
-- - - -- --"-- -

SYSTEM SOFTWARE FRAMEWORK FOR SYSTEM OF SYSTEMS AVIONICS

Roscoe C. Ferguson, Benjamin L. Peterson, Hiram C. Thompson

United Space Alliance, LLC

Houston, Texas

Abstract
Project Constellation implements NASA's

vision for space exploration to expand human
presence in our solar system. The engineering focus
of this project is developing a system of systems
architecture. This architecture allows for the
incremental development of the overall program.
Systems can be built and connected in a "Lego
style" manner to generate configurations supporting
various mission objectives.

The-develepment of the avionics or control .. ---
----systems-of such a massive-project-will result in- -

concurrent engineering. Also, each system will have
software and the need to communicate with other
(possibly heterogeneous) systems. Fortunately, this
design problem has already been solved during the
creation and evolution of systems such as the
Internet and the Department of Defense's successful
effort to standardize distributed simulation (now
IEEE 1516). The solution relies on the use of a
standard layered software framework and a
communication protocol.

A standard framework and communication
protocol is suggested for the development and
maintenance of Project Constellation systems. The
ARINC 653 standard is a great start for such a
common software framework. This paper proposes
a common system software framework that uses the
Real Time Publish/Subscribe protocol for
framework-to-framework communication to extend
ARINC 653.

It is highly recommended that such a
framework be established before development. This
is important for the success of concurrent
engineering. The framework provides an
infrastructure for general system services and is
designed for flexibility to support a spiral
development effort.

1. Introduction
NASA's plan to deploy a system of systems

architecture to implement project Constellation
requires the development of an adaptable and
networked system. This architecture will contain
hardware and software in every system of the
collective. A wise plan of action would be first to
develop a common fran1ework to allow for
successful system integration and maintenance.
This technique has been used to develop successful
ventures such as the Internet and the Department of
DeIense-'s(DODjaiStribute sunulation
infrastructure. The Internet has a set 0 stan ards-­
including RFC 791 [1] and the DOD's distributed
simulation standard that has evolved to IEEE 1516
[2]. In each case, such an infrastructure has allowed
for the integration and maintenance of a system of
distributed heterogeneous platforms.

This successful model can be used to provide
the same benefits for NASA's future space systems.
The creation of a standardized system software
framework is recommended in support of this
effort. ARINC 653 provides an infrastructure for
safety-critical software and serves as an excellent
starting point. This paper proposes a fran1ework that
can be used to extend ARINC 653 to create the
adaptable and networked systems required for the
system of systems architecture.

2. ARINC 653 Systems
ARINC 653 is a software standard interface for

avionics applications. The standard is intended to
provide a platform for safety-critical systems.
Central to the standard are the concepts of Space
and Time Partitioning. Space Partitioning provides
isolation for applications executing on the same
computing platform. Applications are encapsulated
in containers defined as partitions. Time
Partitioning isolates the CPU time allocated to
partitions using a time-slotted scheduler [3].

r- --- ---_ .. __ .. ,_. __ ._- ---------

-

ARINC 653 defines an Application/Executive
(APEX) software interface between applications
software and the Operating System [4]. The
Application Programming Interface (APD provides
support for partition management, process
management, time management, inter-partition
communication, intra-partition communication, and
health monitoring [5]. COTS Real Time Operating
System (RTOS) products are now providing
ARINC 653 solutions. Most implementations use
the memory management unit (MMU) of the target
processor to implement Space Partitioning. Each
partition contains its own application and OS. A
central OS (partition manager) manages the
collective of partitions and controls Time
Partitioning (Figure 1).

I-APplication 1- 1 I Application2-

1

I Application 3 -I
I Partition OS I I Partition as I I PartitionOS I I I •

l' l'

PartitionManager as

I Hardware

,

I

Figure 1. ARINC 653 Architecture

3. System Software
System Software provides the infrastructure

and services for applications in real time systems. It
is composed of an OS and a software layer
providing system control and application services.
Each system in the NASA system of systems
architecture will have a computer-processing
platform that will require system software. It is
likely that individual systems in the collective will
be developed by various vendors. However, the
system must fit together and work in a seamless
manner. The creation of a standard system software
framework can be instrumental in the success of

ASA's new engineering task. Since system
software provides the infrastructure for
applications, NASA can provide a template to

enforce a standard to ensure successful system
integration. The template could be used to speed the
development of new systems and provide a familiar
architecture for understanding and maintaining
existing systems. The template can be inlplemented
as middleware to be distributed and deployed for
future development efforts. This is similar in
concept to the Run-Time Infrastructure (RTD that is
used to implement IEEE 1516 standard for
distributed simulation systems. The RTI is the
middleware required to implement the High Level
Architecture (HLA) [2].

ARINC 653 compatible RTOSs provide an
excellent starting point to achieve the goal of
standardized system software. First, the design is
tailored towards the creation of safety-critical
systems. Second, it provides a standard API to
support system development. However, a RTOS is
only a part of system software. The suggested
fiamewor concept can e completed by tne-­
creation of an a TIona layer that m es use ofThT
standard API and other RTOS support. For
framework-to-framework communication, a
standard protocol is required for data exchange. A
successful and popular protocol used in real time
distributed systems is Real Time Publish/Subscribe.
In 2004, this protocol became an official standard
[6] and has been used successfully in existing
military platforms [7]. It is suggested that this
protocol be used to support the distributed network
required for the system of systems architecture.

4. System Software Framework
Every variation of computer software can be

reduced to a common processing template. Inputs
are acquired, processed, and the results made
available for output. Typically, system software
provides the mechanisms for input, output, and
system flow control. Applications perform the task
of processing and transforming the inputs into
outputs. Despite the fact all software reduces to a
common template, the "wheel is reinvented" for
most new development efforts. For system
software, flow control is implemented using various
techniques that perform the same overall operation.
Various forms of support operations are also re­
implemented. In addition, the designs of these
systems are not adaptable. The support for inputs

and outputs are intertwined with the processin a to provide a function interface and if this interface
logic. b is constantly changing (function protocol, function

The design for the framework is based on the name), confusion and delay can occur. However, an
simplification of a system into inputs, processing, SVC like call that accepts a service name and
and outputs. A prime focus is to decouple inputs generic input, output, and status information can be
and outputs from processing using a database managed from a central entity. Each module must
interface. Also, a common set of system services register available services with the Central
are integrated and packaged into a central entity. Manager. If an SVC request is made for an
The framework therefore, consists of the four main unregistered service, the requesting module can
components . These are Input Modules, Logic take action, or the Central Manager can allow
Modules, Output Modules, and a Central Manager. system operation only where all dependencies have

been registered . There will always be development
Separate input, logic, and output modules dependencies, but they can be minimized. Services

provide three main benefits. First, input and output provided by the Central Manager can use an API
are the two processing elements that are most likely format since this interface is to be standardized.
to be affected by modeling and simulation.
Therefore, this design will allow for logic to be The Central Manager is the core that provides
written and isolated from these components: all services required to support the framework. It
Models can be interchanged for hardware and vice can be considered to be the system software. From

--veT-sa with-no impacUo the core logic. Second, the ___ ~an architectural point of view (Figure 2), the Logic
--logic of a syst€-m can be-d€-velop€-d in th~bsence- 0 u es Imp ement1be-

cc

aomain" logic for a
of real hardware. Third, multiple logic modules can system. The put MOaules, Output :rY:loaules, an
be associated with the same input module, and Central Manager provide support to realize the
muitipie output moduies can be associated with the "domain" logic. The Input Modules provide support
same logic module. This allows flexibility and for data acquisition, the Output Modules provide
support for code reuse. This could all be made support for operations such as commanding and
possible via the use of a database interface. This displays, and the Central Manager provides the
interface provides a data abstraction layer common system software.
to all modules. Input Modules can acquire data
from various sources or devices, but must store the
results into a database. Logic Modules can use the
database to access data acquired by Input Modules
and store results into the database. Output Modules
can use the database to access data produced by
Logic Modules.

To increase modularity and portability, the
Input, Logic, and Output Modules should use a
standard interface method. A concept is to replace
most module-to-module API with the Central
Manager. Logic Modules may need to work
together to perform activities. This can be
implemented via a single interface command
(similar to the OS SVC Supervisor Call command)
to make the request for services. The request is
routed to the Central Manager to dispatch the
service. This can eliminate the problems with
module specific API function interfaces. For
example, to develop and compile module specific
software, there are interface dependencies between
developers. Developer A must wait on Developer B

LOCi: Modult CeJlo-...lMa..JSa;er

Lo,", Mod ult

Lo,i: Modult

Ouiput Modult

Ouip"j Mod1lle

Output Mod1lle

Inp"t Module

Inp"t Module

Inp.t Module

Figure 2. SSW Framework Architecture

5. Central Manager
The Central Manager uses the API and

services provided by an ARINC 653 compatible

J

----.--~------

RTOS to implement a standard system software
layer. This layer provide·s services to and controls
the Input, Logic, and Output Modules of the
framework. It is composed of a Registration
Manager, Time and Event Sequence Manager,
Service Manager, Health Manager, Configuration
Manager, InitializationfPatch Manager,
Telemetry/Logging Manager, External System and
Heartbeat Manager, Database Manager, Data
Publishing Manager, and Data Subscription
Manager (Figure 3).

CenJrtd Jl.-Jiuwger

~
!Jte&istraWnMam&"'"

I
I[·~

I . :"'''l:''I"lPail:h M",lOgI!T

I Tin..". am Eve>1t Ba<ed
SeqlEllClll" I !~~~~ I

, !~~~ I
I EXU!nlaI S)"Stem am

Heariboot Mall3ger I
! HealthM~

I
! DataPli>lishingl\~

I
I Co",~iion Managu-

I
I Data Subs~ tion Manager

I
I

I
I

I
i I"~~ I

Figure 3. Framework Central Manager

The Registration Manager provides a
registration interface between modules and the
Central Manager. Modules can register services to
be used by other modules and can register for
services provided by other modules. Modules can
also register for read/write access to parameters in
the database. A registration interface provides a
runtime method to provide and acquire services.
This allows modules to be added and removed from
the system without a total recompile. This benefit is
only available if the supporting RTOS provides the
capability for dynamic loading and linking of
multiple object files.

The Timer and Event Sequencer provide the
se0'ice required to invoke modules based on either
a timer or events. It implements the flow control for

the system. The sequencer provides a hybrid
infrastructure supporting an executive, priority
based task manager, and state machines. The
sequencer is implemented using RTOS services
such as Process Control and Event Management. It
provides the concept of major and minor cycles to
structure cyclic operations. Input, Logic, and
Output Modules are associated with one or more
sequencer control methods.

The Service Manager provides the single SVC
interface in support of module-based services.
Modules register the intent to provide services
using the Registration Manager. The Service
Manager invokes the module service when
requested via the interface.

The Health Manager provides a centralized
system error handler. The system could provide an
API to be called by each module to report error

- conditions.Jhe manage woulcLconsist oLa table
mapping-error-conclitions to policy functions The
policy function performs actions in response to
errors. This could work with the Configuration
Manager to determine how to configure or safe the
system in response to failures and reconfigure after
recovery. It could also be implemented using fault
trees in support of the analysis of error paths.
ARINC 653 provides an interface and services for
health management. This manager could use the
ARINC interface to implement this service. A
benefit is that the framework version can be
integrated to work with the other framework
modules to provide advanced capability.

The Configuration Manager configures the
system based on system state. It contains tables that
map the relationships for modules and data sources
required for proper operation. It interfaces with the
Registration Manager, Health Manager, and the
External System and Heartbeat Manager to analyze
system state for modules. It also interfaces with the
Timer and Event Sequencer to activate or deactivate
the operation of modules. For example, if Module A
depends on Module B and data from an external
module for proper operation and Module B has not
been registered, then Module A would not be
allowed to execute. Also, if Module A is
operational, but data from the external module is no
longer available, then Module A will be shutdown
until the data is operational in the future.

The InitializationlPatch Manager provides an
interface to allow for module initialization. The
intent is to load an object file and invoke an
initialization function for each Input, Logic, and
Output Module. The concept of a separate object
file for each module provides support for flexible
and dynamic systems. New capability can be
incorporated without a system recompile and
existing modules can be temporarily replaced to
support simulation. The initialization function for
each module can include all logic required to
initialize that module including the use of the
Registration Manager API to register services and
other required items. The manager also provides
support for patch capability. The simplest approach

The Data Publishing Manager provides the
service to send data to remote systems collected
from the database. The Data Subscription Manager
provides the service to receive data from remote
systems to store into the database. Each uses the
Real Time Publish/Subscribe protocol.

6. Example Design Implementation
This section provides a concept of execution

using the framework concept. It first provides the
configuration of a hypothetical system and then
follows with scenarios through various lifecycles
and system operation.

is to replace an existing object file. The change will 6.1 Configuration
take effect at the next system initialization event.
This manager relies on the linking and loading The platform of the demonstration
capability of the RTOS. configuration consists of three physical

------------__ transportation..modules and an outpost (Figure 4 .
--- Ihe..Telemetry and Logging Manager provides The firsLmodulei s_a transpor:t module that seJYes as

services required to report and record system status. a crew habitat. This module is the same for all
For Telemetry, this system can gather data from the mission configurations. However, it can be attached
database for transmission to the ground or other to one of two propulsion modules . There is a short
destinations . The system could also store duration and a long duration propulsion module.
information to logs for post mortem analysis. An Depending on the mission, the crew module can be
interface API allows the modules to make request attached to either the long duration or short duration
for the logging of information. propulsion module (Figure 5). Once in space, the

The External System/Heartbeat Manager transportation configuration can dock with one of
communicates with external systems to determine many outposts (Figure 6).
system of systems configuration. It listens for the
heartbeats of external system and sends the
heartbeat for its system. It provides information to
the Configuration Manager for the detemtination of
system operability in relation to external systems.

The Database provides an API and a repository
to store and request most data used by the system. It
consists of a collection of named parameters and
buffers. The buffers would be used to store block
data from Input Modules. The Database could be
populated from either internal modules or data from
external modules. Also, each parameter has an
associated status to indicate data availability. The
Database provides support for centralized
operations such as data scaling, limit/range
checking, and data conversion. The Database could
work with the Sequencer to support the activation
of modules based on the arrival of data from
external franleworks .

I

Srort Lo~
Creov Mod ule Duratiln Duration

Propulsion Propulsion
Module Module

I

Outpost Modules

I
MIldule

Figure 4. System of Systems Modules

The modules are networked using Ethernet
technology. The designers of the system have
implemented a mUltiple Ethernet bus infrastructure
that provides a network path for commanding and a
network path for general data distribution (for
displays, less critical operations, etc.). This

j

decreases the traffic load on the command bus, thus
increasing determinism. Each node of the network
is a PowerPC Single Board Computer (SBe) with
dual Ethernet transceivers to support the multiple
bus architecture. It can be either connected to one or
both networks (Figure 7) .

Crew Madu.ie Crew Moduie

I
I

I
Sh ut
Durntim
Propumon
Module

Lo.-g
Duratim
Propulsion
Madill!

T ransportation
Configurations

Figure 5. Tr ansportation Configurations

The Crew Module contains a Guidance
Navigation and Control (GNe) SBC, a Systems
Management (SM) SBC, a Crew Interface SBC,
and a Situational Awareness SBC. For simplicity,
assume that the ONC, SM, and Crew Interface
SBCs are interfaced to both networks and the
Situational Awareness SBC is interfaced to the Data
Distribution Network. Both the Propulsion Modules
consists of Engine Control SBCs that are interfaced
to both networks. The Outpost Module consists of
Environment Control and Crew Interface SBCs.
The Environment Control SBCs and the Crew
Interface SBCs are connected to both networks.

For simplicity, this configuration does not
address redundancy. Its purpose is to support the
operational scenarios of the framework concept.

outpost
Module

Crew Modlll!

Smrt
DuratiJn
Propulsion
Module

Outpost
Module

Crew Module

Lore:
Durawn
Propulsion
Module

Docked
Confj~ations

Figure 6. Docked Configurations

Command Network

I -------
Dam Distrilnuion NetJVork

1 Ethernet Transceiver 1 1 1 Eth=el Transceiva" 2
1

LJ 10 Interlace

N ode COmpuier

Figure 7. System Network

I
-I

I

J

r
I 6.2 Node Interface Technology

For this sample implementation, the
framework is implemented using VxWorks ARINC
653 for OS support, NDDS for network support,
and a PowerPC hardware platform (Figure 8) .

SSW Framework

VxWorks ARlNC 653 I NDDS I PowerPC sac

PowerPC SBe

Figure 8. System Implementation

6.3 Crew Module Computer Requirements

The GNC computer reads hardware
instruments to determine the location anL _ . __

- - - orientation of-the-vehicle and sends commands to
the Propulsion Modules for control.

The GNC computer can receive commands
from the Crew Interface Module to adjust the
behavior of the output commands.

The GNC computer uses independent
algorithms for the control of the two Propulsion
Modules.

In the Docked Configuration, the GNC
Computer enters a safe mode to prevent activity
with the Propulsion Modules.

In the Docked Configuration, the G C
Computer is connected to a simulator where the
crew can practice maneuvers using the actual
spacecraft interface.

The GPC computer will enter a safe mode if it
fails to communicate the Propulsion Modules.

The SM computer receives commands from
the Crew Interface computers of the Crew Module
and Outpost Module.

The SM computer sends display data over the
Data Distribution Network.

The Crew Interface computer sends crew
commands over the Command etwork.

The Situational Awareness computer receives
data over the Data Distribution Network and
displays information to the crew.

6.4 System Software Real-Time Infrastructure
(RTlJ

The first step of the proj ect would be to create
a Real-Time Infrastructure using the system
software framework. Assume the RTI was created
using the C language. The software implementation
was designed into two layers (Figure 9). The first
layer implements all interfaces of the framework.
The second layer provides an interface between the
OS and the first layer using a concept similar to
those ofRTOS Board Support Packages (BSP). The
BSP uses a table driven interface to configure the
services of the Central Manager.

L~Module Central BSP
Mal",_

L~Module Tables
RTQS

L~Module lnierface

Quip ut Module

Ouq>utModule

Quip ut Module

I", ut Module

hputModule

l'1'utModule

1
System Software RT! Centr.!! Manag,,"

Requirements

Figure 9. SSW RTI

6.5 Crew Module Software Design
To implement the requirements for the Crew

Module GNC computer, framework modules were
implemented and the Central Manager tables of the
fran1ework BSP were populated with configuration
data.

The GNC fran1ework modules consist of a
Sensor Input Module, a Short Duration Propulsion
Crew Command Input Module, a Long Duration
Propulsion Crew Command Input Module, a Short
Duration PropUlsion Logic Module, a Long
Duration Propulsion Logic Module, a Short
Duration PropUlsion Command Output Module, a
Short Duration Propulsion Display Data Output

Module, a Long Duration Propulsion Command
Output Module, a Long Duration Propulsion
Display Data Output Module, a Maneuver Input
Crew Command Simulation Module, and a
Maneuver Simulation Output Module.

The Initialization Manager is configured to the
object files for the current configuration and
invokes the initialization function for each module.

The External System and Heartbeat Manager
have been configured to listen for heartbeats from
both Propulsion Modules, and the Outpost Module.

The Configuration Manager has been
configured for the following configuration trees:

• Good Short Duration Propulsion Heartbeat,
No Internal Failure, No Outpost Heartbeat,
Sensor Input Module registered, a Short
Duration Propulsion Crew Command Input

-------,Module-registered,-Short Duration
-------Propulsion bogiG- Modul€-F€-gist€-F€-d, £h0l;t

Duration Propulsion Command Output
Module registered, Short Duration
Propulsion Display Data Output Module
registered. If all true, then place GNC
computer in active mode, else place GNC
computer in safe mode.

• Good Long Duration Propulsion Heartbeat,
No Internal Failure, No Outpost Heartbeat,
Sensor Input Module registered, a Long
Duration Propulsion Crew Command Input
Module registered, Long Duration
PropUlsion Logic Module registered, Long
Duration Propulsion Command Output
Module registered, Long Duration
Propulsion Display Data Output Module
registered. If all true, then place GNC
computer in active mode, else place GNC
computer in safe mode.

• Good Outpost Heartbeat, Maneuver Input
Crew Command Sinmlation Module
registered, Long Duration Propulsion Logic
Module registered, Maneuver Simulation
Output Module registered, Long Duration
Propulsion Display Data Output Module
registered. If all true, then place GNC
computer in simulation mode, else place
GNC computer in safe mode.

- --- ... __ .. ---=

The Database has been configured to support
paranleters for display output data, input buffers
collected from the Sensor Input Module, and
parameters that represent commands from the Crew
Interface computer of the Crew Module. The
Database also stores parameters for commands to
be sent to the Propulsion Modules.

The Data Publisher Manager has been
configured to gather display output parameter data
from the Database to publish over the Data
Distribution Network.

The Data Subscription Manager has been
configured to gather PropUlsion Output parameter
data from the Data Distribution Network and
populate the Database.

The TimerlEvent Sequencer has been
configured to execute the Sensor Input Module,
Propulsion Logic Modules, and Command Output

~oaUles at 25 Hz ifoperational based on tile
-coi1flguranon anager. A so, lie Isplay Output

Modules have been configured to execute at 2 Hz.
The Command Input Module has been configured
to execute on the arrival of commands from the
Crew Interface computer.

The software for the SM computer, Crew
Interface computer, and the Situational Awareness
computer has been implemented using the RTI
configured to support their operations.

6.6 Concept Of Execution From GNC
Computer Point Of View

The Crew Module contains a mode switch to
indicate the three possible configurations (Short
Duration Transportation Configuration, Long
Duration Transportation Configuration, or Docked
Configuration). The Central Manager loads a
different set of object modules based on the mode
switch as a level of protection vs. loading all
software and deactivating modules.

F or the Long and Short Duration
Transportation Configuration Modes, the
Configuration Manager places the GNC computer
in either active or safe mode. For control in the
active mode, the TimerlEvent Sequencer invokes
the Sensor Input Module, Propulsion Logic
Modules, and Command Output Modules at 25 Hz.
These three modules are invoked in order by the

executive. The Sensor Input Module acquires data
from the hardware and populates the database with
parameters. The Propulsion Logic Module reads the
database, performs processing data and produces
output to the database. The Command Output
Module reads the command from the database and
sends it to the Propulsion Module. The Output
Module checks the database status of the conunand
to ensure that it is valid and not stale. The
Propulsion Display Data Output Module is executed
by the TimerlEvent Sequencer executive at 2Hz. It
acquires data from the database and prepares it to
be published over the Data Distribution Network by
the Data Publisher Manager. The Situational
Awareness computer receives the published data

~ ~--- - - - -----

with flexible options to produce safety critical
systems. For the design example, applications were
implemented in separate computers, but partitions
could have been used to isolate critical components
of the application inside a single computer.

The example project developed a RTI for the
system software framework with a BSP interface.
The RTI would save the project from re­
implementing system software for every computer
in every module. The RTI could be developed and
verified once before distribution to other
development efforts . Other development projects
could implement platform specific system software
capabilities by configuring tables in the BSP.

and formats it for crew displays. The Timer/Event The flexibility of the example project
Sequencer invokes the Crew Command Input framework interface allowed the spacecraft
Module when the Data Subscription Manager configuration to support on-board training using the
receives a published command from the Crew actual spacecraft control and feedback interface.
Interface computer. ___ . ___ The input and output modules that supported

t - 1; -C fi- h Mi - th JllaneUyeLcontmaer~e r.-eplaced with modules
or e OCl\.e on gurallon 0 e, e 'd' . l' Th I I

C fi f M 1 th GNC t prov! mg Slmu atlOn. e rea maneuver contro
. on 19ura IOn anager paces e compu .er logic module was used unchanged. This same
mto the safe mode when the Outpost Heartbeat IS .l'1 'b'l ' Id h 1-. d d' h
d t t d Th t th d 't h tId HeXl i Ity cou ave ueen use urmg t e e ec e. e crew can se e mo e SWI c 0 oa .
th GNC t ·th th D k d C fi t ' development phase where the lOgIC modules could

e compu er WI e oc e on 19ura IOn b d 1 . . .
ftw 0 1 d d th GNC t

· t' e eve oped and matured before the avaIlabIlIty of
so are. nce oa e , e compu er IS ac Ive fl' .
. . I h d h th t' Ight hardware components. The database mterface m a Slmu aLlon mo e were e crew can prac Ice .
fi 1 d t

· . . Th concept allows for the seamless mterchange of
or ong ura IOn rrusslOn maneuvers. e h d d d 1

M In C C d S
· l ' ar ware an mo e s. aneuver put rew omman Imu atlOn

Module populates the database with input values
based on crew input and models. The actual Long
Duration Propulsion Logic Module populates the
database with output command. The Maneuver
Simulation Output Module processes the conunands
and provides feedback to the models to close the
loop.

7.0 Discussion
Several benefits can be abstracted from the use

of the system software franlework in the example
design.

The first benefit is the use of an ARINC 653
compatible RTOS for the OS portion of the
framework. The hardware design for the system
used separate physical computers in the same
module to perform various tasks. However, these
applications could have been combined into a single
processing platfoml isolated by ARINC 653
partitions. ARINC 653 platforms provide designers

The Configuration Manager and External
SystemlHeartbeat Manager of the example project
framework allowed the computers of each module
to recognize the configuration state and adapt as
required. The design of the exanlple system had the
crew use a mode switch to indicate the system
configuration while the framework verified the
state. This was performed to prevent the case where
a system failure could trick a computer identifying
the incorrect state. Also, the loading of mode
specific software provided another layer of
protection to prevent the execution of inadvertent
software. However, the system could also be
designed to support automatic configuration. All
available software modules could be loaded at
initialization. The Configuration Manager and
External System/Heartbeat Manager could activate
the software modules via control of the
TimerlEvent Sequencer.

The use of the Real-Tinle Publish/Subscribe
protocol allows for the seamless integration of

•
distributed computers on the network. The protocol
can be used to distribute both commands and data.
The framework can be relieved of the duties of
performing low-level network programming. Also,
the framework does not have to be aware of how
and which nodes are using its published data. New
nodes can be added and removed from the network
with ease.

8.0 Framework for "Open Source"
RTOS Products

Concerns of the use of COTS products in
safety critical systems include lack of insight into
the internal design and the ability to fix problems in
a short timeline. For these reasons, programs have
considered the use of "open source" RTOS
products. An example of such an RTOS is eCos. It
is an open source real-time operating system that is

- ---rCJyalt)r-fre-e-and ·ntended-for embedded-­
applicafions [8].

The framework can also be incorporated to
execute as a layer over this "open source" RTOS . It
could be used to implement the flight control
computer of an avionics system where the designers
would have total insight into the design and the
ability to make fixes in a short timeline. The
fran1ework could also work in a system that
contained both COTS ARINC 653 and "open
source" RTOS systems. The "open source" RTOS
systems could support control loop software, while
the COTS ARINC 653 systems could support
critical monitor applications.

9.0 Conclusion
System Software provides the infrastructure

and services for applications in real time systems. It
is composed of an OS and a software layer
providing system control and application services.
This software is normally re-implemented during
various development efforts. This usually results in
various software implementations perfom1ing
common operations.

NASA's plan to deploy a system of systems
architecture to implement proj ect Constellation
requires the development of an adaptable and
networked system. This architecture will contain
system software in every system of the collective.

---._--

NASA can implement a common system software
framework to force an architecture template to
support the successful integration and maintenance
of this engineering challenge. ARINC 653
compatible RTOS platforms can be extended with a
standardized layer to provide a viable solution.

Acknowledgments
The authors wish to thank Mark Lostracco,

Brian Watson and Wendy Wilkinson for their
support of this work.

References
[1] Information Sciences Institute, University of
Southern California, September 1981 , Internet
Protocol DARPA Internet Program Protocol
Specification, Marina del Rey, California, Ch.3.

[L.] Department of Defense, November 14, 1997-, -
Rig eve -Mchi ectUfe Run-Time Interface
Programmers Guide, Ver. 1.0, ReI. 3, pp. 7-13 .

[3] Parkinson, Paul, 2003, Safety Critical Software
Development for Integrated Modular Avionics,
Alameda, California, Wind River, pp. 2-8.

[4] Child, Jeff, March 2004, Safety Critical
Software Choices Expand, COTS Journal Online.

[5] Airlines Electronic Engineering Committee,
May 16, 2005, Draft 1 of Project Paper 653:
Avionics Application Software Standard Interface,
Part 3 - Conformity Test Specification, Reference
05-125/SWM - 97, Annapolis, Maryland, ARINC,
p.l.

[6] Pardo-Castellote, Gerardo, January 2005, OMG
Data Distribution Service: Real-Time
Publish/Subscribe Becomes a Standard, RTC,
pp.41-45.

[7] Murphy, Brett, July 2004, Fabrics and Publish­
Subscribe Schemes: A Net-Centric Blend, COTS
Journal Online.

[8] Sgandurra, Robert, August 2004, An
Introduction to eCos, COTS Journal Online.

24th Digital Avionics Systems Conference

October 30, 2005

