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Abstract 

Near-surface soil moisture is a critical component of land surface energy and water balance 
studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and 
evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the 
difficulty in accurately representing soil texture and hydraulic properties in land surface models. 
This study approaches the problem of parameterizing soils from a unique perspective based on 
components originally developed for operational estimation of soil moisture for mobility 
assessments. Estimates of near-surface soil moisture derived fiom passive (L-band) microwave 
remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern 
Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer 
information on the soil conditions of the region. Specifically, a robust parameter estimation tool 
(PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution 
across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil 
moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic 
properties through the use of pedotransfer functions. By estimating a continuous range of widely 
applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil 
texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy 
and consistency of the resulting soils could then be assessed. 

In addition, the sensitivity of this calibration method to the number and timing of microwave 
retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The 
resultant soil properties were applied to an extended time period demonstrating the improvement in 
simulated soil moisture over that using default or county-level soil parameters. The methodology is 
also applied to an independent case at Walnut Gulch using a new soil moisture product fiom active 
(C-band) radar imagery with much lower spatial and temporal resolution. Overall, results 
demonstrate the potential to gain physically meaningful soils information using simple parameter 
estimation with few but appropriately timed remote sensing retrievals. 
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This study exarnines the ability of microwave remote sensing estimates of soil moisture to be used to 
calibrate a land surface model and, in the process, infer soil textural and hydraulic properties across 
spatially heterogeneous landscapes. Results also demonstrate the limitations and potential 
improvements in simulating soil moisture evolution using a combination of remote sensing, 
modeling, and parameter estimation techniques. 
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Abstract 

Abstract 

Near-swface soil- moistwe is a cI4kal component of land d a c e  energ). a d  water 

balmee skdies exompstssing a wide range of diseiplInes. Howevery the processes of 

Infillxation, mmff, a& evap&mspirah in the vadose zone of the soil are not easy to 

qumtie of predict because of the di-ffkdty in accwately repesentkg soil textwe and 

hytlraulic properties in land d a c e  models. This sWy a ~ o a c h e s  the problem of 

paramete-g soils from a e q u e  perspective based on components originally developed 

for operakal  estimation of soil moistme for mobility assessments. Eskates  of near- 

s d w e  soil moistwe deI4ved from passive (Lband} &rowave remote sensing were 

aequked on six dates during Monsoon '90 experiment in southastern At.izona, stnd used 

to caIi&stte hydravlic propehes in an oMine l n d  smfiwe model a& Infer k f m a k  on the 

soil c~~ of the region. Specificallyy a robtz-st parameter e s t h a h  tod- (PEST) was 

used to calibrate %be Noah land surface model and m at very high spatial resolution a e r w  

the Walnut Gukh Expe-ntal Watershed. E r rm in simulated versus observed soil 

moistwe were m&mized by adjustbg the soil texae,  which k ttt.m eontrols the hytlraa1-iit: 

propefiies though k use of pedob-msfer h e k s .  By estimating a continms range of 

widely applicable soil prope~es swh sts sad, silt, and clay percentages r a k r  thm applyhg 

rigid soil textwe classes, ho&p tables, or large parameter sets as in previous studies, the 

physical aecwacy md eonsistexy of k rewl&g soils could &en be assessed. 

In addition, the sensitivity of &is calibration method to the number and timing of 

microwave retrievals is de temkd  in relation to the tempmal patterns In precipi&tion rtnd 

soil *kg. The resultant soiI properties were applied to an extended time pe&d 

demm&atkg the hpt-ovement In simulated soil meiswe over that using default ol- comfy- 



. level- soil- parameters. The methodology is also applied to an independent ease at Wahst 

Gukh using a new soil moistwe podwt &om active (C-band} r&r imagery with much 

lower spatial a& tempwal resols&. Overall, rewfts demons&ate the potential te gain 

physically meaningfkl soils infoma& ushg simple parameter es&atkm with few but 

appropriately t k d  remote sensing retzievals. 
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Soil mistwe remains an essential yet elusive cornpent of E&h sys4em science research 

across a wide r age  of xales and apgilisahs. In a&ihn to impactkg a e d b e ,  water 

r e ~ e e  management, a& exheme events swh as %o&g and &ought, the day4&ay 

variability in soil moistwe m field to g l o l  gales is an Important quantity for atxnwphe* 

modeling and prediction. In faef the ~ s w a c i e s  of s k a t e ,  mesoscale, lxmtdary lttyer, land 

&i~:e, & hydro@ models are dtkately dependent on proper treatment and simulation of 

the state stnd transfer of water a& heat at the ltnd smface (Koster et al. 2004; Findel stnd E l a i r  

2003; Berbery et al. 2003; Begs et al. 2003; Be* 2000). 

Unfb&tmately, soil- moistme is n d  as easily measwed or observed as properties- 

such zts temperabe, humidity, ztnd wind speed. For example, in sik or re&ely.y-sensed 

observations of soil moisture for hitializa+ion, update, and v a l i d a h  purposes are I& yet 

available on the x d e s  of most models. O b f e w a h s  itre generally e m h d  to sM-term EeM 

expe-nts, many of which have &$lighted the heterogeneous natwe of soils in tenns of water 

eontent a& textme (M&anty et al. 2002). Indirect estimates of soil- &stwe s m  be obtained 

using thermal inbred measwements (Cmlson et 4. 1-995), but require a infomation on 

the swfwe characteristics. As an alternative, passive a& active microwave remote sensing 

methods have had the greatest success in estimating soil moistwe in a tempwally a d  spatially 

consistent manner (Thoma et al. 2006; Moran et al. 2004; Hollenbesk et al. 1-996). 

Resent studies have noted &at the most swcessfttl stnd promising ap-owh to eskating 

soil moistwe sontkwsly over t he  4 space must kcltde a combinah of remete sensing 

and modelhg Fntekhabi et al. 1-999; Hotlser et d. 1-998). The majority of lnd s&itf:e models 

require soil- hydraulic parameters to solve for the transpo& of moistwe within the so2 



using Richards' (1931) f-labs. Tbese parameters a-re oRen derived &-om seil textwe 

infixmation, but due to the heterogeneous n a h e  of soils a d  lack of detailed maps of &l 

properties, soil parameteeriza&n schemes are often crude, inflexibk, oz inappropri-ate. Fwther, 

LSMs have been shown to potentially be mare sensitive to the choke of soil hy&aslk properties 

or soil textwe data t h  to atmospheric forclng or wface chasK:te&ies (Gutmam ad Small 

2005; Pitman 2003). 

Because of these difkulhs,  nmerms atternfls have been made to optimize 

LSM pameters using obsewations of state variables sut;h as so2 moi-sime md =face 

temperahe as cons&aInts fHogue et al. 2005; Liu et al. 2004; Hem 2001; 6upk-t et al. 1999). 

m i l e  these studies highlight the potential for parameter es&a& techniques to derive large 

sets of 'eEeetive' parameters and diagnose specifi model weaknesses, li%k hs been g a k d  In 

terns of mqulring physically-memingfkl or hy&aulically consistent: estimates of individual 

pwamters. Because of the empkxity and number of estimation tecbiqaes and paamettx sets 

employed in these studies, it remains difficult to Infer oz derive my paameter infixmath &at 

eouM be applied to other independent studies ot. m~&ls. 

With these issues in mind, this paper examines the potential use of passive and active 

microwave retrievals of n e a d m e  soil moistwe to calibrate a LSM and infer a physically- 

wa&gftEl a& emsistent set of soil hy&auk paamete~s, usIng a combinah of high- 

resolion l a d  s&af:e mdelIng and parameter e s t h a k .  The experimental design of this 

wmk was &ginally developed for the purpose of estimating troop a& vehicle &li@ for the 

United States Amy based on operational soil moistwe pediction fim a very limited set of k p t  

data (Army Rem&e Moistwe System; U S ;  TisChler et al. 2006). Here, we have tested and 

extended AaMS to assess the ability of parameter e s t Imah  teehnlques to minimize inherent 



model e m ,  yet still provide infomaion on difficult to o&a& soil properties over the Withut 

Gukh Environmental Watershed (WGEW) in Arizona. 

Accordingly, Secion 2 s u m m I e s  the cment state of knowledge of the many components 

of the AaMS project kluding soil parameterizations in LSMs, microwave remote senskg of 

soil moistwe, and p-aameter estimation. In Section 3, the models, site, and remote sensing data 

employed in this study are dewibed. Results of the c a l i b m h  experiments are pesented in 

Section 4, k l d i n g  an evaluatim of the opthized parameters and sensitivity to temporst1 

sampling of remote sensing. Fina-lly, Section 5 discusses the l i m i t a h s  a& applicability of the 

results, Including suggestions fw the h b r e  utility of physically meaningfid parameters in LSMs. 

2. Background 

a. Soil Pmeterizations fn LSh& 

The influence of newsdace  soil moistwe on the. p a & W g  of d a c e  twbulent fluxes 

fkom offline LSMs to hlly coupled global climate models has been well-documented (e-g., 

Bra= and %hadler 2005; Ek stnd Hdtslag 2003; Sanhnello and Carlson 2001; k n c a  et al. 

1996; S m  and BosiEovich 1996; Ek and Cuema 1994, Jacobs and DeBmin 1992). In order %o 

simulate the evolution of moistwe in the soil, a set of soil hydraulic parameters are combined 

with expressions (known as soil moisture characteristic curves) relating soil moisture (6') with 

matric potential (y), and soil moisture with hydraulic conductivity (Q. The expressions derived 

by Brooks a& Corey f 1964) and Campbell (1974) are most cofnmdy used in metewobgkal 

coupled models, w&le the van Genuchten (1980) functions based on a different set of soil 

meawements are wed for more detailed soil- and hy&obgkal models. A h l l  descfiphn and 

evaluation of these &ti= can be fottnd in Bra= and Schdler (2005). 



The three forms of the characteristic c m s  above depend on a set of 4 (Campbell, P 974) or 

5 @rooks and Corey, 1964; van Genuehten, 1980) hy&aulic parameters, which are a faction of 

the soil composition and structure. These parameters include the satrrrated matric potential (ys; 

aka "bvbMing" OF "air en*"), the sawrated hytIraulk e-tiviw fKsj, the ssttwtted soil 

muiswe content (porosity; 83, the residaal soil mo-isme content (@=}, and the pore size 

&*buh index (b-}. Unfcwtwately, estimating these parameters consistently stnd acewittely 

has proven difficult even for identical soils meawed under controlled 1aboratoz-y conditiw. 

F&her, studies have shown &at LSM s~ulation: of soil moistwe can be more dependent upon 

the speeika&n of hydraslk piwarnetem than atmospheric fofeing or sdstce conditkm 

f G u t m a ~  and Small 2005; Santmek and €=Ison 2001). 

To mitigate these differences and aq&e a somewhat stmdard set of paramters for LSM 

applkations, 'bulk' pammeters have been derived &at a e  based on soil type. The results of 

Clapp a& &x&erger f€H; 1978), &wIs d al. f1982), a;nd C&y f 1984) & provide the most 

extensive sind c o m d y  employed ~~ tables of hy&auIk parameters for LSMs, wi& 

abms@Fic-based applications favoring CH a& €&y and soil h-y&orogY models employing 

the Rawls parameters; Unf-ittely, parameter lodrtrp tables we d y  as wcmate as the 

available soiI textwe type ~~~ and provide an "average" value of each parameter fix 

eaeh soil type. High-resdukn soil textme maps remain diEcult to obtain, particularly on 

regimal and global scales, a d  there is little flexibility between soi1 types or fix mixed soils 

despite that larger &fferemes in soil popefiies have been observed within a c e a h  soil; type 

than between types (Gutma= and WEE 2005; s e t  and W k e r  2003; Feddes et a1. 1993). 

To bridge the gap between rigid soil textwal classes and the heterogeneous natwe of soils, 

numerotts ped&msfer fbmtions fPTFs) have been developed fSobiemj et al. 2001). The most 



commonly used 'class' PTFs relate discrete soil types to hydraulic parameters ad are the basis 

upon which- lookup tables are used in LSM and meteorological modeling applkatims. 

‘Continuous' PTFs are more debikd and relate measurable soil properties st& as percent of 

sand and slay, porosity, and bulk density to by&aulk properties using regesskm equations 

derived from soil samples. These fitnctions are cmtinww without bounds, and therefore aIbw 

nore flexibility and independence in parameter valtes t h a ~  Wse &OM. lookup tables, More 

&po&ntly, continwus PTFs that a e  abk to reproduce areal averaged e o d i h s  In LSMs have 

been shown to scale linealy in space and therefme cwId be used to infer spatially-aggregated 

hybaulif: parameters. Mthwgh the advantages of coatkuotls over class PTFs has been 

demonsbated for hydrologic models (Soet and S&kker 2003), continwws PTFs are rwtinely 

employed in LSMs (except for CLM, give referenee) or atmosphe& m&ls where the broad 

definition and application of soil types still -ate the slat~laion of so9 rn&-e. 

B; Parmeter Estimation 

An alternative to specifyring h i g h l y ~ e r t s t ~  soil hydraulk paameters in LSMs is to use 

pmmekr estimation and model cali&ait>n techniques. For example, a relatively simple and 

well-established parameter estimation model (PEST; Dohe* 2004) has been used by a n-ttmber 

of scientific disciplines to optimize model parameters given limited observations of fundamental 

output vva;ri-ables. For example, by adjustkg soil pofosity in a LSM until the difference in 

s b l a t e d  versus observed soil meistwe is minimized [throt~gh a spwified objestive function), an 

LSM can be calibrated using PEST. 

In resent yea-rs, more wpIws4cated estimation techniques have been develqed to estimate 

lage a& diverse sets of psameters. Liu et al. (2003) wed a mdti-eestive tesirnique for 

offline and partially-ewpled LSMs to examine the pathways by wBkh a defiekncy in the model 



physics impacts coupled and uncwpfed simulatioas. Folbwing this work, Liu et al. (2004) 

perfomed con&olled paameter estimation studies of offline and p&iaIIy-eoupled models and 

examhed the effects of hcl&ing atmospheSe fin addition to soil a;nd vegetation} paameters in 

the optimization. Hogue et al. (2005) investigated tbe &nsferability of large optimized 

paameter sets in an omine LSM across v-g d a c e  e o n d i k s  a d  thxte periods, and 

concluded &at parameter optimization needs to be sitespecif= for best results, an? should be 

recalibrated for changes seasons or over h g e r  t h e  intewals. 

Scott et al. (2000) perfomed soil h,Er&aulit: parameter estimation using the Hydnts sail 

moistwe model at two sites in the Walnut Gukh En&onmen&l Wateshed (WGEW in AE.izo~a. 

Wife the focus was on the vertical distri-htim of soil mvistme a d  recharge at these points 

alone, the& results shew &at the model was kast sensitive to Kmt & most sensitive to pwosity 

4 b, which is consistent with & e r  studies. Scott et al. (2000) a h  stress &at the derlved 

pwmeters are 'effective' in natme, eompemating for errors in the soil physks ofthe model, and 

that further research is needed to assess the limibtions of parameter estimation ZK:ro$s spatially 

heterogeneous ztnd distihted watersheds. 

Overall, parameter estimation sMies have focused on large sets of parameters a d  complex 

algori-thms that requke a geat deal of cmptational time. From these sttdies, it could dso  be 

a r w d  that the bulk of the work done to &is p&t has been focused on 'model: c a l i b ~ a h '  r a k r  

than parameter estimation, pa&uIaxly when &re is si@fif:mt mdef ems  aecomted fat. in the 

optimized parameters. It is important to note that the research presented here differs from such 

multl-objectives techniques, and is focused sdely on calibrating a physically meanin8fuI set of 

soil hydraulic p~operkies that improve soil moistme simulated by a LSM. 

e, Remote Sensing of SoiE Moisf2tre 



Due to the limited nature of avstilable soil instnmenbtio~ and me-ement techniques 

(e.g., h t a  probe, TDR, Vitel probe, ~avimetic), a spatially csokwus  and reliable network of 

soil m o i s m  measurements that could be used to initialize a d  evaluate LSMs does not exist. 

As a result, pstssive microwave &-band; 1 .4 GHz) estimation of soil moistwe has been has been 

explored a @eat deal using insfmments wch as NASA's push boom mkrowave radiometer 

fPBMR; Sehtnugge et al. 1988). Due to the high spatial resolution req&ed at t i s  wavelength 

(21 passive microwave mdiometers are typically fEom on aircraft where they have shown a 

great ded of promise in estimating soil moistwe asross varying surface soa&tiens (MatSkaIli et 

al. 1998; &ke et al. 1997; Hobbeck et al. 1996). Changes in the dieEec& cmstant the top 5 

cm of soil are due to changes in the felative water conteat, and are evident in the bri-&tmss 

temperatwe m e a ~ ~ e d  by the sensor. 

Mare recently, techniques have been developed to estimate soil moisiwe wing active 

micmwave remote sensing (€&and; 5.3 GHz). Becaw of the sh&ez wavelength (5.6 em}, 

active sensors can plased aboard satellite pIatfoms and potentially acquke high resoIution 

estimates of soil moistme when combined with empirical and physical models (Thoma et 4. 

200Q. To date, there have been mixed results using r d a  remote sensing to estimate soil 

molstwe dw to the sensitivity of low frequency backscatter to the natwe and degree of swfaee 

kteractions and, consequently, the degree of signal conecthn required (see also review by 

Mman et stl. 2004). 

Recently7 Thomil et al. (2006) have developed an image differencing technique for active 

remote sensing that shews promise in eliminahg mwh of the noise in C-band racks data. This 

'delta index' method requires a single reference (dsy) image to cqpa-re with a separate (wet) 

image over the same domain (asmining no other ehanges in surface chmkE.istics), t k ~ e b y  



isolating the change in backscatter due to soil moisture variatbns. This method acts to mInitnize 

enms due to stsface roughness effects using filteAg techniques to red~ee the amount of speckle 

that is e o m n  in radar imagery fPa&ularly in regions ofhigh rwk fragment). 

The delta Index is &fwd as follows, 

delta index = 

where cdIY is the backscatter (db) from a dry radar image, and c,,,,, is the radar backscatter (db) 

from the identical pixel location in a wet image. The de l t  index has been shown to have a near 

line% (1 : I) relationship with volume&ic soil moistwe, and is paI%ir:ulaly appl.icable to  semi-arid 

regions where a spatially-u&o~-~n dFSf ~efereme image can be mquked (Thoma et al. 2006). 

d. Estimation of Sol1 Hydrattlic Pmperties 

Since the devebpmnt of L-band passive mkrowave so2 moistme retrievals, mmerotts 

sttdies have attempted to use a combination of remote sensing imagery, LSMs, radiative eansfer 

(emission) models, and o b s e w a h s  to infer soil hydraulic: prope&s. For example, van de 

GI.iend and O'Neill ( 1986) demonshated that independent mestswefnents of soil moistwe from 

microwave remote sensing and the thermal inertia of tbc soil can be relakd to hy&oEogk 

properties of loamy sand soils dt&g an Il-day dry down period. This work was extended by 

Camilk, et al. (19%) using a combinah of models md mewwements for three distinct soil 

Vpes under highly  ont trolled pW-wale co&tions. They calibrated a soil model (hyckaulic 

p~operties) until a coupled mkrowave emission model best matched the ob-sewa6ns of L-band 

mkrowave ?xi@tness temperatme over a 3-day &ydown. Ovemll, Camiflo qt aE. ( 19%) suggest 

that a wider rstnge of soil moistwe conditions t t n  those &sewed here may impove results by 

better eaptwhg the h c t l o ~ a l  & y k g  crves represented by the soil model parameteriza&s. 



Fdlowing the work of Camille et al. (1 986), Bwke et al. f l 997) and ( 1998) used a coupled 

land swface-microwave emission model in conjunction with radiometer measwements to infer 

soil pope&ies for bare and vegetated soil p h .  PeFfomed over a 30-day pe&d with a primarily 

sandy soil and bare soil, e m ,  md soybean canopies, hydr8~lk parameters were adjusted to 

match the emission model output with L-band radiometer measurements. In ag~eeme~t  with 

o t h ~  sWdies, the model was f m d  to be least sensitive to  K,,, stnd most sensitive to b, and for the 

corn and soybean plots vegetation parameters swh as leaf area index and root density were 

significant. Overall, these ~abo~atory and poht-eeale studies poht towards the & b e  use of 

PTFs rather than a one-at-&ke parameter es&ation approach to  acquire spatial1-y-distxibuted 

soil poperties over watersheds, and suggest that an htensive period of mkrowst.de images be 

acquired to capwe significant soil dqd~wns.  

Feddes et al. (3993) ex&d the use of &rewave measwements of soil muisku-e, 

temperatme, a d  albedo to calibrate and infer soil hy&aulic pmpe&ies. They fotrnd that the 

'effective' soil parameters for the LSM could be derived using this approach. However, theit. 

method also required a great deal of measurements and parameters, such as evaporation a d  in- 

sib soil moistwe a$ multiple depths' t h e b y  limiting its applkatbn to highly controlled and 

plot-scale expehents. 

Hallenbeck et al. (1996) used PBMR estimates of soil moistwe to infer soil conditions 

d & ~ g  large-sale field experiment at WEX-S&L Two PBMR brightness tempexatwe 

images, two days apart, were used to calculate the relative c h g e  in soil moi-stwe following a 

precipibtim event to Infer soil hy&aulic prope&ks over the watershed. Though their results 

were entirely based on qualitative image-differencing, they were able to isolate the impst of soil 

properties on the image differemes versus &at of initial soil moistwe, land cover, and raSall  



distri-btttion The impact of antecedent precipitation is suggested for &her study, as it geatly 

impacts the stage of soil dxying being m i t w e d  by $he PBMR. 

Flnally, Mattikalli et al. (1998) tested the 1abmtox-y results of Ahuja (1993), who 

demonstrated that Ksaf could be derived using remotely sensed estimates of 2-day changes In soil 

mistwe. They concentrated on calibrations of a hydrdogk mdel fix 3 layers of soil molstwe 

and parameters across 13 sites in the LiBle Washita, OK watershed. A significant qualitative 

conelation between spatial maps of &ghkss temperatme, soiE mistme, and soil textwe give 

validity to the strong relationships between microwave measttrements and soil type and 

properties for t&s region. Although treatment of the remaining hy&aulk parameters, spatial 

dislxibtltion of KSaf, or a detailed evaluation against typical Ksaf values was mt presented, this 

study e o n f i s  the theoretical framework by w k h  a mere comprehensive approach to 

estimating these parameters can be based. 

e. Sztmmary 

These studies have demonstrated &at the strong link between microwave remote sensing 

and soil mistwe (that is ultimately controlled by hydraulic parameters) can povide a pathway 

to improve LSM soil physics and parameterizations. While these works have provided a skmg 

physical a& methodologkal f-dation by w k h  to ad&ess these issues, each has limitations in 

terns of scope and applicability that can now be improved upon by taking the suggested next 

&eps and utilizing new appmwhes and data. Specifically, this paper will bridge the gaps 

between a& extend previous studies by: 

1) Dete-g the ability of parameter estimation to calibrate a LSM and to inferphysically 

mea~ingfztl estimates of soil hy&au1-ic prope&ies uskg pedotransh hct ions md 

mk~owave remote sensing of soil moistere at high spatial a ~ d  temporal resolutto~; 



2) Testing the sensitivity of the calibration process and retrieved properties on precipitation 

and soil drydown patterns uskg temporal sampling of remote senslng Imagery; and 

3) Applying the retrieved soil- parameters to an independent dataset, m d  assess the ability of 

a new image differencing techique of estimating soil moistwe &om active mkrowstve 

remote sensing to be used in the calibration process. 

3. Me$hotlology and Da$a 

a. ARMS Backgroznd 

The Anny Remote Moisture System (ARMS; Tischkr et al. 2006) project is an ongoing 

collabo~ath between the FJ. S. h y  Corps of Engineers, U. S. Department of AgicuItwe, 

NASA-GSFC, and the University of Wyoming. The goal of this work is to ~ o v i d e  improved 

operational estimates of soil moistwe and hydraulic properties as k p t s  to decish-making 

models based on fators such as &oop and vehicle m&3ility stnd landing strip sui&biIity. The 

three makt components of ARMS are I) high-resolt.ttion microwave remete sensing of soil 

moistwe, used to calibrate a 2) land surfme model by optimizing hy&aulic propefiies th~ough 3) 

parameter estimation. The ultimate gwl of ARMS is to be able to use limited site i n f o r m a h  

and ~&ar-I,ased soil moistme reQievals to ealikate stn LSM fw a ~ y  location in the world and 

enable soil moistwe stnd propeeks to be more accurately simulated going forward. W l e  t&s 

study is focesed on a semiaGd testbed in k o n a ,  ARMS is also bekg tested at other diverse 

locations x ~ o s s  the U. S. (OK, GA, and €0). 

b. Site Information 

The Walnut Gukh Expehenhl  Watershed (WGEVV) is a located in sot~theastem Arizonq 

covering 148 km2 of semi-arid grassland and s h b  covered rangeland. The detailed 

instmmentation and Iong record length of the dabsets available in this region have made the 



WGEW the foctts of many hy&dogical, meteorological, and remote ransing studies. Most 

notably, the Monsoon '90 field expe-nt (M90; Kustas et al. 1991) was conducted in this 

~ g i o n  in July and August of 1990, and included the deployment of eight MetBwx sites across the 

watershed that measured standard meteorological data as weB as la& cover, soil moisture, and 

&l propee infomation. (Fig. 1) 

Overall, the conditions thoughout the WGEW are dominated by the summer monsoon 

season of July and Aupst, when the bulk of the amual 250-500 mm faidall fmahly convective} 

occurs. Rainfall events dwkg the monsoon period are typically < 10 mm and d y  influence the 

top 10 cm of soil before being quickly relsmed to the almosphere through ET wit& 3 days 

(Kurc 4 Small 2004). This means that the near+wfilf:e soil moistme is the only v&aMe 

reservoir of moistwe in this region. D e g  the period &om ApribJuly, the soils &en reach a 

desiccated state before the onset of the monsoonsll precipitation. La& cover consists mainly of 

open shbland (< 30% cover) in the western half of* WGEW, 4 @ass cover (< 50% cover) 

in the east. 

At each Metilux site, standad metewobgieal variables were measwed at 20-minute 

intervals. Precipitation measwements were derived from a dense 98-gauge network covering the 

entire watershed, from which spatially interpolated raidall estimates furahl for modeling 

applicsttions) have been generated using a variety of techniques (68reia et al.2006; Hwser et al. 

1998). Two supersites were %shed with additional ~simmentation: Lwky Hills @H) 

located in the shnxb dominated no-enkal part of the domain, a& KendalE located in the 

grasslands of the east. Soil &sWe in &e ~pper  5 cm layer was estimated at each site using 

multiple gravimetric measurements, and vertical profiles of soil moistwe were estimated at 

Kendall and LH using time domain reflec&mm, givkg estimates from 5-50 cm in depth. 



In addition to the M90 period, extensive metewological and flwr measwements at the LH 

and Kendall sites a& co-located precipitation and soil moistwe measmements at the rain gauge 

sbtiofls have been acquked for the 2002-2004 period. This dataset is temp~ally more extensive 

than &at of M90 a d  provides an independent dataset to eval~ate LSM simulations as well as 

new remote senshg data and parameter estimation techniques. 

c. Remote Sensing of SoiE Moist~re 

Passive mkrowave remote sensing measurements (L bad;  21-cm) of brightness 

temperame were made over a significant p & k  of the WGEW dulng the M90 experiment 

using NASA's push b~oom microwave radiometer (PBMR). As mentioned, the PBMR has been 

used extensively for measwing soil moistwe across arid and semi-arid regions. Flights taken 

dtll-ing the Monsoon '90 experiment are demrlbed in debil in Sebugge et a1. (M90; 1994), and 

during the Hy&ologie Atmospheric Pilot Experiment in 1992 (HAPEX-Sahel; Hollenbeck et al. 

1996). F r m  this dataset, six daily estimates of near&5tf:e soil moistme are available bo& 

before @OY 212) after (DOY 2 14,216,217,220, and 221) the onset of precipitation. The 

PBMR data was resampled to 40 m resolution and mapped to a ETTM g& that covers a subset of 

the WGEW that includes all 8 Metilux sites. Schmugge et al. f 1994) showed that kghbess  

temperawe measmements eonelated well with both raidall 0-5 cm soil moistwe measwed 

at the sites. Figwe 2 shows the PBMR a d  gravimetzic estimates of soil moisme at the Kendall 

and LH sites along wih  gauge-interpolated precipitation during the M90 period. These plots 

highlight the desiccated soil conditions before the first am3 most intense rainfall event on DOY 

213, a& more importantly how the PBMR images captwes the period of rapid soil drying 

thereafter. 



For the 20024 period active, or radar, microwave rem&e sensing (C band; 5.6cm) 

measurements were acquired &om RADARSAT-1 imagery. A refereme (dry) image was taken 

on I9 Januay 2003 and combined with images d&g the monsoon period (29 July, 22 August, 

a& 15 September 2003) to derive soil moistme using the delta index approach @qn. 1). The 

tkee xesulkg 0-5 cm soil meiswe estimates cover a 6 week period spanning an extended 

(seasonal) drydown period immediately following rainfall. The nominal resolution of 

RBDARSAT-1 Is 7 meters ttnd covers the entire WGEW domain, k t  the raw h b e a t t e r  data 

was &her processed and filtered as discussed by T b a  et a1. (2006) to 210 and 280 meter 

resolution to redwe the effects of speckle. 

d. LSM 

The Noah land surfwe model (Ckn et al. 1-996) was originally developed &om the I d  

component of the Oregon State University 1-D planem b o w x k y  layer model (OSU; Mahrt 

and Ek 1984), and is cltrently employed as the Ind sdace  seheme in NCEP's operahal  

version of the Weather Research a d  Forecaskg nonhydrofbtie M e m a l e  Mod4 (WW- 

Nha/l). Extensive evaluatims and discussion, of the Noah physks a& compagsons to other 

LSMs has been performed by Roboek et a1. (2003) among others. The hydrologqr within the 

Noah model is handled by a &hard's equatkm formulatkm governed by the Campbell k t i o n s  

(1974). Hy&a~l]tic parameters s e  typically estimated &om prese~bed soil types based on the 

b&p tables and regressioa restllts of Cosby et al. ( 1984). Noah is typkaliy used wxoss a wide 

range of scales offline a& for mew- to globl-sale meteorological applications when coupled 

with atmespheric models. 

The offline version (2.6) of Noah was configweed t o m  at 4-0 EI resoletion over the WGEW. 

Fo~ehg data was aequked &om the LH site a d  applied unIfOrmly to each pixel wihin the 



domain including dowf1ward shortwave and longwave radish, air temperatwe, speeifi 

humidity, and wind speed at tt specified refereme height (6 m), a& sdaee  presswe. A4 

wggested by Houser et al. (1998), the impacts of using of a single fwclng dabset applied to the 

entire watershed are minimal so long as spatially dis@ibuted precipitation is scomted for, which- 

is the case here. Endeed, simulations were performed using the Kendall forcing data in place of 

LH, and resulted in changes in swfses fluxes that were less than the instrument enor. To 

ensttre that the most detailed precipitation data was kluded, rainfall from 84 of the 98-gauge 

network was broken down ;tnd interpolatkd in time and space at 20-minute and 40-meter 

resolution. Garcia et al. (2006) provide a detailed descE.i&m and e v a l u a k  of two methods of 

interpolating raingauge data over the WGEW, and for the large number of gauges available here 

b&h the inverse distance weighting (IDW) and multi-qu&e bihamnic fMQ-B) schemes work 

equally well for precipitation inteqolatlon. 

In Noah, vegetation p a m t e r s  for ewh grld cell are de~ved from ltnd cover maps (wing 

lookup tables). In a similar mamr,  ten soil parmeters are typically degved at each grid cell 

fkom soil textwe maps &om the Food and Agt-icultwaI Organization of the U&ed Nabs 

(FAO; FAO-UNEXO 1984), State Soil Geographic Database (STATSGO, USDA 1994), or 

Soil S-twey Geographk Dabbase (SSURGO; USDA 2002) datasets. M a k o  et al. (2006) 

performed a thorough evslluation of the impacts of varying inputs of land cover, soil type, stnd 

precipitation on soil moisture simulahs.  In this study, we use the best available land cover 

data &BID; Hansen et aL 2000), climatobgically-de~ved values of albedo and vegetation 

&action, and MQ-B precipitation fwcing as input to the Noah model. 

A standard 4-layer soil profle was used in No& with a top layer of 5 em that matched the 

repl-esentative &pa  of ininsib stnd remote senslng soil moistwe measurements. The sensitivity 



of Noah to varying nunibers (up to 20) stnd depths of soil layers was examined in detail, and 

results showed that adding additional layers and adjustment of vegetation rooting depth did not 

signikmtly alter or improve results for this se&-arid region. Also, a8er carehl calibration 

with- observed mil moistwe values in the WGEW stnd the resalts ofp~evious studies (Scott et a1. 

2000), the ~escribed minimum value of mil moistme in No& (i.e. wiling point) was lowered 

&om 0.05 to 0.02 rn3fn3. 

In an effo& to enswe consistency and stdd flexibilily within soil. types and hydraulic 

parameters, PTFs were koqmated  into Noah for this study. Specifically, the PTFs derived by 

C&y et al. ( 1984) require only percentages of s a d  a d  clay to derive the hydraulic parmetem, 

which are then independent of soil textwe classes or averaging. As discussed, previous s&es 

have pointed to the potential advantages of PTF approaches over discrete soil @pes and lookup 

tables in LSMs. Though based on the identical soil samples and data of the default Noah lookty, 

tabks, these PTFs enswe &at a full range of soil p-aameter vahes based on soil composition me 

derived in a realistic and consistent manner. 

e. ~ a r m e t e r  Estimation 

The Parameter Estimation model (PEST; Dohe@ 2004) is a widely-used tool for examining 

sensitivities stnd e s h a k g  parameters in models s p a e g  a wide range of applkations. In 

particular, the ability of PEST as a model-independent estimation technique to link with a-nq. type 

of LSM using flexible parameter, ot>servation, stnd convergence criteria mstke it optimal for use 

in &is study. He~e, PEST was configwed t e  rttn as a parent model to Noah (PEST-No&), where 

it evaluates and minimizes a~ objective fumtion based on the differences between simulated and 

obsmed soil moisture as follows 



where Nobs is the number of PBMR observations used in the calibration a d  6,,Noah and are 

Noah simulated md PBMR observed 0-5 cm soil moisture at each observatio~ h e .  Until the 

convergence criterla are met, PEST iterates and adjusts the Noah paameters (sand, silt, and clay 

percentages), evaluates if this decreases the mdel  enor, & djusts the pst~a~neters accordingly. 

Extensive testing of PEST-&& has shown &at there can be on the order of 2-20 o p e a t i o ~ s  

requitkg up to 200 model m s  before PEST converges in some cases, depending on howr far 

apad the initial parameters are fim +heir op+it~al values. 

To enwe the accwacy a& repeatability of PEST-No& s&ulations, synthetic twin 

experiments were conducted. A single (control ease) Noah simulation of the M90 period with 

prescribed sand, silt, and clay values was perfomd, fiom which the 0-5 cm soil moistme output 

was extxacted on six dates conesponding to the PBMR observations. PEST-Noah was &en FW 

using Noah soil moistme wtput (in place of PBMR) zs &senrations mtil the WkGzed sand, 

silt, and clay percentitges were fottnd. This process was repeated at the Kendall a& LH sites 

using vastly different soil textmes a& moisture contents, a& in each ease PEST--ah re-ed 

the precise sstnd, silt, a& clay values prescribed in the control case. This gives ~ ~ d e ~ t f : e  t h t  

PEST-Noah can be m for a vaI.iety of conditions at WWGEW and that the results are xmique. 

4. Results 

a. M90 Calibration Experiments 

Simulations were performed d&g the M90 period from 23 July - 9 Augtlst 1990 that 

encompasses the 6 PBMR overpisses. This perid allows ample h e  for the model to 

equilibrate to the very dry initial conditions leading up to the first PBMR *age (31 July), a& 

before the onset of the monsoon a& the first si@ficant precipitation event of the season (2 



Augttst). The model was ~ I E  using a 20-33G~ute %step, a& miput wits generated evev six 

hours. 

i. Met- Sites 

PEST-Noah was ntn at each of the 8 Metflux sites using the ebsest 40m PBMR pixel to 

each- site on the 6 observation dates. Figure 3 shows the simulated soil moisture at the Kendall 

and LH sites before (FA0 soils} and after (PEST) calibration of sand, silt, a& clay along with 

corresponding PBA4X a d  &sib gravimetric measwements. Despite the differences in 

magniude and dqdown pattern exhibited between the sites, PEST is able to fit the sim~lated 

soil moistwe to the observations. Mso evident is the significant improvement in simdatim 

using calibrated soil prope&ies compared with those from default lookup table approach. 

The RMSE stnd bias in simulated versus observed (PBMB) soil moisture for dl 8 Metflux 

sites are shown in Figwe 4. The M S  requkement of 5 percent (volumet.ric} accuracy in soil 

mistwe prediction is easily satisfied at all the Metflux sites when using the PEST-Noah 

calibration, with overall RMSE md bias values less &an 2 pe~cent. In particular, the bias in the 

default Noah simulation using FA0 soils has been greatly redwed using PEST to near zero for 

most locations. Examination of eaeh individual site's hpovement in simulated soil moistwe 

(similar to that shown in Figwe 3) makes it clear that PEST-Noah p~&~ari ly  acts to reduce the 

bias by adjusthg the overall magnitude & dynamic range (using soil textme) to match 

observations. 

Given the accurxy of the calibrated so2 moistwe at each site, it is u-sefttl; to assess the 

potential utility and at;curacy of optimized soil- textwes as well. Figwe 5 shows a compa~son of 

the optimized sand, silt, rtnd slay percentages at each site versus those measwed d&g the M90 

experLment by Sehmugge et d. (1994). The op&Gzed soFI textuses suggest a primarily sandy 



soil, and are similar to the obsemed soils wih @eater %an 65 percent s a d  and less than $0 

percent clay content. Optimized values of sik content are lower %an those observed, bttt this is 

likely due to the setup of PEST-Noah where silt is askally a dummy va&ble and, more 

kpo&ntly, that the PTFs are only a function of sand and day content. Therefore, adjusihg silt 

in the simulations had zero &past on the soil moistwe stnd value of the objective Wction 

evaluated by PEST. 

It is also important 40 consider the range and magnitude of hyflraulic properties resdthg 

from the different soil textures. Table l a  presents the optimized values of sand, silt, and clay for 

the Me@= sites and corresponding hydraulic properties de~ved &om the PTFs in Noah. For 

comp&son, Table l b  lists &sewed soil textwes &om St:hmugge et al. (1994) and the North 

AmeM:an Monsoon Experiment (NAME., Higgins et al. 2006) (sites 1 and 5 only), a d  hydraulic 

properties estimated using the Noah PTFs. Overall, thre  is relatively li#$le vsiation i~ 

paperties estimated &om PEST-Noah across the sites despite variation i~ s a d  content (73-100 

percent:). Similarly, hydraulic properties derived &om &served textures exhibit a small range, 

although their m a @ M  differs slightly &om the PEST-Noah values due to the lower sand 

percentage f 66-80 percent). 

PEST-Noah sugges+s a slightly more sady  soil over the region &an observed, but the 

differences in the parameters that control the soil moistwe dg.namics are m t  as significant as the 

mil textures mi&t indicate. Plausible values are estimated by PEST-Noah for each parameter 

when compared with observations (even at site 7 where an estimate of 100 percent sand may not 

appear physically realistic, but the resulthg propet-ties are w i t h  measwed values}. This is due 

to the slowly vwing relationships between soil textwe and hydraulic prqet-ties for high sand 

contents governed by the PTFs. 



Evidence that the spatial differences in soil- textwe &om PEST-Noah also have physical 

meaning is present In Fig. 5 a& Table I. For example, sites 2 a& 7 are the extxemes In 

optimized soil tex?wes &om lowest (72 percent) to highest (1-00 percent) sand percenbge. 

Measurements at these sites also support that site 7 is sandiest, and site 2 has the highest mixme 

of silt and clay. PEST-Noah follows the same trend at site 2, estimating a significant silt 

percentage which, in effect, allows the sand percentage to be lower. Inspecion ofthe soil dqing 

paBems obsewed at these sites d e g  M90 co&ms that at site 2 there is higher overall soil 

moistme & a more consistent but slew &down compwed with site 7. These characteristics 

and subtle differences in the &ing e w e s  are responsible for PEST-Noah estimating a less 

sandy soil at site 2, which is representative of the &sewed heal soils. 

To get a better feel for the physical appkability of the parameters themselves, Table 2 

presents hydraulic psameters degved &om FAO, STATSGO, and SSUR60 soil b o h p  tables, 

a newal wtwork+ased PTF (ROSETTA; % h a p  et al. I998), PEST-Noah using PTFs, & 

measwements made during 2002 (khaap and Shwse, 2004) and 2004 (NAME). The FA0 soil 

type fix all 8 Metflux sites is sandy loam, STAT- is loamy sad ,  and the finer resolution 

SSURGO data indicates 3 different soil types across &e Metflux sites. As a result, there is 

significant disagreement in hydraulic prope&ies amongst these lookup tables alone. 

The PEST-No& parameters fall w i t h  the range of established datasets and measwements, 

yet there remain significant differences between ~~p table and calibrated hydraulk propedes. 

This is due to the ability of the PTF approitch In Noah to result in a unique (but realistic) soil 

type that rigid lookup tables camat desc~be. The ROSETTA PTF model suggests pstrameters 

that are konsistent for a sandy soil a ~ d  wih obsewsttions, and indicate &is particular PTF may 

not be appropriate for this region. Based on the kprovements in simulated soil moistwe 



exhibited by PEST-Noah presented exlier, the PEST-Noah so-il textures and PTFs appear to be 

the most accurate. 

It is also impo&nt to note that the large spread of hy&aalic properties across data sources in 

Table 2 is a h t i o n  of differences in way e s h  property is estimated and what each represents. 

For example, Ksaf values of 250 cm d-' (NAME 2004) are estimated &om soil samples &r 

laboratory conditions, even though actual precipitation rates could never be ~ g h  enough to 

obsewe similar saturation values in the field. Fwther, while the ROSETTA model suggests 

values for Ksaf that x e  an order of magnitude lower t h  k s e  calculated in &e labomtory (and 

may be closer to a m e  satwated value O b ~ e ~ e d  in nature), such values result in Inaccurate 

simulations of soil moisture when employed In Noah. Overall, it is the combination of an 

accurate soil type representation that creates the range a d  scaEing of hydraulic properties a& the 

physics of the LSM that deternines the mest appropriate parameters in this case. 

PEST-Noah suggests a unique soil. type that also corresponds well with &senrations (Table 

2; Ksat and 8,). Although the model is no* perfect, the limitations ~f the Noah soil physics are not 

significant emugh to deter estimates of physically meanhghl soil prope&es. On the contrary, 

previous attempts at model calibration in the region have yielded parameter val~es that lie well 

outside measured values, and as such could ody be Interpreted as 'effective values' that a h b  

significantly more inherent model or forcing data deficiewies than they do represent real soil 

properties. For example, Scott et al. (2000) found values of2.5 x 1€Y6 and 3.7 x 16~ d1 for Ksat 

a& 0.25 a d  0.23 m3m3 for porosity at Kendall stnd LH, using a model calibration approach. 

Using the PTFs, these Ksaf values correspond to a soil textwe of 39 percent sand, and the porosiq 

values are so low that a soil type carmot even be derived. 



From a broader perspective, it is impomnt to assess wkther PEST-derived soil parameters 

can be employed in Noah and represent conditions at WGEW over longer timesales. Therefore, 

the soil textmes optimized from the M90 period were used to m Noah at #endall and LH over 

the 2002-4 evaluation period. Figme 6 shows the soil moisture simulated by PEST-Noah over a 

544ay period in the summer of 2003 compared with insitu obsemsltions &om VikI probes 

s ~ o ~ d i n g  LH and Kendall. Simulations with optimized parmeters (RMSE = 2.4/2.7, Bias = - 

0.71-1.9 percent for LH and Kedall) perfom remarkably well compared to h s e  using FA0 

soils @MSE = 5.7h3.9, Bias = 5.W13.3 percent) over the extended period emompassing 

ntmerous precipitation and drydown events. Ome again, this highlights the ability of PEST to 

adjust the dynamic range of soil moistwe simulated by Noah a& effectively respond to  

precipitation events, a& suppofis the use of optimized soil propexties across this watershed for 

seasonal fstnd longer) dwations; 

b. Temporal Sampling of PBMR Images 

The high temporal resolution of the PBMa imagery caphes a complete soil wing cycle 

fw this region. To assess the header applicability of the me-logy described above, it is 

useful to look at precisely how maw and which PBMR images are needed for accurate 

calibratbn. The sensitivity of PEST-Noah to the n-t~mber of PBMR obsemakns was tested by 

testing at all possible combinations of image in the calibration process. Figme 6a shows &he 

errof. in simulated versus obsemed soil moistwe at Kendall fo~.  each of the image combinations 

used in PEST-Noah. Kendall was chosen as a representative site because it exhibits the largest 

range of soil moistme tbrmghout the period and also was more difficult to calibrate due to 2 

significant precipitation events and a strong drydown in between. 



These results show &at there is a significant reduction in W S E  (4 standard deviation) 

once three or more images are used in the cdilxation. There are fewer number of dab points for 

single Images because many of those simulations were unable to converge with only one 

observation. What is also evident is &ere is a large amount of scatter or v&ability when using 

one or two Images, but for three or greater all the po&s collapse Mcating &at it does not 

matter which images are kcl&d. Note that the error using Noah with FA0 soils is over 2 times 

larger &an even the worst PEST-Noah simulations using a single PBMR image. 

The other main factor in the success of PEST-Noah is what portion of the soil dqwg curye 

(i.e. dynamic range) is captwed by the PBMR images. Figure 6b shows the error in simulated 

soil moistwe against the range in mil moistwe captwed by the image combinations desribed 

above. The results look similar to Fig. 621, and suggest that errors are significantly reduced if the 

images used capture at least 5 percent (vo-Itmetric} v&ability in soil moisture d&g a dxy'down 

period. When the &I1 dynamic range in soil moislme is eaptwed by the PBMR Images, the 

W S E  and bias (not shown} in PEST-Noah simulations are minimized, and axe -5 times lower 

than using FA0 soils. 

Analyses also indicate t t :  the s e e d  PBMR Image (by 214) is the most critical 

obsemation to &luck in the calibration. This image was acquired immediately following a 

mhf'aB event (Fig. la) and represents the maximum value of soil moisture d d g  the period. 

Out of& 7 simulations when PEST-Noah was unable to eonverge on a solution (i.e. not enough 

infomation was corning from the observations), a11 o c c r e d  when day 214 was not included. 

More importantly, out of the simulations using 5 w t  of 6 images, the only one unable to 

converge was with day 214 omitted. Error analyses (not shown) also support the Impo&mce of 

kluding day 214, & the Improvement in calibrations when this 'wet' image is included. 



An independent test of the sensitivity of PEST-Noah to the choke of PBMR images was also 

conducted. PEST-Noah calibrations were performed for the ealy pad of the M90 period using 

only the fmt 2 or 3 PBMR images, then evaluating Noah over the remainder of the period with 

the optimized soil textwe as input. The RMSE in simulated soil moistme using this app~oaeh- are 

plotted almgside the dependent results in Fig. 7, stnd are below 2 percent and: similar to those 

from calibrating and evaluakg the whole M90 period. This suggests that on very sho& temporal 

scales, PEST-Noah could be used with a few images early In the period to calibrate and estimate 

soil textwe, which could then be used to improve simulations going forward without requkkg 

additional images. This type of approach mimics that of an operational and dab-limited 

approach such as that ofthe proj-ect. 

Overall, these results demonsbate that the majority of the improvement using PEST comes 

from calibrating the overall magnitude md dynamic range of soil: moistme by adjwing the s a d  

and clay contents. Also, PEST-Noah significantly reduces enors in simulated soil moisture 

regardless of the nmber and which images used. However, the calibration is most xcwate 

when you k lude  more than two images in the calibration process, or at least one or two images 

that captwe and represent the observed range of soil moistme d&g a drying cycle. 

c. 2003 Calibration Experiments 

The development of the delta index allows us to test the PEST-Noah approach using active 

radar imageq. RADARSAT-1 images were acquired over the WGEW d&g July, August, a d  

September 2003 that cover a larger temporal and spatial extent than the PBMR images during the 

M90 period (Fig. 8). As described earlier, the Delta Index dab had to be aggregated &om 40 to 

2 10 280 meter resolution to reduce the impact of speckle (amplsed by the high rock content 

of the soils in this region) on the soil moisture retrievals. PEST-Noah was stil m with 



precipitathn a& land cover data at 40 meter resolution, and therefore required experiments to be 

conducted to c o ~ %  the appropriateness of applying 210 stnd 280 meter resolution data from 

active radar to that of a 40 meter pixel. 

Analyses showed that the maximum differences in obfewed PBMR soil- moistwe wit%- a 

280 m2 pixel s ~ o ~ i n g  each Metflux site were less than 2 percent and well within instntment 

en-or (rt 5 percent). PEST-Noah was then m individually over 7x7 points (to match the 

resolution of the delta index} s w m d i n g  the KenfEall site d-trring the M90 period using the 40 

meter PBMR data to calibrate. Even at the site with the largest precipitation, l a  cover, and soil 

moisture gradients (Kendall), the degree of spatial heterogeneity on the scale of 280 m2 does not 

lead to significant differences in soil properties estimated by PEST-No&. The remaining sites 

are even more u&fom in natwe, which therefore gives confidence to using the 210 and 280 

meter delta index for LH a& other sites in 40 meter PEST-Noah calibmtions. 

To cover the extended period between active radar overpasses, PEST-Noah was m from 30 

Jme - 15 September 2003 using the interpolated precipitation and Kendall forcing data as for the 

2003 evaluations described prevhusly. For the Kendall site, PEST-Noah converged on a 

solution of 100 percent sandy soil for both the 210 and 280 meter images fcompa~ed with 89 

percent s a d ;  11 percent day in M90). At LH, the optimized values for s a d ,  clay, and silt were 

28, 72, and 0 percent using 210 meter data, and 20, 45, and 35 percent using 280 meter 4ata 

fcompa~ed with 99 percent sand in M90). 

Figure 9a shows that results from Kendall are comparable to the &i& soil moisture 

obsewahns, and although &is calibration suggests a slightly sandier soil than M90, the 

differences in soil moistme and hykaulic properties are negligible as discussed in Sectim 3a. 

Following the discussion Fn Section 3b, the differences in the M90 and 2003 period calibrations 



are primarily due to the lower magnitude range of so2 moisture captured by the delta index 

(0.153 max, 0.032 min) compared to the PBMR (0.169 max, 0.075 min). That the first image 

cokides  with a rainfall event means the soil type is less relevant or sensitive to calibration on 

this date, and actually reflects the need to dry out to match the very low soil moistwes given in 

the next two images. 

The PEST-Noah results for LH (Fig. 9b) suggest considerable differences in calibrations- 

using the delta index compared with observations and the PBMR calibrations, with a much more 

clayey soil and higher soil moistwe throughout the period. Closer inspection of $he in-situ 

observatims of soil moisture over the period shows a comparable range to Kendall. However, 

the first delta index image (at both 210 and 280 meters) gives a rather wet soil moistwe estimate 

compared to observations, while the latter 2 images are relatively dry and alone would suggest a -  

sandy soil as in previous calibrations. In order to match the high moistwe content of the fixst 
1 

image, PEST-Noah is forced to simulate a high clay content which has a higher holding capacity 

and sh-ength. 

The first radar oveqxtss is m e  than 4 days after the last significant rainfall, which means 

the soil has had significant h e  to dry out particularly for this region. In fact, studies have 

shown that the typical response h e  to rainfall and complete drydown occurs withk 2-3 days (or 

less, depending on ground cover) in WGEW due to the shallow moisture reservoir and high bzse 

soil evaporation rates (Shamir et al. 2005; Kwc and Small 2004). That previous studies, M90 

observations (PBMR and in-sib), and in-situ observations a11 depict a much more rapidly drying 

soil- at the site suggests that the delta index data may not be accurate on this date. 

High frequency (active) microwave retrievals are difficult to obtain in regions with hi& 

rock contenl: due to increased backscatter and a weaker relationship with soil moisture (Jackson 



1992) even when aggregated to 280 meter resolution, and thus remains an issue. Clearly, if there 

were more images available, particularly during and immediately following rainfall events, 

PEST-Noah would be able to perform better as for the M90 case. Houser et al. (1998) made 

similar recommendations for data assimilation in this region, suggesting that soil moisture 

observations are required at minimum once every storm event. For the 2003 experiments, it is 

likely a combination of insufficient temporal sampling and the limited spatial resolution of active 

remote sensing (through the signal-to-noise ratio) in the soil moisture retrieval process that 

resulted in poor calibration at LH. 

5. Dismssiolr 

As detailed point or regional surface characteristics are not always availabl~, it is aseikl to 

examhe the calibration technique at lower spatial resolution. Figure 10 shows simulated soil 

moisture from default (FAO) Noah and PEST-Noah simulations compared with the PBMR data 

for the enke PBMR domain on DOY 221. Tn effect, PEST-Noah is minimizing the mean error 

in simulated versus observed soil moisture across this region. The last PBMR date was chosen 

because it represents the cumulative effect of calibrated parameters on improving soil moisture 

throughout the M90 period, lowering bo$h RMSE and bias from -10 to 3 percent. W l e  there is 

only one set of opthized soil texture and hydraulic parameters estimated for the entire domain 

(92 percent sand), the significant improvements indicate that on watershed scales with coarser 

inputs the calibration process can still successful and potentially useful for deriving meaningful 

soils data. 

Overall, PEST-Noah is able to- identi& the dominating soil texture and hydraulic properties 

of the WGEW. It is also important to emphasize that the calibration approach was designed to 

focus on calibrating a consistent set of hydraulic parameters that would retain the physical 



characteristics of the region in question. Sophisticated techniques have been successful in 

calibrating complex models, but yield 'effective' parameters that have lost physical meaning. 

This practice is troubling for the future development and utilization of complex LSMs with 

respect to the applicability of new and improved parameter data that are likely to be available 

from remote sensing techniques. As LSMs become increasingly complex, the ability to retain 

physically meaningful and measurable parameters needs to be addressed in parallel, in a manner 

similar to this study. 

However, it is accepted that some of the errors in model physics, forcing, and 

pararneterizations are accounted for in PEST-Noah calibrations as well, and should be addressed 

(Scott et al. 2000). While the approach taken here is rather simple compared to complex data 

assimilation or multi-objective parameter estimation techniques, it is easier to identify errors in 

the model. One deficiency in the Noah model was identified, where the bare soil evaporation 

factor should be adjusted (lowered) to allow for greater evaporation rates and soil drying for 

semi-arid regions with sparse vegetation. The original value, when combined with FAO, 

STATSGO, and SSURGO parameters in the default simulations led to soils that were 

consistently too wet for this region (as shown in the results). 

It has been noted in numerous studies of the WGEW that there is an unusually high rock 

fragment content of the upper soil layers (and is not typically accounted for in categorical lookup 

tables or PTFs). The unique soil type estimated by PEST-Noah at the Metflux sites is a primarily 

sandy soil that is slightly less porous and more conductive than that observed. In fact, this may 

be an attempt to indirectly account for the high rock content in Noah by adjusting the parameters 

to match that of a rocky, yet sandy, soil (i.e. less pore space and increasing flow paths in the soil 



volume). A simple formulation to account for rock content in calculating hydraulic parameters is 

currently being implemented into Noah to test the sensitivity of the calibrations. 

These issues demonstrates the potential for remote sensing data to also offer information on 

model errors and biases (although small in this case), and advanced techniques such as those 

offered by Bach and Mauser (2003) and Ines and Droogers (2002) to find and quantify 

systematic errors in LSM physics. In particular, the recent and ongoing work of Amramowitz et 

al. (2006) and the Model Parameter Estimation Experiment (MOPEX, Duan et al. 2006) are 

promising new avenues of research that are working to determine the applicability of studies 

such as this one to be applied to other LSMs and locations. 

6. Conclusions 

This paper has examined a straightforward method of using microwave remote sensing of 

near-surface soil moisture to calibrate an offline land surface model, and in the process infer soil 

texture and hydraulic properties at high spatial resolutions. This approach expands and improves 

upon a wide body of previous work by incorporating pedotransfer functions into the LSM to 

ensure consistent and physically meaningful soil parameters, and by addressing the temporal 

sampling of remote sensing imagery needed for successful calibration. As a testbed for the 

ARMS project, this research was able to retrieve soil texture and property estimates that 

correspond well with observed soils over the WGEW. Once estimated for this region, these 

parameters were also used to simulate soil moisture over seasonal time scales with a great deal of 

accuracy compared to simulations with default soils and soil properties based on lookup tables. 

Specific results of this study include the following: 

1) Limited microwave retrievals of near-surface soil moisture can be used to calibrate a 

3 -3 LSM to within .02 m m accuracy at high temporal and spatial resolutions. 



2) Optimizing soil hydraulic properties using PTFs gives better and more physically 

meaningful results than a one-at-a-time parameter estimation approach. 

3) Errors in the calibration process are minimized when there are at least 3 images included 

that represent the typical range of moisture exhibited by the soil type during a drydown 

period. 

4) Independent tests indicate that this methodlogy can be successful in calibrating LSMs 

over seasonal and longer timescales for use in specialized prediction systems. 

Overall, these results suggest that ARMS could be applied at remote locations to simulate 

soil moisture in a semi-operational context with limited remote sensing inputs. Simulations that 

expand the 8 Metflux sites tested here to the fill WGEW at 40m resolution of PEST-Noah are 

ongoing, from which fully distributed maps of soil texture and hydraulic properties will be 

produced. Alternatively, one could use the PEST-Noah approach after stratifying the watershed 

using high resolution soils, land cover, or similar data to further examine the spatial distribution 

of soil properties. Distributed soil property information can then be compared with existing soils 

maps and the approach repeated and applied to other LSMs and regions. 

Finally, the ability of active remote sensing and the delta index technique to retieve soil 

moisture on less than watershed scales needs to be investigated M e r  before incorporated in an 

ARMS-type of approach. While results here have shown that 3 images are sufficient to calibrate 

and obtain soils information, the soil moisture estimates must be accurate (within -3-5 percent) 

and capture a typical dynamic range of soil moisture for the region in question. The spatial 

resolution of currently orbiting active remote sensing, determined in part by the signal-to-noise 

ratio of the measurement, may be a limiting issue for this application. Also, the accuracy of soil 

moisture retrieval fiom active remote sensing through approaches like the delta index or other 



retrieval methods (e.g. Alvarez-Mozos et al., 2005) needs further investigation before it can be 

incorporated with confidence. Future work on the ARMS project will include testing the 

methodology and evaluating the delta index at cold land, high relief, and highly coupled regions 

of the U.S., where the calibration process should yield new insight [about?] the images and 

accuracy required and influence of model physics for diverse - surface conditions. 

This work was supported by the Army Remote Moisture System project (Grant #?). Special 

thanks go to Sujay Kumar and the LIS support team at NASA-GSFC. 
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Table 1: Optimized sand, silt, and clay percentages estimated fiom a) PEST-Noah 
simulations at the eight Metflux sites compared with b) those observed by Schmugge et 
al. (1994) and during the NAME (Higgins et al. 2006) in 2004, and associated hydraulic 
properties computed for each using the PTFs employed in Noah (Cosby et al. 1984). 
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Figures 

PBMR observed on Day 214 

Figure 1 : The Walnut Gulch Experimental Watershed in southeastern Arizona (outlined 
in black) covers 148 km2 and is heavily instrumented with meteorological, flux, and rain 
gauge data. The M90 experiment included 8 Metflux sites (.) of which Lucky Hills (Site 
1) and Kendall (Site 5) were supersites. Overlain are estimates of volumetric soil 
moisture (m3 mW3 * 100) derived from Push Broom Microwave Radiometer measurements 
on DOY 214. 
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Figure 2: Soil moisture in the 0-5 cm layer at the a) Kendall and b) Lucky Hills sites 
during the Monsoon '90 study period hom (D) PBMR retrievals (Schrnugge et al. 1994) 
and (A) gravimetric measurements with standard deviations of the 3 measurements made 
at each site. Also plotted are the 6-hourly precipitation totals during the period at each 
site as derived from the 84-gauge interpolated dataset over WGEW (Garcia et al. 2006) 
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Figure 3: Simulated 0-5 cm soil moisture ftom default and PEST-calibrated Noah 
simulations for the a) Kendall and b) Lucky Hills sites during the M90 period. 
Measurements of soil moisture from PBMR and gravimetric sensors on the 6 
optimization dates are also shown. 
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Figure 4: Bias and RMSE in simulated versus observed (PBMR) 0-5 cm soil moisture 
during the M90 period using default (FAO; gray) and optimized (PEST; black) soil 
properties at each Metflux site. 
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Figure 6: Near-surface soil moisture simulated by Noah using PEST-derived soil 
properties and default soil parameters (FAO) compared against Vitel probe observations 
at the a) Kendall and b) Lucky Hills sites during summer 2003. 
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Figure 7: Errors in simulated versus observed 0-5 cm soil moisture at the Kendall site for 
varying a) numbers of PBMR images used in PEST-Noah and b) ranges of soil moisture 
covered by these images. The lightly shaded points indicate simulations that were 
calibrated using only the first two and three PBMR images. 
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Figure 8: Soil moisture (m3 m-3) estimated £rom RADARSAT-1 active microwave 
measurements over the WGEW on a) 29 July, b) 22 August, and c) 15 September 2003. 
Backscatter was aggregated from 7 to 280 meters to reduce the effects of speckle and 
converted to soil moisture using the delta index image differencing technique (Thoma et 
al. 2006). 
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Figure 9: Near-surface soil moisture simulated by PEST-Noah using 210 and 280 meter 
Delta Index as observations at the a) Kendall and b) Lucky Hills sites during summer 
2003. Also shown are observations of soil moisture from Vitel probes surrounding each 
location. 
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Figure 10: RMSE and bias in simulated versus observed 0-5 cm soil moisture using a) 
default (FAO) soils and b) soil properties optimized using PEST-Noah on DOY 221. A 
single set of parameters were optimized for the entire PBMR domain. 




