· Τ v,i,src) / |∑(σv,i,src · ω i,src· Τ v,i,src)|   (24) 

Τw,i,src = ∑(σw,i,src · ω i,src· Τw,i,src) / |∑(σw,i,src · ω i,src·Τw,i,src)|   (25) 
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In the above equations, ω i,src is the weight associated with each source, σv,i,src and σw,i,src are sign 
functions, and ∑ is the sum over all nearby sources. Note that the sign function is used to keep 
all local transformation vectors orientated in similar directions for summation. The overall sign 
for the transformation vectors themselves has no effect in the transformation equations, 
Equations (9) through (11). The displacement vector is chosen as the test vector for the sign 
functions given below. 

σv,i,src = sign(ΔXi,src• Tv,i,src)      (26) 

σw,i,src = sign(ΔXi,src• Tw,i,src)      (27) 

For interpolation from existing points, summation equations similar to those for sources, 
Equations (20) through (27), can be used. The weight associated with each existing point is 
replaced with that for linear interpolation. Given a location ( Xi) and a subset of nearby existing 
points ( Xj) the interpolated quantities can be found using the following equations.  

∑ω i,j = 1        (28) 

δfi,j = ∑(ω i,j · δfj)       (29) 

α v,i,j = ∑(ω i,j · α v,j)       (30) 

αw,i,j = ∑(ω i,j · αw,j)       (31) 

Τ v,i,j = ∑(σv,j · ω i,j· Τ v,j) / |∑(σv,j · ω i,j· Τ v,j)|     (32) 

Τw,i,j = ∑(σw,j · ω i,j· Τw,j) / |∑(σw,j · ω i,j· Τw,j)|     (33) 

In the above equations, ω i,j is the linear interpolation weight associated with each existing point, 
σv,i,j and σw,i,j are sign functions, and ∑ is the sum over the subset of existing points used for 
interpolation. The subset of existing points is typically the points for an edge, face or element. 
The appropriate direction to align the transformation vectors is determined using the sign 
functions given below. 

σv,j = sign(  νv• Tv,j)       (34) 

σw,j = sign(  νw• Tw,j)       (35) 

In the above equations,  νv and  νw are the test vectors. The test vectors (  νv,  νw) are chosen to be 
the transformation vectors at the existing point with the maximum v-direction aspect ratio. 

jmax = j where α v,j = max (α v,j)     (36) 

 νv = Tv,jmax        (37) 

 νw = Tw,jmax        (38) 

The interpolation equations for the transformation quantities given by Equations (28) through 
(38) are appropriate for situations where the given location ( Xi) is well defined. For operations 
where the given location is a region, such as an element, use of values at a selected existing point 
can be more appropriate. Typical example operations include checking distance between points, 
evaluating a quality metric for a given element, or evaluating local-reconnection criteria for a 
group of elements. In such cases, the transformation vectors and associated aspect ratios can be 
set to the values at the existing point of the subset where the aspect ratio in the v-direction is at 
the maximum value. The subset of existing points searched is those points associated with the 
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region, such as the points of an element or group of elements. For a subset of existing points the 
maximum value location (jmax) is given by Equation (36) and the transformation properties are 
given by the following. 

α v,i,j = α v,jmax        (39) 

αw,i,j = αw,jmax        (40) 

Τ v,i,j = Τ v,jmax        (41) 

Τw,i,j = Τw,jmax        (42) 
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3. Anisotropic Examples 
Multiple two- and three-dimensional examples are presented in this section that demonstrate the 
capability of the modified AFLR procedure to generate anisotropic elements using a set of source 
nodes with anisotropic transformation metrics. The example cases presented here use moderate 
levels of anisotropy of about 3:1. Overall element quality, evaluated in physical space, for these 
cases is in general usable, however it is inferior to that for similar isotropic cases. The procedure 
has been successfully tested with much higher levels of anisotropy, although element quality, 
evaluated in physical space, degrades very quickly. In transformed space the element quality is 
much better and if that space is similar to solution space then solver performance may not suffer. 
Future testing with various flow solvers and methods for obtaining transformation metric 
information is needed to determine practical limits and evaluate the efficacy of the overall 
approach. 

Two-dimensional examples are presented to demonstrate the upper-end of element alignment 
and quality. Figs. 3 through 6 present results for a set of source nodes in a cross pattern enclosed 
within a box. And, in Figs. 7 through 10 similar results are presented for a set of source nodes in 
a wave pattern enclosed within a box. All two-dimensional cases presented use growth in the 
transformation aspect ratio. Two modes of operation are presented; direct insertion of the source 
nodes into the initial triangulation (Figs. 3, 4, 7 and 8) and evaluation of the transformation 
properties and point spacing from a background grid of the same source nodes (Figs. 5, 6, 9 and 
10). These cases all result in very good element quality in both transformed and physical space. 
They also result in a good alignment of the elements near the source locations. While, alignment 
carries over to some extent in three-dimensions, similar levels are not possible in general and 
alignment becomes more difficult to visualize. 
Three-dimensional examples are presented in the remaining figures. All of the three-dimensional 
test cases use a pattern of source nodes within a cube. Within AFLR3, anisotropic source nodes 
can be input directly from a VNODE file (*.vnode) or they can be derived from an embedded 
surface. Note that running “aflr3 –help” will list more information on VNODE files and options 
related to anisotropic sources. In the case of an embedded surface the aspect ratio is determined 
from the ratio of the local point spacing divided by the initial normal spacing specified in the 
input boundary surface grid file. Figs. 11 through 19 present results for a plate pattern of sources, 
Figs.  20 through 28 present results for a spherical pattern, Figs.  29 through 31 present results 
for a spherical and x-wave pattern combined, Figs.  32 through 36 present results for a wave 
pattern, Figs.  37 through 41 present results for an x-plate pattern, and finally Figs.  42 through 
46 present results for an x-wave pattern. 

Comparative results are presented for some of the cases using isotropic sources (with point 
spacing reduced to match the smallest anisotropic point spacing). Obviously, considerably more 
points and elements are required to achieve the anisotropic point spacing level. Cases are also 
presented with and without anisotropic aspect ratio growth (AFLR3 options mtr=1 and mtr=2 
respectively). Overall, it appears that the use of anisotropic growth (mtr=2) would produce more 
useful results in most cases. In addition, direct insertion of the source nodes into the initial 
tessellation is compared to use of a background grid (AFLR3 options msource=1 and 
msource=2). Results are similar between direct insertion and a background grid. If the source 
nodes are well distributed then direct insertion is more efficient and results in maximum 
alignment of the elements. 
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Fig. 3. 2D box-cross grid for anisotropic case with direct source insertion and with transformation vector growth. 
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Fig. 4. Detail view of 2D box-cross grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 5. 2D box-cross grid for anisotropic case with background source grid and with transformation vector growth. 
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Fig. 6. Detail view of 2D box-cross grid for anisotropic case with background source grid and with transformation 

vector growth. 
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Fig. 7. 2D box-wave grid for anisotropic case with direct source insertion and with transformation vector growth. 
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Fig. 8. Detail view of 2D box-wave grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 9. 2D box-wave grid for anisotropic case with background source grid and with transformation vector growth. 
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Fig. 10. Detail view of 2D box-wave grid for anisotropic case with background source grid and with transformation 

vector growth. 
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Fig. 11. Plate case surface grid. 
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Fig. 12. Plate volume grid for isotropic case with direct source insertion. 
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Fig. 13. Plate volume grid for anisotropic case with direct source insertion and without transformation vector 

growth. 
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Fig. 14. Plate volume grid for anisotropic case with direct source insertion and with transformation vector growth. 
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Fig. 15. Detail view of plate volume grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 16. Plate volume grid for isotropic case with background source grid. 
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Fig. 17. Plate volume grid for anisotropic case with background source grid and without transformation vector 

growth. 
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Fig. 18. Plate volume grid for anisotropic case with background source grid and with transformation vector growth. 
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Fig. 19. Detail view of plate volume grid for anisotropic case with background source grid and with transformation 

vector growth. 
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Fig. 20. Sphere case surface grid. 
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Fig. 21. Sphere volume grid for isotropic case with direct source insertion. 
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Fig. 22. Sphere volume grid for anisotropic case with direct source insertion and without transformation vector 

growth. 
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Fig. 23. Sphere volume grid for anisotropic case with direct source insertion and with transformation vector growth. 
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Fig. 24. Detail view of sphere volume grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 25. Sphere volume grid for isotropic case with background source grid. 
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Fig. 26. Sphere volume grid for anisotropic case with background source grid and without transformation vector 

growth. 
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Fig. 27. Sphere volume grid for anisotropic case with background source grid and with transformation vector 

growth. 
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Fig. 28. Detail view of sphere volume grid for anisotropic case with background source grid and with 

transformation vector growth. 
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Fig. 29. Sphere & X-wave case surface grid. 
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Fig. 30. Sphere & X-wave volume grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 31. Sphere & X-wave volume grid for anisotropic case with background source grid and with transformation 

vector growth. 
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Fig. 32. Wave case surface grid. 
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Fig. 33. Wave volume grid for anisotropic case with direct source insertion and with transformation vector growth. 
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Fig. 34. Detail view of wave volume grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 35. Wave volume grid for anisotropic case with background source grid and with transformation vector growth. 
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Fig. 36. Detail view of wave volume grid for anisotropic case with background source grid and with transformation 

vector growth. 
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Fig. 37. X-plate case surface grid. 
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Fig. 38. X-plate volume grid for anisotropic case with direct source insertion and with transformation vector 

growth. 
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Fig. 39. Detail view of x-plate volume grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 40. X-plate volume grid for anisotropic case with background source grid and with transformation vector 

growth. 
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Fig. 41. Detail view of x-plate volume grid for anisotropic case with background source grid and with 

transformation vector growth. 
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Fig. 42. X-wave case surface grid. 
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Fig. 43. X-wave volume grid for anisotropic case with direct source insertion and with transformation vector 

growth. 
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Fig. 44. Detail view of x-wave volume grid for anisotropic case with direct source insertion and with transformation 

vector growth. 
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Fig. 45. X-wave volume grid for anisotropic case with background source grid and with transformation vector 

growth. 
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Fig. 46. Detail view of x-wave volume grid for anisotropic case with background source grid and with 

transformation vector growth. 
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4. Conclusion 
An existing volume grid generation procedure, AFLR3, was successfully modified to generate 
anisotropic tetrahedral elements using a directional metric transformation defined at source 
nodes. The procedure can be coupled with a solver and an error estimator as part of an overall 
anisotropic solution adaptation methodology. It is suitable for use with an error estimator based 
on an adjoint, optimization, sensitivity derivative, or related approach. This offers many 
advantages, including more efficient point placement along with robust and efficient error 
estimation. It also serves as a framework for true grid optimization wherein error estimation and 
computational resources can be used as cost functions to determine the optimal point 
distribution. 

Multiple two- and three-dimensional examples were presented that demonstrated the capability 
of the modified AFLR procedure to generate anisotropic elements using a set of source nodes 
with anisotropic transformation metrics. The example cases presented used moderate levels of 
anisotropy that resulted in usable element quality. Future testing with various flow solvers and 
methods for obtaining transformation metric information is needed to determine practical limits 
and evaluate the efficacy of the overall approach. 

While extremely high transformation aspect ratios (>> 10:1) can be used with the modified 
AFLR3 procedure, the resulting grid quality degrades very quickly with increasing aspect ratio. 
Future work should explore the extension of the present approach coupled with the use of feature 
surfaces in select regions to better align the grid and maintain grid quality through more precise 
control of point placement. Feature surfaces can be treated as embedded boundaries and would 
provide a natural framework for directional refinement and automatic alignment with physical 
features. This is similar in approach to the generation of anisotropic elements within a boundary-
layer region where the geometric boundary is used as a feature surface.  


