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Abstract 
Project Constellation implements NASA's 

vision for space exploration to expand human 
presence in our solar system. The engineering focus 
of this project is developing a system of systems 
architecture. This architecture allows for the 
incremental development of the overall program. 
Systems can be built and connected in a "Lego 
style" manner to generate configurations supporting 
various mission objectives. 

The-develepment of the avionics or control .. ---
----systems-of such a massive-project-will result in- -

concurrent engineering. Also, each system will have 
software and the need to communicate with other 
(possibly heterogeneous) systems. Fortunately, this 
design problem has already been solved during the 
creation and evolution of systems such as the 
Internet and the Department of Defense's successful 
effort to standardize distributed simulation (now 
IEEE 1516). The solution relies on the use of a 
standard layered software framework and a 
communication protocol. 

A standard framework and communication 
protocol is suggested for the development and 
maintenance of Project Constellation systems. The 
ARINC 653 standard is a great start for such a 
common software framework. This paper proposes 
a common system software framework that uses the 
Real Time Publish/Subscribe protocol for 
framework-to-framework communication to extend 
ARINC 653. 

It is highly recommended that such a 
framework be established before development. This 
is important for the success of concurrent 
engineering. The framework provides an 
infrastructure for general system services and is 
designed for flexibility to support a spiral 
development effort. 

1. Introduction 
NASA's plan to deploy a system of systems 

architecture to implement project Constellation 
requires the development of an adaptable and 
networked system. This architecture will contain 
hardware and software in every system of the 
collective. A wise plan of action would be first to 
develop a common fran1ework to allow for 
successful system integration and maintenance. 
This technique has been used to develop successful 
ventures such as the Internet and the Department of 
DeIense-'s(DODjaiStribute sunulation 
infrastructure. The Internet has a set 0 stan ards-­
including RFC 791 [1] and the DOD's distributed 
simulation standard that has evolved to IEEE 1516 
[2]. In each case, such an infrastructure has allowed 
for the integration and maintenance of a system of 
distributed heterogeneous platforms. 

This successful model can be used to provide 
the same benefits for NASA's future space systems. 
The creation of a standardized system software 
framework is recommended in support of this 
effort. ARINC 653 provides an infrastructure for 
safety-critical software and serves as an excellent 
starting point. This paper proposes a fran1ework that 
can be used to extend ARINC 653 to create the 
adaptable and networked systems required for the 
system of systems architecture. 

2. ARINC 653 Systems 
ARINC 653 is a software standard interface for 

avionics applications. The standard is intended to 
provide a platform for safety-critical systems. 
Central to the standard are the concepts of Space 
and Time Partitioning. Space Partitioning provides 
isolation for applications executing on the same 
computing platform. Applications are encapsulated 
in containers defined as partitions. Time 
Partitioning isolates the CPU time allocated to 
partitions using a time-slotted scheduler [3]. 
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ARINC 653 defines an Application/Executive 
(APEX) software interface between applications 
software and the Operating System [4]. The 
Application Programming Interface (APD provides 
support for partition management, process 
management, time management, inter-partition 
communication, intra-partition communication, and 
health monitoring [5]. COTS Real Time Operating 
System (RTOS) products are now providing 
ARINC 653 solutions. Most implementations use 
the memory management unit (MMU) of the target 
processor to implement Space Partitioning. Each 
partition contains its own application and OS. A 
central OS (partition manager) manages the 
collective of partitions and controls Time 
Partitioning (Figure 1). 
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Figure 1. ARINC 653 Architecture 

3. System Software 
System Software provides the infrastructure 

and services for applications in real time systems. It 
is composed of an OS and a software layer 
providing system control and application services. 
Each system in the NASA system of systems 
architecture will have a computer-processing 
platform that will require system software. It is 
likely that individual systems in the collective will 
be developed by various vendors. However, the 
system must fit together and work in a seamless 
manner. The creation of a standard system software 
framework can be instrumental in the success of 

ASA's new engineering task. Since system 
software provides the infrastructure for 
applications, NASA can provide a template to 

enforce a standard to ensure successful system 
integration. The template could be used to speed the 
development of new systems and provide a familiar 
architecture for understanding and maintaining 
existing systems. The template can be inlplemented 
as middleware to be distributed and deployed for 
future development efforts. This is similar in 
concept to the Run-Time Infrastructure (RTD that is 
used to implement IEEE 1516 standard for 
distributed simulation systems. The RTI is the 
middleware required to implement the High Level 
Architecture (HLA) [2]. 

ARINC 653 compatible RTOSs provide an 
excellent starting point to achieve the goal of 
standardized system software. First, the design is 
tailored towards the creation of safety-critical 
systems. Second, it provides a standard API to 
support system development. However, a RTOS is 
only a part of system software. The suggested 
fiamewor concept can e completed by tne-­
creation of an a TIona layer that m es use ofThT 
standard API and other RTOS support. For 
framework-to-framework communication, a 
standard protocol is required for data exchange. A 
successful and popular protocol used in real time 
distributed systems is Real Time Publish/Subscribe. 
In 2004, this protocol became an official standard 
[6] and has been used successfully in existing 
military platforms [7]. It is suggested that this 
protocol be used to support the distributed network 
required for the system of systems architecture. 

4. System Software Framework 
Every variation of computer software can be 

reduced to a common processing template. Inputs 
are acquired, processed, and the results made 
available for output. Typically, system software 
provides the mechanisms for input, output, and 
system flow control. Applications perform the task 
of processing and transforming the inputs into 
outputs. Despite the fact all software reduces to a 
common template, the "wheel is reinvented" for 
most new development efforts. For system 
software, flow control is implemented using various 
techniques that perform the same overall operation. 
Various forms of support operations are also re­
implemented. In addition, the designs of these 
systems are not adaptable. The support for inputs 



and outputs are intertwined with the processin a to provide a function interface and if this interface 
logic. b is constantly changing (function protocol, function 

The design for the framework is based on the name), confusion and delay can occur. However, an 
simplification of a system into inputs, processing, SVC like call that accepts a service name and 
and outputs. A prime focus is to decouple inputs generic input, output, and status information can be 
and outputs from processing using a database managed from a central entity. Each module must 
interface. Also, a common set of system services register available services with the Central 
are integrated and packaged into a central entity. Manager. If an SVC request is made for an 
The framework therefore, consists of the four main unregistered service, the requesting module can 
components . These are Input Modules, Logic take action, or the Central Manager can allow 
Modules, Output Modules, and a Central Manager. system operation only where all dependencies have 

been registered . There will always be development 
Separate input, logic, and output modules dependencies, but they can be minimized. Services 

provide three main benefits. First, input and output provided by the Central Manager can use an API 
are the two processing elements that are most likely format since this interface is to be standardized. 
to be affected by modeling and simulation. 
Therefore, this design will allow for logic to be The Central Manager is the core that provides 
written and isolated from these components: all services required to support the framework. It 
Models can be interchanged for hardware and vice can be considered to be the system software. From 

--veT-sa with-no impacUo the core logic. Second, the ___ ~an architectural point of view (Figure 2), the Logic 
--logic of a syst€-m can be-d€-velop€-d in th~bsence- 0 u es Imp ement1be-
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aomain" logic for a 
of real hardware. Third, multiple logic modules can system. The put MOaules, Output :rY:loaules, an 
be associated with the same input module, and Central Manager provide support to realize the 
muitipie output moduies can be associated with the "domain" logic. The Input Modules provide support 
same logic module. This allows flexibility and for data acquisition, the Output Modules provide 
support for code reuse. This could all be made support for operations such as commanding and 
possible via the use of a database interface. This displays, and the Central Manager provides the 
interface provides a data abstraction layer common system software. 
to all modules. Input Modules can acquire data 
from various sources or devices, but must store the 
results into a database. Logic Modules can use the 
database to access data acquired by Input Modules 
and store results into the database. Output Modules 
can use the database to access data produced by 
Logic Modules. 

To increase modularity and portability, the 
Input, Logic, and Output Modules should use a 
standard interface method. A concept is to replace 
most module-to-module API with the Central 
Manager. Logic Modules may need to work 
together to perform activities. This can be 
implemented via a single interface command 
(similar to the OS SVC Supervisor Call command) 
to make the request for services. The request is 
routed to the Central Manager to dispatch the 
service. This can eliminate the problems with 
module specific API function interfaces. For 
example, to develop and compile module specific 
software, there are interface dependencies between 
developers. Developer A must wait on Developer B 

LOCi: Modult CeJlo-...lMa..JSa;er 

Lo,", Mod ult 

Lo,i: Modult 

Ouiput Modult 

Ouip"j Mod1lle 

Output Mod1lle 

Inp"t Module 

Inp"t Module 

Inp.t Module 

Figure 2. SSW Framework Architecture 

5. Central Manager 
The Central Manager uses the API and 

services provided by an ARINC 653 compatible 

J 



----.--~------

RTOS to implement a standard system software 
layer. This layer provide·s services to and controls 
the Input, Logic, and Output Modules of the 
framework. It is composed of a Registration 
Manager, Time and Event Sequence Manager, 
Service Manager, Health Manager, Configuration 
Manager, InitializationfPatch Manager, 
Telemetry/Logging Manager, External System and 
Heartbeat Manager, Database Manager, Data 
Publishing Manager, and Data Subscription 
Manager (Figure 3). 
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Figure 3. Framework Central Manager 

The Registration Manager provides a 
registration interface between modules and the 
Central Manager. Modules can register services to 
be used by other modules and can register for 
services provided by other modules. Modules can 
also register for read/write access to parameters in 
the database. A registration interface provides a 
runtime method to provide and acquire services. 
This allows modules to be added and removed from 
the system without a total recompile. This benefit is 
only available if the supporting RTOS provides the 
capability for dynamic loading and linking of 
multiple object files. 

The Timer and Event Sequencer provide the 
se0'ice required to invoke modules based on either 
a timer or events. It implements the flow control for 

the system. The sequencer provides a hybrid 
infrastructure supporting an executive, priority 
based task manager, and state machines. The 
sequencer is implemented using RTOS services 
such as Process Control and Event Management. It 
provides the concept of major and minor cycles to 
structure cyclic operations. Input, Logic, and 
Output Modules are associated with one or more 
sequencer control methods. 

The Service Manager provides the single SVC 
interface in support of module-based services. 
Modules register the intent to provide services 
using the Registration Manager. The Service 
Manager invokes the module service when 
requested via the interface. 

The Health Manager provides a centralized 
system error handler. The system could provide an 
API to be called by each module to report error 

- conditions.Jhe manage woulcLconsist oLa table 
mapping-error-conclitions to policy functions The 
policy function performs actions in response to 
errors. This could work with the Configuration 
Manager to determine how to configure or safe the 
system in response to failures and reconfigure after 
recovery. It could also be implemented using fault 
trees in support of the analysis of error paths. 
ARINC 653 provides an interface and services for 
health management. This manager could use the 
ARINC interface to implement this service. A 
benefit is that the framework version can be 
integrated to work with the other framework 
modules to provide advanced capability. 

The Configuration Manager configures the 
system based on system state. It contains tables that 
map the relationships for modules and data sources 
required for proper operation. It interfaces with the 
Registration Manager, Health Manager, and the 
External System and Heartbeat Manager to analyze 
system state for modules. It also interfaces with the 
Timer and Event Sequencer to activate or deactivate 
the operation of modules. For example, if Module A 
depends on Module B and data from an external 
module for proper operation and Module B has not 
been registered, then Module A would not be 
allowed to execute. Also, if Module A is 
operational, but data from the external module is no 
longer available, then Module A will be shutdown 
until the data is operational in the future. 



The InitializationlPatch Manager provides an 
interface to allow for module initialization. The 
intent is to load an object file and invoke an 
initialization function for each Input, Logic, and 
Output Module. The concept of a separate object 
file for each module provides support for flexible 
and dynamic systems. New capability can be 
incorporated without a system recompile and 
existing modules can be temporarily replaced to 
support simulation. The initialization function for 
each module can include all logic required to 
initialize that module including the use of the 
Registration Manager API to register services and 
other required items. The manager also provides 
support for patch capability. The simplest approach 

The Data Publishing Manager provides the 
service to send data to remote systems collected 
from the database. The Data Subscription Manager 
provides the service to receive data from remote 
systems to store into the database. Each uses the 
Real Time Publish/Subscribe protocol. 

6. Example Design Implementation 
This section provides a concept of execution 

using the framework concept. It first provides the 
configuration of a hypothetical system and then 
follows with scenarios through various lifecycles 
and system operation. 

is to replace an existing object file. The change will 6.1 Configuration 
take effect at the next system initialization event. 
This manager relies on the linking and loading The platform of the demonstration 
capability of the RTOS. configuration consists of three physical 

------------__ transportation..modules and an outpost (Figure 4 . 
--- Ihe..Telemetry and Logging Manager provides The firsLmodulei s_a transpor:t module that seJYes as 

services required to report and record system status. a crew habitat. This module is the same for all 
For Telemetry, this system can gather data from the mission configurations. However, it can be attached 
database for transmission to the ground or other to one of two propulsion modules . There is a short 
destinations . The system could also store duration and a long duration propulsion module. 
information to logs for post mortem analysis. An Depending on the mission, the crew module can be 
interface API allows the modules to make request attached to either the long duration or short duration 
for the logging of information. propulsion module (Figure 5). Once in space, the 

The External System/Heartbeat Manager transportation configuration can dock with one of 
communicates with external systems to determine many outposts (Figure 6). 
system of systems configuration. It listens for the 
heartbeats of external system and sends the 
heartbeat for its system. It provides information to 
the Configuration Manager for the detemtination of 
system operability in relation to external systems. 

The Database provides an API and a repository 
to store and request most data used by the system. It 
consists of a collection of named parameters and 
buffers. The buffers would be used to store block 
data from Input Modules. The Database could be 
populated from either internal modules or data from 
external modules. Also, each parameter has an 
associated status to indicate data availability. The 
Database provides support for centralized 
operations such as data scaling, limit/range 
checking, and data conversion. The Database could 
work with the Sequencer to support the activation 
of modules based on the arrival of data from 
external franleworks . 
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Figure 4. System of Systems Modules 

The modules are networked using Ethernet 
technology. The designers of the system have 
implemented a mUltiple Ethernet bus infrastructure 
that provides a network path for commanding and a 
network path for general data distribution (for 
displays, less critical operations, etc.). This 

j 



decreases the traffic load on the command bus, thus 
increasing determinism. Each node of the network 
is a PowerPC Single Board Computer (SBe) with 
dual Ethernet transceivers to support the multiple 
bus architecture. It can be either connected to one or 
both networks (Figure 7) . 
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Figure 5. Tr ansportation Configurations 

The Crew Module contains a Guidance 
Navigation and Control (GNe) SBC, a Systems 
Management (SM) SBC, a Crew Interface SBC, 
and a Situational Awareness SBC. For simplicity, 
assume that the ONC, SM, and Crew Interface 
SBCs are interfaced to both networks and the 
Situational Awareness SBC is interfaced to the Data 
Distribution Network. Both the Propulsion Modules 
consists of Engine Control SBCs that are interfaced 
to both networks. The Outpost Module consists of 
Environment Control and Crew Interface SBCs. 
The Environment Control SBCs and the Crew 
Interface SBCs are connected to both networks. 

For simplicity, this configuration does not 
address redundancy. Its purpose is to support the 
operational scenarios of the framework concept. 
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I 6.2 Node Interface Technology 

For this sample implementation, the 
framework is implemented using VxWorks ARINC 
653 for OS support, NDDS for network support, 
and a PowerPC hardware platform (Figure 8) . 

SSW Framework 

VxWorks ARlNC 653 I NDDS I PowerPC sac 

PowerPC SBe 

Figure 8. System Implementation 

6.3 Crew Module Computer Requirements 

The GNC computer reads hardware 
instruments to determine the location anL _ . __ 

- - - orientation of-the-vehicle and sends commands to 
the Propulsion Modules for control. 

The GNC computer can receive commands 
from the Crew Interface Module to adjust the 
behavior of the output commands. 

The GNC computer uses independent 
algorithms for the control of the two Propulsion 
Modules. 

In the Docked Configuration, the GNC 
Computer enters a safe mode to prevent activity 
with the Propulsion Modules. 

In the Docked Configuration, the G C 
Computer is connected to a simulator where the 
crew can practice maneuvers using the actual 
spacecraft interface. 

The GPC computer will enter a safe mode if it 
fails to communicate the Propulsion Modules. 

The SM computer receives commands from 
the Crew Interface computers of the Crew Module 
and Outpost Module. 

The SM computer sends display data over the 
Data Distribution Network. 

The Crew Interface computer sends crew 
commands over the Command etwork. 

The Situational Awareness computer receives 
data over the Data Distribution Network and 
displays information to the crew. 

6.4 System Software Real-Time Infrastructure 
(RTlJ 

The first step of the proj ect would be to create 
a Real-Time Infrastructure using the system 
software framework. Assume the RTI was created 
using the C language. The software implementation 
was designed into two layers (Figure 9). The first 
layer implements all interfaces of the framework. 
The second layer provides an interface between the 
OS and the first layer using a concept similar to 
those ofRTOS Board Support Packages (BSP). The 
BSP uses a table driven interface to configure the 
services of the Central Manager. 
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Figure 9. SSW RTI 

6.5 Crew Module Software Design 
To implement the requirements for the Crew 

Module GNC computer, framework modules were 
implemented and the Central Manager tables of the 
fran1ework BSP were populated with configuration 
data. 

The GNC fran1ework modules consist of a 
Sensor Input Module, a Short Duration Propulsion 
Crew Command Input Module, a Long Duration 
Propulsion Crew Command Input Module, a Short 
Duration PropUlsion Logic Module, a Long 
Duration Propulsion Logic Module, a Short 
Duration PropUlsion Command Output Module, a 
Short Duration Propulsion Display Data Output 



Module, a Long Duration Propulsion Command 
Output Module, a Long Duration Propulsion 
Display Data Output Module, a Maneuver Input 
Crew Command Simulation Module, and a 
Maneuver Simulation Output Module. 

The Initialization Manager is configured to the 
object files for the current configuration and 
invokes the initialization function for each module. 

The External System and Heartbeat Manager 
have been configured to listen for heartbeats from 
both Propulsion Modules, and the Outpost Module. 

The Configuration Manager has been 
configured for the following configuration trees: 

• Good Short Duration Propulsion Heartbeat, 
No Internal Failure, No Outpost Heartbeat, 
Sensor Input Module registered, a Short 
Duration Propulsion Crew Command Input 

-------,Module-registered,-Short Duration 
-------Propulsion bogiG- Modul€-F€-gist€-F€-d, £h0l;t 

Duration Propulsion Command Output 
Module registered, Short Duration 
Propulsion Display Data Output Module 
registered. If all true, then place GNC 
computer in active mode, else place GNC 
computer in safe mode. 

• Good Long Duration Propulsion Heartbeat, 
No Internal Failure, No Outpost Heartbeat, 
Sensor Input Module registered, a Long 
Duration Propulsion Crew Command Input 
Module registered, Long Duration 
PropUlsion Logic Module registered, Long 
Duration Propulsion Command Output 
Module registered, Long Duration 
Propulsion Display Data Output Module 
registered. If all true, then place GNC 
computer in active mode, else place GNC 
computer in safe mode. 

• Good Outpost Heartbeat, Maneuver Input 
Crew Command Sinmlation Module 
registered, Long Duration Propulsion Logic 
Module registered, Maneuver Simulation 
Output Module registered, Long Duration 
Propulsion Display Data Output Module 
registered. If all true, then place GNC 
computer in simulation mode, else place 
GNC computer in safe mode. 

- --- ... __ .. ---= 

The Database has been configured to support 
paranleters for display output data, input buffers 
collected from the Sensor Input Module, and 
parameters that represent commands from the Crew 
Interface computer of the Crew Module. The 
Database also stores parameters for commands to 
be sent to the Propulsion Modules. 

The Data Publisher Manager has been 
configured to gather display output parameter data 
from the Database to publish over the Data 
Distribution Network. 

The Data Subscription Manager has been 
configured to gather PropUlsion Output parameter 
data from the Data Distribution Network and 
populate the Database. 

The TimerlEvent Sequencer has been 
configured to execute the Sensor Input Module, 
Propulsion Logic Modules, and Command Output 

~oaUles at 25 Hz ifoperational based on tile 
-coi1flguranon anager. A so, lie Isplay Output 

Modules have been configured to execute at 2 Hz. 
The Command Input Module has been configured 
to execute on the arrival of commands from the 
Crew Interface computer. 

The software for the SM computer, Crew 
Interface computer, and the Situational Awareness 
computer has been implemented using the RTI 
configured to support their operations. 

6.6 Concept Of Execution From GNC 
Computer Point Of View 

The Crew Module contains a mode switch to 
indicate the three possible configurations (Short 
Duration Transportation Configuration, Long 
Duration Transportation Configuration, or Docked 
Configuration). The Central Manager loads a 
different set of object modules based on the mode 
switch as a level of protection vs. loading all 
software and deactivating modules. 

F or the Long and Short Duration 
Transportation Configuration Modes, the 
Configuration Manager places the GNC computer 
in either active or safe mode. For control in the 
active mode, the TimerlEvent Sequencer invokes 
the Sensor Input Module, Propulsion Logic 
Modules, and Command Output Modules at 25 Hz. 
These three modules are invoked in order by the 



executive. The Sensor Input Module acquires data 
from the hardware and populates the database with 
parameters. The Propulsion Logic Module reads the 
database, performs processing data and produces 
output to the database. The Command Output 
Module reads the command from the database and 
sends it to the Propulsion Module. The Output 
Module checks the database status of the conunand 
to ensure that it is valid and not stale. The 
Propulsion Display Data Output Module is executed 
by the TimerlEvent Sequencer executive at 2Hz. It 
acquires data from the database and prepares it to 
be published over the Data Distribution Network by 
the Data Publisher Manager. The Situational 
Awareness computer receives the published data 

~ ~--- - - ..... - -----

with flexible options to produce safety critical 
systems. For the design example, applications were 
implemented in separate computers, but partitions 
could have been used to isolate critical components 
of the application inside a single computer. 

The example project developed a RTI for the 
system software framework with a BSP interface. 
The RTI would save the project from re­
implementing system software for every computer 
in every module. The RTI could be developed and 
verified once before distribution to other 
development efforts . Other development projects 
could implement platform specific system software 
capabilities by configuring tables in the BSP. 

and formats it for crew displays. The Timer/Event The flexibility of the example project 
Sequencer invokes the Crew Command Input framework interface allowed the spacecraft 
Module when the Data Subscription Manager configuration to support on-board training using the 
receives a published command from the Crew actual spacecraft control and feedback interface. 
Interface computer. ___ . ___ The input and output modules that supported 
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Module populates the database with input values 
based on crew input and models. The actual Long 
Duration Propulsion Logic Module populates the 
database with output command. The Maneuver 
Simulation Output Module processes the conunands 
and provides feedback to the models to close the 
loop. 

7.0 Discussion 
Several benefits can be abstracted from the use 

of the system software franlework in the example 
design. 

The first benefit is the use of an ARINC 653 
compatible RTOS for the OS portion of the 
framework. The hardware design for the system 
used separate physical computers in the same 
module to perform various tasks. However, these 
applications could have been combined into a single 
processing platfoml isolated by ARINC 653 
partitions. ARINC 653 platforms provide designers 

The Configuration Manager and External 
SystemlHeartbeat Manager of the example project 
framework allowed the computers of each module 
to recognize the configuration state and adapt as 
required. The design of the exanlple system had the 
crew use a mode switch to indicate the system 
configuration while the framework verified the 
state. This was performed to prevent the case where 
a system failure could trick a computer identifying 
the incorrect state. Also, the loading of mode 
specific software provided another layer of 
protection to prevent the execution of inadvertent 
software. However, the system could also be 
designed to support automatic configuration. All 
available software modules could be loaded at 
initialization. The Configuration Manager and 
External System/Heartbeat Manager could activate 
the software modules via control of the 
TimerlEvent Sequencer. 

The use of the Real-Tinle Publish/Subscribe 
protocol allows for the seamless integration of 



• 
distributed computers on the network. The protocol 
can be used to distribute both commands and data. 
The framework can be relieved of the duties of 
performing low-level network programming. Also, 
the framework does not have to be aware of how 
and which nodes are using its published data. New 
nodes can be added and removed from the network 
with ease. 

8.0 Framework for "Open Source" 
RTOS Products 

Concerns of the use of COTS products in 
safety critical systems include lack of insight into 
the internal design and the ability to fix problems in 
a short timeline. For these reasons, programs have 
considered the use of "open source" RTOS 
products. An example of such an RTOS is eCos. It 
is an open source real-time operating system that is 

- ---rCJyalt)r-fre-e-and ·ntended-for embedded-­
applicafions [8]. 

The framework can also be incorporated to 
execute as a layer over this "open source" RTOS . It 
could be used to implement the flight control 
computer of an avionics system where the designers 
would have total insight into the design and the 
ability to make fixes in a short timeline. The 
fran1ework could also work in a system that 
contained both COTS ARINC 653 and "open 
source" RTOS systems. The "open source" RTOS 
systems could support control loop software, while 
the COTS ARINC 653 systems could support 
critical monitor applications. 

9.0 Conclusion 
System Software provides the infrastructure 

and services for applications in real time systems. It 
is composed of an OS and a software layer 
providing system control and application services. 
This software is normally re-implemented during 
various development efforts. This usually results in 
various software implementations perfom1ing 
common operations. 

NASA's plan to deploy a system of systems 
architecture to implement proj ect Constellation 
requires the development of an adaptable and 
networked system. This architecture will contain 
system software in every system of the collective. 

---._--

NASA can implement a common system software 
framework to force an architecture template to 
support the successful integration and maintenance 
of this engineering challenge. ARINC 653 
compatible RTOS platforms can be extended with a 
standardized layer to provide a viable solution. 
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