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Presentation Outline
Purpose

To report progress in understanding of spacecraft-
environment interactions resulting directly from 
International Space Station (ISS) development and 
flight operations 

Agenda
Spacecraft Environment Interactions; why do we 
care?

1) Safety, Reliability, and Mission Success
a) ISS system performance 
verification before flight
b) Flight operations planning 
and anomaly resolution
c) Capture of new knowledge 
and tools for application to 
future programs

The ISS Space Flight Environment
1) Environment factors affecting 
spacecraft systems
2) ISS flight environments

Progress in Spacecraft-Environment Interactions
1) ISS driven knowledge and products

Value to future space exploration programs

The Floating Potential Measurement Unit
(FPMU) just after installation, Aug. 3, 2006

Floating Potential Measurement 
Unit (FPMU)
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Spacecraft Environment Interactions 
Why do we care?

Safety, Reliability, and Mission Success
Verification of spacecraft design through the mission life cycle
environments
Which space environment processes or factors can affect:

Critical Must-work/Must-not-work system performance requirements?
Guidance navigation and control
Communications
Avionics reliability
Propulsion control
Structural integrity

Requirements for longevity of spacecraft materials and components?
Thermal control surfaces
Photovoltaic power systems
Windows and optics
Spacecraft structure 

Whenever possible, detrimental spacecraft-environment 
interactions are identified and eliminated early in spacecraft 
design and development – minimize cost/risk
Any remaining detrimental spacecraft-environment 
interactions must be actively managed with specific 
hardware and procedures    
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The ISS Space Flight Environment
Meteors and orbital debris
EMI/EMC
Ionizing radiation

Galactic cosmic rays 
geomagnetic shielding

Trapped Radiation (Van Allen Belts)
Solar Energetic Particle Events

geomagnetic shielding 
Ionospheric Plasma (spacecraft charging)
Auroral electrons (spacecraft charging)
Geomagnetic field (spacecraft charging and radiation environment
Solar UV/VUV
Neutral atmosphere

Atomic Oxygen
Thermal vacuum
Spacecraft Induced Environments

Secondary particle radiation environments (structural shielding mass -
cosmic ray interactions)
Floating Potential (magnetic induction and SAW driven charging)
Surface contamination from materials out-gassing
Surface contamination/erosion from thruster plume impingement
Surface contamination/mechanical damage from fluid venting stream 
impingement or re-contact
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The Geospace Environment

Source, NASA GSFC LWS

Source, NASA MSFC Space Environments Effects Program

Source, NASA JSC, ISS Program Office
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Global geomagnetic cutoff rigidity (Epoch 2000) ( www.cosmicrays.org)

Ferrari, A., Sala, P. R.; 
“Treating High Energy 
Showers,” in Proceedings of 
the "Training Course on the 
Use of MCNP in Radiation 
Protection and Dosimetry", 
Bologna - Italy, May 13-16 
1996, G.~Gualdrini and 
L.~Casalini eds, ENEA ISBN 
88-8286-000-1, p 231-261 
(1998) 
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Radiation Belts near ISS nominal operations altitude 

( worst case design/verification environment)

Trapped radiation: Protons 
at 500 km altitude (SEE and 
TID to materials and 
electronics)

Trapped radiation: Electrons 
at 500 km altitude (near 
surface TID to materials and 
PV cells)

Source – ESA/SPENVIS
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LET Flux Comparison - Interplanetary vs LEO at 28.5 deg & 51.6 deg
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CREME-96 calculations with shielding mass as mils Al in a spherical configuration.  Note that the
shielding mass range is low for any manned spacecraft. 1000 mils Al = 7 grams/cm2.  ISS nominal 
shielding mass inside the US Lab or Service Module is on the order of 40 grams/cm2.   However, 
secondary particle production by cosmic ray interaction with structural shielding materials makes 
thicker shielding less effective. 
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Single Event Effects

Ionizing particle passage through solid state 
device generates charge carriers causing single 
event: 1) upset, 2) latch-up, 3) gate rupture, 4, 
burn-out,  and 5) transients

Fast charged particle and proton (neutron) initiated 
nuclear reactions

Depending on the tract, one charged 
particle can upset more than one device
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Notes:
1) ‘ZOE’ denotes TDRSS Zone of   Exclusion.  
Data dropouts likely in this region.
2) ‘MBU’ = Multiple Bit Upset.
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Induced SEE Environment:
ISS Multiplexer/De-multiplexer MDM CMOS DRAM 

Performance – Shielding Mass Effects

MDM 1Mx4 DRAM Structural Shielding Distributions.

ISS Internal/External MDM DRAM soft upset events and comparison 
of on-orbit rates with predictions of  Scott Effective Flux 
Approach (SEFA) and FOM approach using median shielding values 
for the MRQ estimate (on-orbit count is the total count including 
correctable multi-bit events)

MDM: Median 
Shielding

On-orbit 
SEU Count
SEU/238 days 

SEFA SEU 
Count
SEU/238 days 

FOM SEU 
Count
SEU/238 days 

Lab-1: 40 g/cm2 488 966 468

Lab-1: 40 g/cm2 490 966 468

P1-2:  10g/cm2 536 6309 1673

S1-1: 10g/cm2 488 6309 1673
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2005-2006 SDRAM Bit Error Location Map
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ISS Neutral Atmosphere Environment

Variation of the MSISE-90 mean concentration profile of the atmosphere constituents 
N2, O, O2, He, Ar, H, and N with altitude for mean solar and geomagnetic activities (ESA/SPENVIS)

(Nominal ISS operational altitude range)
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Surface degradation of exposed 
external materials

Atomic oxygen
Materials reactivity and erosion rates

Select non-reactive materials whenever possible
Development of protective coatings and less 
reactive materials

Solar UV/VUV
Near surface photochemical damage

Ionizing radiation (Van Allen Belt trapped 
electrons)

Near surface radiochemical damage
ISS has experienced no serious failures 
attributable to these causes during the first 
10 years of flight 
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Flight 12A.1 ISS attitude control anomaly
Geomagnetic storm driven neutral atmosphere density change 

Dec. 15, 2006
• Conditions:

• Unusual solar activity during Flight 12A.1 
resulted in a major coronal mass ejection 
(CME) which impacted the Earth late on 
December 14, 2006.

• CME impact produced a twelve hour period of 
severe geomagnetic storming (Kp > 6).

• GN&C Activities
• Momentum manager startup attempted on 

December 15, 2006 at ~01:34UT and 
~03:11UT.

• Both times momentum rose above 90% 
and flight controllers moded ISS to 
thruster control.

• CMG control restored at 21:40UT on 
December 15, 2006.

daily 

Year Day Julian Day Daily F10.7
Trailing 81day 
F10.7 average 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 Ap

2006 14 348 93.4 81.9 3.0 2.3 2.0 2.0 5.0 5.3 5.3 7.7 47
2006 15 349 87.1 82.1 8.3 7.7 6.7 5.7 6.0 4.0 4.0 3.7 94
2006 16 350 82.3 82.3 3.0 3.3 1.3 1.3 0.7 2.7 3.3 3.3 12

Observed F10.7 and Ap Values 3-Hourly Kp

Density Profiles vs Kp
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MSFC Short-Term Atmospheric (Solar) Prediction Tool

Used for ISS altitude planning in the 90 - 180 day time frame.
Uses statistical properties of variations of solar flux, F10.7, at different 
points in the solar cycle.
Design Atmosphere (SSP30425) provides little latitude for taking of 
advantage of decreased solar activity.
MSFC monthly predictions are 13-month smoothed and react slowly to 
large changes in solar activity.
Existing short-term predictions are shown to be as hit or miss as the 
long-term predictions.



18

60 80 100 120 140 160 180 200 220 240 260
0

5

10

15

20

25

30

Smoothed F10.7

S.
D

. o
f M

on
th

ly
 V

al
ue

s

g g

1940 1950 1960 1970 1980 1990 2000 2010
50

100

150

200

250

300

Monthly F10
13 Month Average

Date

F1
0.

7

933.5

116.92
7.10

1

30
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≈
FMonthly

σ

Monthly deviations from 13 month smoothed

Output of Short-Term Atmospheric
Prediction Tool



19

Meteor Shower Forecasting

MSFC’s Meteoroid Environment Office has NASA-wide 
responsibility for defining the meteoroid environment for 

spacecraft design and operations
An annual forecast of meteor shower activity is generated using MSFC’s Meteor Stream 
Model and provided to various spacecraft operators.  Customization to the appropriate 
orbit is performed for certain users.
ISS uses the meteor shower forecast to schedule EVAs and other sensitive operations
Meteor Stream Model:

Flies various Earth-crossing comets around the sun, ejecting particles at appropriate 
time with speed, direction, size distributions
Particles are propagated with a Radau integrator including planetary perturbations, 
solar radiation pressure and Poynting-Robertson drag, and relativistic effects.
Numbers of particles passing near the Earth’s orbital position are used to estimate 
meteoroid flux versus date/time for spacecraft operations
Model has been extensively tested on observed meteor storms/outbursts in the 
historical record
Model is used to plan/constrain ISS flight operations.

1.Progress 
2.Kvant
3.Base Block 
4.Kvant-2 
5.Priroda
6.Soyuz 
7.Kristall
8.Spektr

9.Docking Module

Space Station Mir suffered 
more damage from a single 
severe meteor shower than 
from 5 years of flihgt n the 
nominal orbital MM/OD 
environment
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The orbit of comet 55P Tempel-Tuttle in a diagram by Yeomans et 
al. (1996). The planet positions are shown for February 28, 1998, 
when the comet passed the Sun most recently. The comet travels 
every 33.3 years between the orbits of Earth and Uranus. Right 
shows an all-sky view of the Leonid outburst from Modra
Observatory in a 4 hour exposure on November 17, 1998.

http://leonid.arc.nasa.gov/meteor.html
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2007 Aurigids
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Orbital motion of Leonid debris streams

“The movie shows Leonid streams from Temple-Tuttle 2. The 
different colors are streams ejected at different perihelion passes 
which occur every 33 years. They are perturbed differently and thus 
"stratify" somewhat which is what makes stream/storm forecasting so 
interesting”.  MSFC/Dr. Rob Suggs
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ISS Spacecraft Charging Interactions
ISS operates in the F2 region of Earth’s ionosphere (a low- temperature high-density 
plasma)

51.6 degree orbital inclination
350 to 400 kilometer orbital altitude
Spacecraft-environment interactions in the ISS operations environment lead to spacecraft 
electrical charging and possibly hazards arcing events

Possible ISS Vehicle hazards
EMI/EMC effects on avionics and pyrotechnics
Thermal control surface degradation 

Possible crew EVA hazards – arcing could endanger EVA crewmembers
By design, ISS is equipped with 2 Plasma Contactor Units (PCUs) to control possible 
spacecraft charging hazards 

Primary physical causes of ISS Spacecraft charging processes
Interaction of ionospheric plasma with 160 V USOS Solar Array Wings (SAWs) in 
negative polarity electrical system common (ground) EPS configuration
Magnetic induction voltages (like electrodynamic tether) on a large vehicle at high latitude 
(50Volts truss-tip to truss-tip at assembly complete)
Energetic Auroral electron streams (associated with geomagnetic storms) striking Vehicle 
at high latitudes (low probability, but not zero, based US DoD/ESA/RSA LEO satellite 
charging data) 

ISS charging severity (floating potential (FP) relative to ionospheric plasma) depends on 
ISS flight attitude, SAW/EPS configuration, and orbital flight path/Beta angle, as well as 
the natural variability of the ionosphere and magnetosphere.

The amount of charging seen on a particular day (with PCUs off) depends on both 
the state of the natural environment along the Vehicle flight path and Vehicle 
attitude/configuration and can exhibit substantial variation
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ISS Ionospheric Plasma Environment

(Nominal ISS operational altitude range)
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IRI vs Satellite Measurements: Ionospheric Variability

Blue: IRI

Green: +/- 68%

Yellow:  +/- 95%

Red: +/- 99.9%

Ne, Te variability model derived from analysis of percentile deviations 
of AE, DE data about corresponding IRI-2001 estimates

Pre-sunrise, daytime, and post-sunset (SZA sunrise + 20 deg > SZA,  SZA sunset + 20 deg > SZA),  
and ISS regime (|lat| < 55, 350 km < z < 450 km) values only.   Night values neglected.
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Z component of the Geomagnetic Field at ISS nominal 
operations altitude (VXB.L magnetic induction voltage)

Magnetic Field Bz (Gauss)
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ISS Orbit - March 29, 2001 (20:04 GMT)
Ionosphere Model (IRI 2001) ISS position at time: 20:04 GMT; Latitude: 48.8; Longitude: 115.2

Plasma Density (#/m^3)

Plasma Temperature (eV)

ISS Orbit and Position
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Plasma Contactor Units

Floating Potential (magnetic induction and SAW driven charging)
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Do PCU Emission Currents Imply ISS 
Charging?  

Yes – PCU emission currents demonstrate PV array driven charging
Eclipse Exit – PV array driven contribution

See figure below
High Latitude – Magnetic Induction pick-up by conducting area

Note the substantial daily and seasonal variation 
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Does PV array and conducting structure 
charge collection lead to ISS charging?

Yes – Validated floating potential measurements at the FPP measurement 
point with the plasma contactor system off.  April 11, 2001.  Shows both PV 
array and magnetic induction contributions.  
Note the variability along the ISS flight path on this day.   
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160V Solar Array Electron Collection Drives ISS to Negative Potentials:

PV array driven charging

ionosphere
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Effectiveness of ion collection by ram oriented conducting 
structure in mitigation of  PV array driven charging

Example Ni = Ne =106/cc

Ionospheric Electron Current 
Collected by 160 V PV Arrays 

in milliamps

Required Area of Ram 
Oriented Ion Collection 

Surface in square meters
10 8

30 24

60 48

100 80
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Assessment and Prediction of ISS Charging 
and Related Risks

Pre-flight assessment of the severity of ISS SAW/EPS driven spacecraft driven 
charging were necessarily inconclusive

Low fidelity test articles and test systems
Uncertainty drives worst case design
Plasma Contactors were installed on ISS to assure control of any charging processes 

Early flight data indicated that:
Charging processes occur and are less severe and occur less frequently than earlier worst 
case assessments suggested
A first-principle model of ISS charging might be successfully developed and verified using 
real flight data

NASA/Boeing/SAIC charging model, Plasma Interaction Model or PIM, developed and 
verified with:

PCU emission current data
Floating potential probe data
Most recently Floating Potential Measurement (FPMU) Unit Data

EMU suit electrical safety assessment
In parallel the electrical safety of the US EMU suit was re-evaluated in the ISS floating 
potential environment and a possible hazard needing control was identified
ISS floating potential must be less negative than -40V for safe EVA opertations

Results of model development and model verification campaigns
Charging - Arcing is not a credible threat to ISS hardware or systems
No PCU operations are required during non-EVA times
PCUs required for EVA operations through end-of-program
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FPMU FP vs. PIM Predictions
Regression Plots: x = PIM FP; y=FPMU FP

Nominal IRI 2001 ionosphere +1 σ worst case IRI 2001 ionosphere
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IRI Model at Millstone Hill ISR – 2006/220/08:

FPMU – ISR – IRI Te/Ne comparisons
ISS Altitude = 350 km
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Millstone Hill Fly-By
FPMU – ISR – IRI N/T comparisons
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Millstone Hill Fly-By
FPMU – ISR – IRI N/T comparisons
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ISS 13A: Worst Case Charging (see pg. 7)
All Solar Arrays Active, Eclipse Exit, PCUs off

Potential difference 
between ISS and 
local plasma 
environment (volts).

-46.6

-64.2
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ISS 13A Vehicle Charging Probability of Occurrence At Centerline – PCUs off
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ISS 15A: Worst Case Charging (see pg. 4)
All Solar Arrays Active, Eclipse Exit, PCUs off

Potential difference 
between ISS and 
local plasma 
environment (volts).
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ISS 15A Vehicle Charging Probability of Occurrence At 
Centerline – PCUs off
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07:55:03 UTC; Latitude = 49.9; Longitude = -139.0
Looking East

07:56:59 UTC;  Latitude = 47.3; Longitude= -128.8
Looking East Relative positions of ISS and NOAA-15 at 07:56 UTC

Relative positions of ISS and NOAA-14 at 07:56 UTC
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Induced Environments

•Surface contamination from materials out-gassing
•Surface contamination/erosion from thruster plume 
impingement
•Surface contamination/mechanical damage from fluid 
venting stream impingement or re-contact
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Proximity Operations

Soyuz Approach

Progress Separation
(Double-click blue square to start 
movie)
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SPIFEX Aluminum witness 
coupon showing craters 
from thruster plume droplets

SPIFEX Kapton witness 
coupon showing craters 
from thruster plume droplets

Thruster plume impingement erosion 
flight experiment: STS-64
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MLM Thruster Induced Erosion

Results for 100 seconds of Thruster Firing
with Thruster Canting

Thruster canting nadir-aft, θ = 0°
MLM Located on SM Nadir

Thruster canting nadir-aft, θ = 30°
MLM Located on SM Nadir

Surface Area Pitted (%)

Surface Area Pitted (%)

Initial MLM design has 0° of canting for 
roll control thrusters. In this configuration, 
solar array feathering is required to 
mitigate erosion effects.

Trade studies are being conducted to 
determine canting angles required to 
allow solar array tracking during MLM 
thruster operations.
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Orbiter Water Dump Plume: Model and Flight Comparison



52

Spacecraft self contamination:  molecular out-gassing 
and deposition - Columbus onto ISS - Original Analysis

Deposition 
(Å/yr)

Original analysis using worst 
case ASTM-E595 data 

NOT ASTM E 1559 test data
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Spacecraft self contamination:  molecular out-gassing 
and deposition - Columbus onto ISS - Final Analysis

Final analysis using ASTM-1559 data and 
NASAN II transport analysis
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Progress in Spacecraft Environment Interactions: ISS 
Products for the Future of Space Exploration – Part 1 

Ionizing Radiation
SEE environments at high structural shielding mass

Secondary particle production 
Low cost approach to avionics reliability  verification SEE
Spacecraft advanced technology development and test platform

ISS SEE/TID environments scalable to  interplanetary environments
Spacecraft Charging (Plasma) Assessment and Design Tools

Accurate, verified (flight and lab data) predictive models of high 
voltage SAW driven charging

NASA/Boeing/SAIC Plasma Interaction Model
ISS charging hazard assessment and management
Design of non-charging high voltage arrays

Accurate, verified ( flight/lab data) models of spacecraft 
electrostatic discharge processes for risk assessment

Plasma sheath as an active circuit element
Role of grounding/bonding and EMI/EMC requirements in mitigation
spacecraft charging effects. 

Demonstration of ISS as a valuable/accessible ionospheric and 
magnetospheric geophysical research platform

FPMU ISR comparisons
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Progress in Spacecraft Environment Interactions: ISS 
Products for the Future of Space Exploration – Part 2 

Meteor Storm Modeling and Prediction Tools
Generally applicable to interplanetary and lunar/planetary 
surface environments
Design/operate at minimum risk
Operations constraints and planning 

Near Term Solar Activity Forecast Tools
Neutral atmosphere density (satellite drag and torque) and 
atomic oxygen flux predictors for design and mission planning
Possibly near term ionsopheric conditions

Induced Environments
NASAN-III 

NASA/Boeing/ molecular outgassing contamination transport and 
deposition model with 3D visualization. 
Atomic oxygen flux/fluence
thruster vent/dump plume particle impingement, contamination effects, 
and verified surface damage assessments
Small medium velocity particle impact damage predictors
Assessment of re-contact after multiple orbits.  
Proximity operations planning
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