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Abstract 

In an initial investigation, remotely sensed surface temperature is assimilated into a coupled 
atmospherelland global data assimilation system, with explicit accounting for biases in the model 
state. In this scheme, an incremental bias correction term is introduced in the model's surface 
energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean 
bias for- each gridpoint; additional benefits are attained with a refined version of the algorithm 
which allows for a correction of the mean diurnal cycle. The method is validated against the 
assimilated observations, as well as independent near-surface air temperature observations. In 
many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal 
amplitude of background model air temperature. Energy fluxes collected through the 
Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface 
energy budget. In general, sensible heat flux is improved with the surface temperature 
assimilation, and two stations show a reduction of bias by as much as 30 ~ m - ~ .  At the Rondonia 
station in Amazonia, the Bowen ratio changes direction in an improvement related to the 
temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly 
increased. These results show the impact of univariate assimilation of surface temperature 
observations on the surface energy budget, and suggest the need for multivariate land data 
assimilation. The results also show the need for independent validation data, especially flux 
stations in varied climate regimes. 

Popular Sunzmary 

Surface temperature is a critical component of Earth system. It is the lower boundary of the 
atmosphere, and estimates how much the surface is heating the atmosphere fiom below. Remote 
sensing of atmospheric data from space also uses surface temperature as an important condition. 
In this paper, we use remotely sensed surface temperature over land in a coupled 
landlatmosphere data assimilation system. Data assimilation is the process of merging 
observations and model simulations to combine the consistency of model simulations with the 
accuracy of the observations into one data product. The resulting assimilated surface 
temperature should be a better data set than without the data assimilation, but also, the processes 
that relate to surface temperature (such as warming of the atmosphere) should be better 
represented. 



The method implemented here, allows for the assimilated surface temperatuse observations to 
directly affect the heat fluxes that occur at the land surface. Previous methods do this indirectly 
through the near surface air temperature or moisture in the soil. We have performed several 
experiments to evaluate the assimilation of land surface temperature. The first corrects the mean 
bias of the assimilation system and the second corrects biases in the diurnal (or daily) cycle of 
temperature. We show that by correcting only the mean bias, additional errors can be introduced 
in the daytime high temperatures and nighttime low temperatures. The diurnal assimilation 
improves both the mean air temperature as well as the high and low temperatures. 

In further validation of the method, we use enhanced observations of the surface heating from 
several in-situ stations. Indeed, the assimilation of remotely sensed surface temperature did 
improve the surface heating of the atmosphere. However, the heating of the atmosphere due to 
the phase change of water from liquid to gas (evaporation) was slightly degraded when 
including the surface temperature assimilation. This is partly because the surface soil water is 
not constrained by observations and may have its own bias. We expect that remotely sensed 
soil moisture observations would greatly improve this component of the atmospheric heating. 
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Skin Temperature Analysis and Bias Correction in a Coupled 

Land-Atmosphere Data Assimilation System 

ABSTRACT 

In an initial investigation, remotely sensed surface temperature is assimilated into a 

coupled atmospherelland global data assimilation system, with explicit accounting for biases 

in the model state. In this scheme, a incremental bias correction term is introduced in the 

model's surface energy budget. In its simplest form, the algorithm estimates and corrects a 

constant time mean bias for each gridpoint; additional benefits are attained with a refined 

version of the algorithm which allows for a correction of the mean diurnal cycle. The method 

is validated against the assimilated observations, as well as independent near-surface air 

temperature observations. In many regions, not accounting for the diurnal cycle of bias 

caused degradation of the diurnal amplitude of background model air temperature. Energy 

fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to 

more closely inspect the surface energy budget. In general, sensible heat flux is improved 

with the surface temperature assimilation, and two stations show a reduction of bias by as 

much as 30 ~ m - ~ .  At the Rondonia station in Amazonia, the Bowen ratio changes direction 

in an improvement related to the temperature assimilation. However, at many stations the 

monthly latent heat flux bias is slightly increased. These results show the impact of univariate 

assimilation of surface temperature observations on the surface energy budget, and suggest 

the need for multivariate land data assimilation. The results also show the need for 

independent validation data, especially flux stations in varied climate regimes. 



1. Introduction 

Land surface skin temperature, Ts, is an important boundary condition for climate 

models and parameter for climate process studies (Jin and Dickinson, 2002; Kalnay and Cai, 

2003; Simmons et al., 2004). The skin temperature is a central component of surface radiative 

processes, it is crucial to the solution of the surface turbulent heat fluxes, the planetary 

boundary layer, and convection. In addition, a reliable skin temperature product is a key 

requirement for operational users of a global data assimilation system (e.g. satellite 

instrument teams and their retrieval algorithms). The accuracy of simulated skin temperature 

in data analysis products is sensitive to errors in the model physical processes of clouds, 

radiation, soil moisture, and precipitation. Moreover, it is particularly difficult to assimilate 

skin temperature measurements, because the instruments sense the radiative brightness of a 

heterogeneous surface, and the model surface has a small heat capacity. The problem is 

complicated by the diurnal cycle of temperature over land, because day and night errors can 

be very different. 

The motivation of this study is to improve the skin temperature field of the GMAO 

(Global Modeling and Assimilation Office) analysis products. Incorporating land surface 

temperature into the assimilation system confronts simulated land processes with 

observations. The resulting surface temperature data should provide a better estimate than 

that of the model, and the analysis increments will identi@ the biases in the model forecasts. 

In this study, we have integrated the NCAR Community Land Model (CLM) version 2.0 

land-surface model (Dai et al. 2002; Zeng et al. 2002) into the assimilation system, and 

assimilate remotely sensed land surface skin temperature directly into the surface temperature 

prognostic equation of CLM. This scheme differs from the GMAO's operational Goddard 

Earth Observing System (GEOS) Data Assimilation System Version 4, where an uncoupled 

analysis is performed and the bias correction term is not fed back to the CLM (Bloom et al. 



2005). Additionally, we employ a variant of the Dee and da Silva (1998) bias correction 

scheme, where a bias correction term is applied at every time step of the land surface 

prognostic energy budget, and applied across the diurnal cycle. It is thus important to 

validate the surface energy balance to assess the impact that the assimilation methodology 

has on heat exchanges with the atmosphere. 

The next section reviews previous efforts to incorporate surface temperature in data 

assimilation systems. Section 3 describes the data being assimilated in this investigation, as 

well as the independent data sets used for validation. Section 4 provides an overview of the 

model and data assimilation system, and the methodology used for assimilating land surface 

skin temperature. Section 5 describes the different experiments and validation of the method. 

2. Background 

In an analysis system, an unconstrained land surface can drift toward states that are 

not representative of observations and disconnected with the overlying analyzed atmosphere. 

Mahfouf (1991) used near-surface air temperatures to constrain the boundary conditions of a 

coupled land and atmosphere assimilation system. The goal was to properly initialize the 

energy budget at the planetary boundary layer, by using screen-level air temperature 

combined with relative humidity to parameterize the top layer soil moisture. Subsequently, 

numerous land surface studies confirmed that variations in the surface soil moisture content 

are crucial to the partitioning of net radiation among latent, sensible and ground heat fluxes. 

While the soil moisture strongly influences the surface energy budget and weather prediction 

(Beljaars et al., 1996), the requisite measurements of soil wetness for assimilation remains an 

area of active research (Walker et al. 2002, Reichle et al., 2004, Walker and Houser, 2004). 

Douville et al. (2000) intercompare a soil water nudging scheme with the optimal 

interpolation method of Mahfouf (1991). The experiments were offline point simulations for 

the First ISLSCP Field Experiment (FIFE). While the nudging was sensitive to model biases, 



the optimal interpolation method produced more robust results, and improved evaporation for 

the 4 month period of FIFE. This method, which uses screen level air temperature and 

moisture, was eventually adopted in the operational forecast system and the ECMWF 40 year 

reanalysis (ERA40). Betts et al. (2003) and Seneviratne et al. (2004) have studied basin- 

averaged meteorology, water and energy budgets in ERA40, with the general conclusion that 

ERA40 accurately reproduced the observed budget. In general, ERA40 has improved over 

the previous reanalysis where land surface increments significantly affected the budget 

analysis (Betts et al. 1998 a, b and 1999). 

McNider et al. (1994) presented a technique for assimilating satellite-observed 

surface temperature into a mesoscale model in a manner that avoids having to specify surface 

parameters that are not well known. Unlike earlier assimilations that attempted to gradually 

change, or "nudge" the surface temperature, this method recognizes that adjustments to the 

surface temperature must be consistent with components of the surface energy budget. They 

adjusted the surface specific humidity so that the model's average time rate of change in 

surface temperature agrees with the observed average rate of change of infrared skin 

temperature. With their method, the latent energy can be inferred as the residual of the 

energy balance equation, and may not work properly if there is little or no soil water (deserts 

or tundra). In a recent study, Prigent et al. (2005) results suggest that any correlation between 

remotely sensed surface temperature and soil moisture is related to the vegetation cover, and 

only indirectly related to soil moisture. McNider et al. (1994) assimilated surface temperature 

tendencies. While this reduces the bias of the observations going into the system, the method 

is constrained to using only datasets that adequately resolve the diurnal cycle. 

Many studies have used near-surface air temperature and/or moisture to adjust soil 

moisture (e.g. Mahfouf 1991). The quality of remotely sensed skin and brightness 

temperature is improving, and has the potential to contribute to land data assimilations. 



Castelli et a1 (1999) used FIFE radiometric surface temperature in an adjoint assimilation 

method to derive soil wetness and surface heat fluxes. Alapaty et al. (2001) used near-surface 

meteorology assimilated into a 1-D planetary boundary layer model, to adjust the turbulent 

profile of the atmosphere, and provide better surface fluxes. Likewise, Margulis and 

Entekhabi (2003) used FIFE near-surface air temperature moisture and radiometric surface 

temperature in a variational assimilation approach for atmospheric boundary layer flux 

assimilation. This has been recently extended beyond the point scale to multi-scale remotely 

sensed brightness temperature over the Great Plains of the United States. Crow and Kustas 

(2005) have also applied variational techniques to derive evaporative fraction and heat 

transfer coefficients from surface temperature under a variety of background conditions and 

at several observing stations. Seuffert et a1 (2004) incorporated brightness temperature into 

the Mahfouf (1991) method, and further improved the increments of soil water. Likewise, 

Lakshmi (2000) used surface temperature to make adjustments to soil moisture. Van den 

Hurk et al. (2002) use surface temperature assimilation to adjust the root zone soil moisture 

and the roughness length for heat. Here, we will assimilate surface temperature and use the 

increments to compute the bias of the system to provide forcing to the solution of the surface 

energy budget and skin temperature prognostic equation. This surface temperature is the 

lower boundary condition of a global atmospheric data assimilation system. The method 

adjusts the model background temperature, turbulent fluxes and terrestrial long wave 

radiation based on the surface temperature bias. 

3. Data 

In this study, we assimilate skin temperature from the International Satellite Cloud 

Climatology Project (ISCCP). Surface air temperature from in-situ stations is used as 

independent validation of the approach. Independent in-situ station observations from the 



Coordinated Enhanced Observing Period (CEOP, Bosilovich and Lawford, 2002; Lawford et 

a1 2005) are used to validate the impact on the surface fluxes. 

The International Satellite Cloud Climatology Project (ISCCP) has produced a global 

clear-sky surface skin temperature product merged from the infrared radiances of an 

international network of geostationary and polar-orbiting meteorological satellites (Rossow et 

al. 1996). ISCCP includes processed visible and infrared data, producing 3-hourly datasets of 

global cloud cover and radiative properties, including surface temperature (Rossow et al. 

1996). The ISCCP data product we assimilate is the 30 Km global clear-sky surface skin 

temperature from the Pixel Level Cloud Product (DX). The algorithm for this product is 

described by Rossow and Schiffer (1991 and 1999). The ISCCP DX data set is based on 

infrared radiances from several series of satellites: Geostationary Meteorological Satellite 

(GMS - Japan), Geostationary Operational Environmental Satellite (GOES - US), 

Meteorological Satellite (Meteosat - EU), and National Oceanic and Atmospheric 

Administration (NOAA - US). 

The inherent accuracy of remotely sensed skin temperature is a concern. Jin (2004) 

summarizes the difficulties in surface temperature retrieval and efforts to improve the 

satellite era record. Even among geostationary satellites, different views of the same scene 

may disagree on the land surface temperature by up to 6K, particularly as a result of varying 

the viewing angle (Minnis and Khaiyer 2000). Despite this, a global review of the skin 

temperature uncertainty from GOES retrievals found errors of only 0.5-1.0 K over ocean and 

0.9-2.4 K over land (Garand 2003). The methodology of merging and processing the 

remotely sensed data is improving, and the quality and quantity of skin temperature 

observations will increase (Aries et al. 2001 and Prigent et al. 2003). Looking forward to both 

improved historical records and advanced fine resolution data (e.g. from MODIS, Wan et al. 

2004), the method of assimilating observed skin temperature requires more investigation. 



The National Centers for Environmental Prediction (NCEP) provides surface 

meteorological observations from the Global Telecommunications System (GTS). We 

processed this surface meteorological data to match the analysis grid used in this study, so 

that the meteorological data could be used as a benchmark for testing the analysis method. In 

the gridding process, we did not make adjustments to the data to account for differences 

between model topography and the altitude at the station location. While this may affect the 

station data at high altitudes, the global grid appears to provide a reasonable data set for 

model intercomparison. 

While we can validate the assimilation against available meteorological station data, 

the availability of surface energy budget and flux data is quite limited. One set of validation 

data for this study comes from the Coordinated Enhanced Observing Period (CEOP).' CEOP 

was designed as a pilot program to test the scientific community's ability to bring together a 

variety of global observations in order to better document and simulate water and energy 

fluxes over land. We will use in-situ point observations from CEOP reference sites and 

Continental Scale Experiments (CSEs) as independent validations (Bosilovich and Lawford 

2002; Koike 2004). In order to compare hourly point observations with our gridded model, 

we use Model Output Location Time Series (MOLTS), which generate model output from a 

given point at hourly frequency, matching the station temporal frequency. Spatial 

interpolation to site locations is not performed, and we simply use the nearest model grid 

point data (e.g. Betts et a1 1998 a and b, 1999). 

4. Model and Methodology 

4.1 GEOS4 Data Assimilation System 

The experiments are based on the finite-volume General Circulation Model (fvGCM; 

Lin 2004), developed at NASA in collaboration with the National Center for Atmospheric 

Research (NCAR). Data assimilation is performed with the Physical-space Statistical 



Analysis system (PSAS; Cohn et al. 1998). Collectively, the combination of fvGCM and 

PSAS are referred to as the GEOS4 Data Assimilation System (Bloom et al. 2005). This 

configuration of GEOS4 provided operational analyses for the GMAO from June 2003 

through September 2005. The finite-volume dynamical core is capable of resolving 

atmospheric motions from meso- to planetary-scale with a terrain-following Lagrangian 

control-volume vertical coordinate system (Lin 1997; Lin and Rood 1999). The fvGCM 

dynamical core formulation includes a genuinely conservative Flux-Form Semi-Lagrangian 

(FFSL) transport algorithm (Lin and Rood 1996) with Gibbs oscillation-free monotonicity 

constraint on sub-grid distribution. There is a consistent and conservative transport of air 

mass and absolute vorticity, and subsequent superior transport of potential vorticity by the 

FFSL algorithm (Lin and Rood 1997). In turn, the mass, momentum, and total energy are 

conserved when mapping from the Lagrangian control-volume to the Eulerian fixed reference 

coordinate. 

The physical parameterizations of the fvGCM are based on NCAR Community 

Climate Model version 3.0 (CCM3) physics, with the exception of gravity wave drag which 

is implemented based on more recent NCAR parameterization (Bloom at a1 2005). The 

NCAR CCM3 parameterizations are a well-balanced set of processes with a long history of 

development and documentation (Kiehl et al. 1998). The moist physics package includes the 

Zhang and McFarlane (1995) deep convective scheme, which handles updrafts and 

downdrafts and operates in conjunction with the Hack (1994) mid-level and shallow 

convection scheme. For the radiation package, the longwave radiative transfer is based on an 

absorptivity-emissivity formulation (Ramanathan and Downey 1986) and the shortwave 

radiative parameterization uses the 6-Eddington method (Briegleb 1992). The boundary- 

layer mixing/turbulence parameterization utilizes the "nonlocal" formulation from Holtslag 

and Boville (1993). 



All observations that are assimilated into the system must first pass through a 

Statistical Quality Control (SQC) system (Dee et al. 2001). The goal of the SQC is to 

remove observations that are probably contaminated by gross errors. The SQC performs a 

local statistical analysis for outlier data that differ significantly from the short-term forecast 

produced by the GCM. The main decision algorithm of the SQC is an adaptive buddy check 

in which the rejection limits for flagged observations are adjusted on the fly depending on the 

local variability of surrounding observations. 

The GEOS4 (and PSAS) data assimilation algorithms seek to create an optimal 

description of the state of the system by combining the current observations with a model 

forecast initialized by the previous analysis. PSAS implements a standard 3D-Var algorithm, 

with covariance operators formulated in observation space (Cohn et al. 1998, Guo et al. 1998, 

Larson et al. 1998). The analysis of mass and wind is multivariate, followed by univariate 

analysis of moisture and skin temperature for operational mode (Bloom et al. 2005). The 

skin temperature background and observation errors are homogeneous and isotropic, with 

constant background/observation error standard deviations ( o ~  loo ) defined so that the scalar 

weight (K) 

is taken as 0.7 for latitudes equatorward of 60 degrees, and K - 0.5 for latitudes poleward of 

60 degrees. While we expect errors to be spatially and temporally varying, it is difficult to 

more precisely define the error distribution without a large ground truth data set. The early 

testing of surface temerpature assimilation showed that the analysis was unstable at high 

latitudes, owing to the proximity of observations. This instability was controlled by assuming 

more observation error (smaller K) at higher latitudes. 



4.2 The Common Land Model (CLM) 

The state-of-the-art NCAR Community Land Model version 2 (CLM2) land-surface 

model (Dai et al. 2002; Zeng et al. 2002, Oleson et al. 2004) is part of the standard 

configuration of the GEOS-4 GCM (Bloom et a1 2005). The CLM2 provides a 

comprehensive physical representation of soillsnow hydrology, thermal dynamics and 

biogeophysics. The CLM2 was developed collaboratively by an open interagencyluniversity 

group of scientists, and based on well-proven physical parameterizations and numerical 

schemes that combine the best features of three previous land surface models: Biosphere- 

Atmosphere Transfer Scheme (BATS; Dickinson et al. 1993), the NCAR Land-surface 

Model (LSM; Bonan 1996), and the IAP94 snow model (Dai and Zeng 1996). 

The CLM2 is a column model that uses sub-grid scale tiles. There is one vegetation 

layer with a photosynthesis-conductance model to realistically depict evapotranspiration 

(Bonan 1996). There are 10-uneven vertical soil layers with the bottom layer at 3.43-m and 

water, ice, and temperature states in each layer. The CLM2 can have up to five snow layers 

depending on the snow depth with water flow, refreezing, compaction and aging allowed. In 

addition, the CLM2 utilizes two-stream canopy radiative transfer, the Bonan (1996) lake 

model, topographic enhanced streamflow based on TOPMODEL (Beven and Kirkby 1979), 

and turbulence is considered above, within, and below the canopy. The vegetation 

parameterization has been updated to improve the representation of leaf interception and 

surface runoff (Dickinson et al., 2003). The vegetation surface temperature equations has also 

been modified to include a heat capacity so that surface temperature can be assimilated to that 

budget as well. The connection between the data assimilation and the model surface energy 

budget is discussed later in this section. 



4.3 Assimilation and Bias Correction Algorithms 

Complete details and rigorous derivation of the assimilation and bias correction 

methods are discussed by Cohn et a1 (1998) and Dee and da Silva (1998), respectively. The 

assimilated skin temperature observations can be used to reduce the long-term skin 

temperature bias of the model through bias correction. We implemented a simplified variant 

of the Dee and da Silva (1998) bias correction scheme based on equations (2) through (4). 

In these experiments, wf is the forecast blackbody surface temperature derived from the CLM 

and the wO is the ISCCP observed blackbody temperature. wn is the resulting analysis field of 

blackbody temperature. In this notation, 6wU is the analysis increment at analysis time k, b{is 

the updated time mean forecast bias estimate, and bk-f is the bias estimate based on the 

previous analysis increment 6 ~ k - ~ " ;  K is a notational short hand for an iterative conjugate 

gradient solver used to solve the analysis equation and H is the interpolation operator (Cohn 

et a1 1998). The parameter y controls the rate of convergence of the bias estimate as a 

function of time; here we take y = 0.2. An incremental bias correction scheme was 

introduced, where a bias correction term is added to the surface energy balance at every time 

step, assuming that the bias in physical surface skin temperature is not much different than 

the bias in radiative temperature. To implement this incremental bias correction, the updated 

bias estimate bdis converted to an energy flux (B) which is included in the surface energy 

budget 



This equation is generally representative of soil, vegetation and snow surface balances, where 

Rs represents the upward and downward shortwave radiation; RL represents the upward and 

downward longwave radiation; Hs is the sensible heat flux, LE is the latent heat flux; G is the 

heating into the ground; C is the effective heat capacity and B is the heating due to the bias of 

the model compared to the analyzed observations (henceforth referred to as the bias flux), 

where B = C bkf/ T, and time scale T = 3 hours is the analysis interval (the time step of the 

model is ?4 hour). The ISSCP observations were binned to the models 1 degree grid for 

analysis. The terms in the equation that are functions of surface temperature (evaporation, 

sensible heat, and upward long wave radiation) are linearized with respect to T, in the land 

parameterization. 

The surface temperature is computed by iteration of the energy balance. Since the 

skin temperature bias correction term is included in the iteration, all budget terms that are a 

function of the surface temperature adjust to the presence and magnitude of the bias 

correction at every time step. For the ISCCP data and its assimilation, the period between 

analysis updates is 3 hours. The incremental bias correction is applied uniformly in the 

diurnal cycle, so that biases from all times of day contribute to the bias estimate. This is 

analogous to the application of bias correction in atmospheric data assimilation. 

Given the diurnal cycle of the land surface temperature, there is no guarantee that all 

temperatures throughout the day will have the same bias in sign or magnitude. Therefore, we 

parameterize the bias estimate (bkf) as a function of time of day (x), by considering the 

Fourier expansion: 



2n- 
where u ,  = - . m. 

24hr 

For the purpose of this study, we would like to capture the time mean bias and the mean 

diurnal cycle. Therefore, we truncate the series above at m = 1. 

bkf(~)  =a: +a:  c o s u , z + ~ ~ s i n u , z .  (8) 

The Fourier coefficients a l k  andplk are estimated from the analysis increments, e.g., 

1 I ak = ak-, - y&; COS u1 z (9) 

Pi = Pi-, - y&i sin w, z (10) 

Note that when we retain only the first term (m=O) in the Fourier expansion the method 

reverts back to the time mean bias correction. 

The appropriate value for each 3 hour segment of the diurnal cycle is then included 

into the surface energy balance (B in equation 5). The energy budget equation is iterated to 

solution where the turbulent fluxes are solved by similarity approximations. For a given 

model time step, the bias flux is considered to be constant, so that it can be viewed as 

additional forcing on the surface energy budget. So, unlike some previous efforts of surface 

temperature assimilation (e.g. McNider et a1 1994), all surface energy terms that are a 

function of temperature are permitted to adjust to the bias correction term. Further, the 

solution of surface layer turbulence (through similarity theory) is still maintained, only 

considering the bias flux in addition to the other forcing energy terms. Therefore, it is 

important that the resulting turbulent energy fluxes be well validated. In the next section, we 

test the assimilation and the bias correction methods, as well as independently validate the 

resulting model background fields. 

5. Results 

We have performed three experiments: a control (CTL) where there is no feedback of 

ISCCP analysis into GEOS4, an incremental bias correction experiment (EXPI) where a time 



mean bias (updated every 3 hours at the analysis time step) is computed and used as forcing 

on the surface energy budget, and a diurnal bias correction experiment (EXP2) where 

diurnally varying biases are computed and used as forcing on the GEOS4 surface energy 

budget. 

Figure 1 compares analyses with no Ts analysis increment coupled (CTL and EXP2) 

and their counterparts that include both Ts bias correction and analysis increment coupled 

into the surface energy budget (CTL-A1 and EXP2-AI). The curves in Figure 1 are generated 

with data at every model time step at an arbitrary grid point. The analysis increment is 

applied instantaneously when an observation is available, while the bias correction is applied 

at all time steps. The small heat capacity of the thin surface of the model cannot retain such 

large instantaneous temperature changes, and the temperature spins down to the background 

state very rapidly. The bias correction is a small adjustment toward the observations each 

model time step. The heat that enters or leaves the system in this way is also propagated to 

the atmosphere and the subsurface through the iteration of the surface energy budget. Given 

the unrealistic disruption on the time series of surface temperature (and flux terms of the 

surface energy budget) from coupling the analysis increment, we will focus on the evaluation 

of coupling the bias correction without the analysis increment (EXP1 and EXP2). 

We present results for a one month period of July 1 - 3 1,2001. It is also important to 

note that in each experiment, an uncoupled surface temperature analysis field is produced, 

even in the control. The upper atmospheric assimilation is kept unchanged in all experiments, 

except perhaps, for the quality control decisions which are state dependent and change from 

experiment to experiment. 

5.1 Analysis and Background Surface Temperature 

Figure 2 shows the comparison of day and night analyzed ISCCP surface 

temperatures with the original ISCCP temperatures averaged for the month and only when an 
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observation is available. For the CTL experiment, this field is an analysis of the ISCCP Ts, 

but it does not include a bias correction or any feedback to the physical system. For EXPI, 

including coupled time mean bias correction, there is an improvement of the day and night 

biases, but some residual diurnal bias is still apparent (Figure 2 c and d). These tend to be of 

opposite sign. For example, in the western United States there is a cold daytime bias and a 

warm nighttime bias. However, Europe shows a warm daytime bias and cold nighttime bias. 

The global impact of the diurnal bias correction (EXP2) over that of the incremental bias 

correction (EXP1) is not tremendous. Regionally, the diurnal residuals noted in EXPl (e.g. 

Europe) have been ameliorated in EXP2, bringing the analysis temperatures in line with the 

observations. The diurnal bias correction brings the analysis surface temperature regional 

biases closer to the observations, accounting for biases that have opposite signs between the 

day and night. 

The model background fields are the forecast data that are used to calculate the 

analysis increments. By coupling the bias correction to the model forecasts, we hope to 

propagate the information of the observations into the physical system, which should lead to 

a better background field. Figure 3 shows the day and night background Ts differences from 

the ISCCP data. In the CTL experiment, there is no influence, by design, of the Ts analysis 

on the background Ts, so that Figure 3 a and b show the model differences from the ISCCP 

observations. The surface bias is generally warm, with some local biases reaching +8 K 

warmer than the ISCCP estimates in some regions. In EXP1, the global land biases are 

reduced by one third or more (Table 1). The standard deviation of the global differences is 

also generally reduced. Some of the largest regional biases have improved. For example, the 

Amazon River basin has a reduced warm bias (figure not shown). The warm regions are still 

warm, compared to ISCCP, but the intensity of the bias is reduced. In the diurnal bias 

correction experiment (EXPZ), the incremental improvement over EXPl is not apparent 



compared to the remaining systematic biases (Table 1). In the next section, we will evaluate 

the effect of the Ts coupled bias correction compared to independent observations. 

5.2 Near-Surface Air Temperature 

The global network of surface meteorological observations provides an independent 

data set for validation of the methodology. Figure 4 compares 2m air temperature (T2m) from 

the CTL and EXP2 cases with the observed air temperature. In EXP2, regional biases are still 

apparent, though their intensities are less, for example over the east coast of the United 

States, Europe and western Australia. Figure 4c shows the difference of the magnitude of bias 

between the experiments. Where the shading is red, the EXP2 has a smaller absolute T2m 

bias than in CTL. There are many regions where the bias is improved by assimilating the 

ISCCP data into the system. We can look more closely at Europe and the United States 

(Figure 5) where the surface station density is typically higher than other regions. In Europe, 

strong warm biases are improved (by about lK, Figure 5c) especially in the central region 

with smaller improvements across the rest of the region. There are very few ISCCP 

observations in and around Scandinavia (figure not shown), so that there is little impact from 

the Ts assimilation. In the United States, the skin temperature bias correction leads to 

simultaneous improvement of cold temperatures in the southern Great Plains states and warm 

biases from the northern Great Plains through the East Coast states (Figure 4 d and f). 

Intercomparing EXPl and the day and night time air temperatures only leads to the same 

conclusion as discussed for the background skin temperature comparison with ISCCP (as in 

Figure 3 and the previous section). 

To further examine the diurnal cycle, we calculated the diurnal amplitude from the 

monthly mean diurnal cycle of the background 2m air temperature and the meteorological 

station air temperature. The minimum of the diurnal cycle is subtracted from the maximum to 

get the amplitude over the globe. Figure 6 shows the difference of each experiment's diurnal 



amplitude from the meteorological observations, as well as the improvement of the mean 

amplitude biases. The CTL experiment has an amplitude that is too large compared to the 

station observations (Figure 6a) including the central and eastern United States, South 

America and western Europe. Small amplitudes are apparent in the southern hemisphere 

(austral winter) in South Africa and Australia. In general, these same patterns hold in the 

global fields of the EXPl and EXP2 differences (Figure 6 b and c). However, in comparing 

the differences of each experiment, we see that EXPl makes few reductions in the bias of the 

amplitude (Figure 6d) while EXP2 has smaller biases than both the CTL and EXPl cases 

(Figure 6 e and f). 

Figure 7 shows the comparison of the diurnal amplitude for each experiment over the 

United States. For many points, the time mean bias correction (EXP1) is either ineffectual or 

adversely affects the amplitude of the diurnal cycle (Figure 7 a, b and d). This is especially 

noticeable in along the east coast. In contrast, the diurnal bias correction applied in EXP2 

generally improves the amplitude across the continent. This is exemplified along the east 

coast (Figure 7c) where the systematic high bias in the CTL experiment is effectively 

removed. The high bias in the northern Great Plains is a feature that persists in all 

experiments, though the diurnal bias correction (EXP2) seems to be working to reduce the 

bias. 

Over Europe, the amplitude of the 2m air temperature demonstrates some interesting 

features (Figure 8). In western Europe, the amplitude is overestimated in CTL, while to the 

east, the amplitude is slightly underestimated (Figure 8a). The diurnal bias correction 

provides substantial reduction to the amplitude across the region, which is an improvement in 

the west, but a degradation to the east (Figure 8c and e). On the other hand, the time mean 

bias correction worsens the high bias of amplitude in west Europe, while improving the low 



bias of amplitude in east Europe (Figure 8d). It is counterintuitive to expect the time mean 

bias correction to improve the diurnal amplitude. 

We explore this further by area averaging the temperatures and amplitudes for east 

and west Europe (defined by the boxes in Figure 8f). Firstly, a disparity exists in the number 

of observations during the month, i.e. there are more daytime observations than night (Table 

2). Also, the CTL daytime skin temperatures are warmer than ISCCP in both regions, but the 

east has a cold nighttime bias while the west is warm at night. In both regions, the EXPl time 

mean bias correction acts to cool the nighttime surface, driven by the daytime warm bias. 

This is not appropriate for the east Europe nighttime temperature, which is already cold and 

getting colder with the time mean bias correction. However, the nighttime cooling contributes 

to an increase in the eastern air temperature amplitude. In several points, this appears as an 

improvement in the amplitude bias (Figure 8d), though this does not improve the area 

average (Table 2b). On the other hand, EXP2 applies the bias proportionately across the 

diurnal cycle, so that the daytime bias correction does not influence the nighttime 

temperatures. This leads to a reduction in the daytime temperature, with only small effects on 

the nighttime temperature (because the night biases are small and there are less input 

observations available for assimilation). In the west, this helps the comparison of air 

temperature amplitude. To the east, the EXPl time mean bias correction is more effective 

because the day and night biases happen to be of the same sign. However, in a general sense, 

the EXP2 with diurnal bias correction of Ts offers both an improvement in mean air 

temperature bias and improvement in the diurnal amplitude of the air temperature. The global 

implementation and independent validation of the method allow for the identification and 

analysis of many different features. 



5.3 Energy Budgets 

Because the bias correction of surface temperature is integrated into the surface 

energy budget and provides forcing on the budget, the terms of the surface energy budget 

change by including the surface temperature observations. Figure 9 shows the mean 

difference of sensible heat flux, latent heat flux and soil water between EXP2 and CTL 

experiments. The sensible heat flux differences (Figure 9a, computed from every available 

time interval in the analysis) generally correlate to the surface temperature differences 

between the CTL experiment and ISCCP observations (Figure 3a). For example, including 

the surface temperature bias correction increases sensible heat flux in the southern Great 

Plains states where the CTL experiment is cold. Likewise, sensible heat flux decreases in 

EXP2 across the Amazon River Basin, where CTL surface temperatures are warmer than 

ISCCP. The impact on latent heat flux and soil wetness is complicated by the availability of 

water for evaporation and variations in surface layer turbulence, precipitation and clouds that 

occur in the system. For example, there are decreases and some increases of latent heat 

between EXP2 and CTL in the Amazon, but soil moisture is generally increased. Overall, the 

impact on the physical quantities appears reasonable given the CTL Ts differences from the 

assimilated observations and the subsequent bias correction. 

It is difficult to develop global observations of the surface energy budget terms. 

Turbulent flux measurements are atypical in meteorological stations. However, the Global 

Energy and Water Experiment (GEWEX) has supported several Continental-scale 

Experiments (CSE's) over periods of years. These include several reference sites which have 

enhanced observing capabilities, such as turbulent fluxes and radiative fluxes. The 

Coordinated Enhanced Observing Period (CEOP) has compiled, processed and provided 

further quality control on these observations (Bosilovich and Lawford, 2002 and Lawford et 

a1 2005). The surface stations and data integration efforts are described in Koike (2004). 



Figure 10 intercompares the monthly mean diurnal surface energy budget (net 

radiation, Rn; Sensible heat flux, Hs; Latent heat flux, LE; Ground heat flux, Hg; and the 

Bias Flux that results for the analysis of Ts, B; see also equation 5) for station observations, 

CTL and EXP2. Table 3 shows the names and locations of the in-situ stations evaluated here. 

The LBA Rondonia site shows some impressive improvement of the energy budget. The 

Bowen ratio of sensible and latent heat fluxes is completely reversed in the CTL experiment 

compared to the station data, but is much improved when including the ISSCP Ts bias 

correction (Figure 10 a and b). The latent heat flux is very close to observations, and the 

sensible heat is improved but still an overestimate. However, the mean peak of the net 

radiation has increased to be larger than the station observations. The impact of coupling the 

observations does not affect the surface energy budget greatly everywhere. The LBA Manaus 

station shows a small improvement to net radiation, but the peak of latent heat flux becomes 

less than observed. Also note that the Bias Flux term is smaller at Manaus than Rondonia. 

At the ARM SGP site, there is little bias flux and only a small impact on the physical 

terms of the surface energy budget (Figure 10 e and f). However, farther north at the BERMS 

site, the bias correction leads to improved sensible heat flux, while there is little influence on 

the latent heat. The CTL experiment at the BALTEX Lindberg site shows a significant 

overestimation of the net radiation, which may be more related to a problem in the model 

system's clouds. EXP2 shows a reduced bias in sensible heat, but it is difficult to overcome 

the large bias in net radiation. At the BALTEX Cabauw site, there is a similar overestimate of 

sensible heat flux in CTL, and some improvement in EXP2. However, the net radiation 

overestimate in CTL is not improved with the assimilation of the observations. 

Table 4 summarizes the changes in mean bias of the fluxes and meteorology due to 

the diurnal bias correction at several of the CEOP reference sites. This table is intended to 

broadly evaluate the impact of the temperature bias correction, as opposed to the more 



detailed discussion above, against many independent observations not routinely or globally 

available. It shows the mean biases for the month, as well as an indicator of the experiment's 

(EXP2) change in magnitude of the bias (larger or smaller). 

In general, the CTL sensible heat fluxes were overestimated, but improved in EXP2. 

At many sites, the CTL 2m air temperature is too warm. On the other hand, latent heat is 

generally underestimated, but the reduction of temperatures does not lend to increased 

evaporation. The near-surface air is dry at many of the stations, so that the soil water maybe 

concurrently too low. It is interesting to note that despite the degraded latent heat flux biases, 

near-surface specific humidity shows improvement. There are mixed results from the 

radiation component fluxes. There may be some feedback with the clouds and precipitation 

that eventually affect these comparisons, so that all the changes noted, are not solely from the 

assimilation of surface temperature. In this analysis we can also put the temperature bias (or 

in this case, the bias flux, B) in context of the other errors of the surface energy budget. The 

air temperature and skin temperature (or upward longwave radiation, as a proxy) are 

generally improved with some cases of no effect or negative effect. It should also be 

considered that these stations are representative of their nearby environment, while the global 

model grid box data represents a one degree square area. In that respect, the most systematic 

impact on the surface seems to be the improvement to surface temperature and sensible heat 

flux, and the degradation of the latent heat flux biases. 

It is worthwhile to reiterate that the corrections here are being applied to temperature 

only, and no corrections are being applied directly to the moisture fields. While it may be 

beneficial to use near-surface specific humidity in conjunction with the skin temperature 

analysis (analogous to previous studies), assimilation of surface soil water with global 

coverage concurrently with the remotely sensed surface temperature would provide a more 



consistent approach. The present study was designed to test the univariate assimilation of 

surface temperature into the land model's prognostic surface energy budget. 

There are several sources of uncertainty that affect the surface temperature in a global 

analysis system. Improved simulation of precipitation, or also the assimilation of 

precipitation into the system should provide more accurate forcing for the land states (Hou et 

al. 2001 and 2004; Rodell et al. 2004 a and b). In addition, downward radiation changes 

between the two cases, because clouds are not constrained in the system. The assimilation of 

remotely sensed cloud cover shows promise for improving the radiative forcing for the land 

surface (da Silva and Norris, 2004). A multivariate assimilation and impact study would be 

useful to better quantify the impact of the different parameters on the surface energy budget. 

While some patterns of systematic changes in the surface energy budget due to the surface 

temperature assimilation are apparent in both Table 4 and Figure 10, more stations would 

refine the analysis. 

6. Summary and Conclusions 

Remotely sensed surface temperature is analyzed and the bias correction is 

assimilated into the background model's surface energy budget. The method is validated 

against the assimilated observations, as well as independent near-surface air temperature 

observations. In general, the largest biases are improved by a time mean value of bias 

correction. Accounting for the diurnal cycle of surface temperature bias provides further 

improvement in mean near-surface air temperature, but also improved amplitude of the air 

temperature. In many regions, not accounting for the diurnal cycle caused degradation of the 

diurnal amplitude of background model air temperature. The diurnal bias correction was 

particularly useful in improving the amplitude of the near-surface air temperature. 



These results suggest that the direct assimilation of skin temperature into the surface 

energy budget can improve the background model. Even with the noted improvement to the 

background model, substantial bias persists for the relatively short analysis presented here. A 

longer analysis, over a period of several years, could also help identify any interannual 

sensitivity and feedback with the atmosphere. However, improvements to the forcing of the 

surface should also provide a positive impact on the surface energy budget, such as 

precipitation and radiation through cloud assimilation (e.g. Norris and Da Silva, 2006). This 

should also contribute to the direct assimilation of soil water, providing some information of 

the temperature bias that exists for the identified soil moisture bias (Houser et al., 1998; 

Walker et al. 2004; Reichle et al. 2004; Reichle and Koster, 2005; Zhan et al. 2006). 

Independent validation of land data assimilation techniques is critical to 

understanding the impact of the data on the surface energy budget. Many enhanced surface 

flux stations exist, but their data is provided in a unique format, and may or may not have 

undergone extensive quality control measures, thereby limiting their usefulness in a global 

validation. Presently, several international efforts to organize global Earth observations (such 

as the World Meteorological Organizations data standards and the Global Earth Observing 

System of Systems, GEOSS) are advocating international coordination of global data. CEOP 

has provided a pilot study for the integration of international global observation data sets 

(Koike, 2004). This paper provides a simple demonstration on how integration efforts, such 

as CEOP, might improve scientific investigations. With only a few stations, some impact on 

the global assimilation system is apparent. This analysis suggests that the coordination of 

these enhanced observing stations can be used to evaluate global coupled land data 

assimilation systems and ultimately help provide the data for further investigation of the 

Earth system. The CEOP effort should continue and expand to include many more stations, in 



order to support the science needed to understand the land atmosphere interactions and the 

impact of land data assimilation. 
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8. List of Tables 

Table 1 Global average (land area) statistics of the comparison of monthly mean (day or 

night) ISCCP surface temperature to each experiment. Bias indicates the monthly 

mean difference of the global land data and SD indicates the standard deviation of the 

monthly mean difference map. Units in Kelvin. 

Table 2 Area averaged background temperatures for observations and each experiment in the 

east (a) and west (b) Europe regions defined in Figure Sf. The columns are skin 

temperature (Ts) day and night, the difference between day and night (ATs(d-n)) and 

2m air temperature diurnal amplitude (monthly maximum minus monthly minimum 

temperature). Units are Kelvin, except for the data counts, which are the percentage of 

ISCCP data available for assimilation across the region. 

Table 3 CEOP reference site locations (latitude and longitude) used in this study. The 

acronyms are: Continental-scale Experiments (CSEs), Baltic Sea Experiment 

(BALTEX), CEOP Asian Monsoon Project (CAMP), GEWEX Americas Prediction 

Project (GAPP), Atmospheric Radiation Measurement Program (ARM) Southern 

Great Plains site (SGP) and North Slope of Alaska sites (NSA), Large-Scale 

Biosphere-Atmosphere Experiment in Arnazonia (LBA), Mackenzie GEWEX Study 

(MAGS), and Boreal Ecosystem Research and Monitoring Sites (BERMS). 

Table 4 Mean differences between (a) the experiment with ISCCP skin temperature diurnal 

bias correction (EXP2), (b) the control experiment (CTL), and reference station data 

from CEOP for July 2001. The variables (units) are Q2m, 2m specific humidity (g kg- 

1 ); T2m, 2m air temperature (K); Ts, skin temperature (K); Rn, Net Radiation (W m- 

2 ); Hs, Sensible Heat Flux (W m-2); LE, Latent Heat Flux (W m-2); Hg, Ground Heat 



Flux (W mm2); Rsd, Short wave Radiation down (W mm2); Rsu, Short wave radiation up 

(W m-2); Rld, Longwave Radiation Down (W m-2); Rlu, longwave radiation down (W 

m-2) and B, the bias correction converted to energy flux (W m-2). In (a), if EXP2 has a 

reduction in mean bias of a quantity, it is written in Bold, if the bias is worsened, it is 

underlined, and if the value is written with plain text, the change considered small 

(criteria are 0.1 K and g kg-', and 3 W m-2). 
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10. List of Figures 

Figure 1 One-day cycle of surface skin temperature from a point for ISCCP observations 

(black dots) and four model experiments. The CTL (red line) and EXP2 (blue line) are 

the control and Diurnal Bias Correction experiments. A1 denotes experiments that 

include analysis increment forcing on the surface energy. The analysis is only applied 

when observations are available, while the diurnal bias correction in EXP2 is applied 

at every time step. The CTL-A1 (dashed red line) adds the analysis increment into the 

energy budget of the control experiment, while EXP2-A1 (dashed blue line) adds the 

analysis increment into the bias corrected EXP2. 

Figure 2 July 2001 monthly-mean instantaneous surface skin temperature differences (in 

Kelvin) for the analysis (ANA) in day (a,c and e) and night (by d and f) of the control 

(CTL) and experiments (EXP1 and EXP2) with the ISCCP observations (screened for 

times when observations are available). Day and Night averages are defined by the 

systems 3-hourly top of the atmosphere incoming solar radiation, for example, when 

the radiation is near zero the data is averaged as night. The labels Bias and SD 

indicate the area average of the mean difference and standard deviation of the mean 

difference, respectively for the available data plotted in each map. 

Figure 3 As in Figure 2, except for the CTL experiment background (BKG) model simulation 

of surface temperature being forced by the bias correction. 

Figure 4 July 2001 2m air temperature station observations compared with the CTL (a) and 

EXP2 (b) experiments diagnostic output. The improvement of biases is indicated by 

red shades in (c), while blue shades indicate that the bias has been exacerbated. Units 

are Kelvin. White is used to identify areas that have no meteorological air temperature 



in this data set, and also the ocean areas. Bias indicates the global land area difference 

in the map, and SD indicates the standard deviation of the difference map. 

Figure 5 As in Figure 4, except for enlarged regions of Europe (a, c and e) and the United 

States (b, d, and f )  where observing stations are most dense. 

Figure 6 Differences of monthly mean amplitude of the diurnal cycle of station 2m air 

temperature with the experiments CTL (a), EXPl (b) and EXP2 (c). In addition, (d) 

shows the improvement of mean bias of the EXPl over CTL, (e) shows the 

improvement of mean bias of the EXP2 over CTL, and ( f )  shows the improvement of 

mean bias for EXP2 over EXP1, where red indicates a smaller bias for EXPl in (d) 

and EXP2 in (e) and ( f ) .  Unit are Kelvin. White is used to identify areas that have no 

meteorological air temperature in this data set, and also the ocean areas. Bias 

indicates the global land area difference in the map, and SD indicates the standard 

deviation of the difference map. 

Figure 7 As in Figure 6, except for an enlargement of the United States. 

Figure 8 As in Figure 6, except for an enlargement of Europe. 

Figure 9 July 2001 mean difference between CTL and EXP2 of (a) sensible heat flux, (b) 

latent heat flux and (c) soil wetness. The units are W m-2 for the fluxes and percent 

fraction of saturation for soil wetness. Bias indicates the global land area difference in 

the map, and SD indicates the standard deviation of the difference map. 

Figure 10 Comparison of CTL and EXP2 surface energy budget terms for surface stations 

contributing to CEOP. The experiment data are represented by lines and observations 
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are represented by markers, as identified in the legend in the top left corner of each 

figure. See Table 3 for station locations and variable definitions. The bars in the top 

right corner of each figure show the percentage of observations available during the 

month of July 2001 for that station. 
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