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Abstract: 

The creation and accumulation of nanophase iron (npFe0) is the primary mechanism by 

which spectra of materials exposed to the space environment incur systematic changes referred 

to as “space weathering.”  The optical effects of this npFe0 on lunar soils are well documented.  

Space weathering though, should occur on the surface of any planetary body that is not protected 

by an atmosphere.  There is no reason to assume that cumulative space weathering products 

throughout the solar system will be the same as those found in lunar soils.  In fact, these products 

are likely to be very dependent on the specific environmental conditions under which they were 

produced.  We have prepared a suite of analog soils to explore the optical effects of npFe0.  By 

varying the size and concentration of npFe0 in the analogs we found significant systematic 

changes in the Vis/NIR spectral properties of the materials.  Smaller npFe0 (<10 nm in diameter) 

dramatically reddens spectra in the visible wavelengths while leaving the infrared region largely 

unaffected.  Larger npFe0 (>40 nm in diameter) lowers the albedo across the Vis/NIR range with 

little change in the overall shape of the continuum.  Intermediate npFe0 sizes impact the spectra 

in a distinct pattern that changes with concentration.  The products of these controlled 

experiments have implications for space-weathered material throughout the inner solar system.  

Our results indicate that the lunar soil continuum is best modeled by npFe0 particles with bulk 

properties in the ~15-25 nm size range.  Larger npFe0 grains result in spectra that are similar in 

shape to the Mercury continuum.  The continuum of S-type asteroid spectra appear to be best 

represented by small amounts of npFe0 that is similar to, but slightly smaller on average, than the 

npFe0 in lunar soils (~10-15 nm). 

Keywords:  SURFACES, ASTEROIDS 
  MOON, SURFACE 
  MERCURY 
  SPECTROSCOPY 
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Introduction: 

“Space weathering” is a term used for a number of processes that act on any airless body 

exposed to the harsh space environment.  The optical changes associated with space weathering 

are largely initiated by two of these processes, micrometeorite bombardment and charged 

particle irradiation.  Both processes create nanophase iron (npFe0), nanometer-scale particles of 

metallic iron distributed in amorphous silicate.  In lunar soils, npFe0 is found in two places: 

throughout agglutinitic glass and on soil grains in vapor/sputter deposited and irradiated rims.  

The average size of these iron particles in npFe0-bearing rims is observed to be about 3 nm in 

diameter, though they range from roughly 1 to 15 nm (Keller and Clemett, 2001).  The npFe0 

particles in agglutinates are considerably larger (Keller and Clemett, 2001) and come in a wider 

range of sizes up to several hundred nanometers (Housley et al., 1973; James et al., 2001).   

The optical consequences of npFe0 on lunar soils have been long recognized and are well 

documented (e.g. Pieters et al., 1993, 2000; Hapke, 2001; Noble et al., 2001).  It is known that 

these optical effects, the so-called “space weathering continuum,” change with the amount of 

npFe0 present (Noble et al., 2001); however, minimal work has been done to explore the effects 

of npFe0 size on the optical properties.  Based on a combined microspectroscopic/TEM study, 

Keller et al. (1998) suggested that smaller npFe0 particles (≤5 nm) would result in the spectral 

reddening that is associated with space weathering, but larger particles would cause only 

darkening and not reddening.  Also, Britt and Pieters (1994) found that inclusion of larger 

(micron-scale) particles of iron result in wavelength independent darkening throughout the 

visible/near-infrared (Vis/NIR) wavelengths. 

The Moon is currently the only body from which we have direct and documented samples of 

space weathered material and thus, nearly all of our knowledge of space weathering comes from 
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lunar samples.  Space weathering products though, should be created on any body exposed to the 

space environment.  There is no reason to believe that space weathering products will be the 

same everywhere (Hapke, 1986, 2001); as the space environment varies, the products of space 

weathering should change as well.  Composition, distance from the sun, temperature, gravity, 

existence of a magnetic field, rate and velocity of impacts, and many other factors will all play a 

role in how space weathering manifests itself on any given body.  Thus, while npFe0 may be 

created on bodies other than the Moon, there is no guarantee that the size or distribution of npFe0 

particles will be the same.  It is therefore important that we understand how the optical properties 

of a material are affected by the size of npFe0 particles.  We have created a space weathering 

analog material for which npFe0 size can be controlled and allow us to quantify the effect of size 

and number density of npFe0 on optical properties.  This systematic approach allows us to 

deconvolve and isolate the effects of npFe0 from other soil properties. 

 

Methods: 

Analog soils were prepared using commercial chromatography grade silica gel powders.  The 

amorphous silica gel powders are extremely porous and have a narrow distribution of pore sizes.  

The four powders used were manufactured by two different companies; the gels with 2.3, 6 and 

25 nm pores (the SG2, SG6 and SG25 suites, respectively) are manufactured by 

GRACEDavidson, while the 50 nm pore gels (the SG50 suite) are produced by Mallinckrodt 

Baker Inc (Table 1).  Also, the gel powders do not all come in the same particle size ranges.  

Table 1 lists the range of particle sizes for each specified pore size used as starting material. 

The gel powders were impregnated with ferric nitrate solutions of various normalities (0.001-

1.0 N) to produce a range of iron concentrations (Morris et al., 1989; Allen et al., 1996).  It is 
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difficult to control exactly how much iron is introduced into each sample, i.e. samples exposed to 

the same normality solutions may acquire different total iron concentrations.  Rather than attempt 

to create samples of each pore size with identical iron concentrations, we focused on creating a 

suite of samples for each of the four powders that provided the widest range of optical properties 

possible, regardless of the exact amount of iron required to achieve the results.  The actual 

amount of iron in each sample was quantitatively determined by later measurements (see below). 

The ferric-nitrate impregnated gels were dried in air before calcining in air at ~500°C for 40-

80 hours, producing faintly-orange to deep reddish-brown samples with varying amounts of 

nanophase hematite (Fe2O3) in the pores.  Subsequently, the samples were placed in a furnace at 

850-900°C under reducing conditions (pure flowing hydrogen) for approximately 4 hours and 

then cooled while hydrogen flow was maintained. 

After reduction, some of the samples took on a “salt and pepper” appearance as individual 

grains within each sample acquired varying amounts of iron.  This effect was most prominent in 

the suite with the smallest pore sizes (SG2).  The SG6 suite also showed some variation within 

each sample, as illustrated by the backscatter image in Fig. 1.  Grains of the large pore size gels 

(SG25 and SG50) were more uniform in appearance to both the naked eye and in backscatter 

images. 

 

Analytical Methods and Results: 

Neutron Activation Analysis: 

Iron contents of the prepared samples were measured via neutron activation analysis (by D. 

Mittlefehldt).  Roughly 300 to 1300 mg of each sample was weighed and placed into a glass vial.  

The amount of sample used was roughly the same volume to minimize geometry effects.  The 
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samples were dried overnight at 250°C to devolatilize the silica gel, cooled to room temperature 

in a desiccator, and then reweighed.  The dried samples were transferred to polyethylene vials 

and heat-sealed.  Four samples of roughly 20 mg each of the international standard rocks IF-G 

(iron formation) and Mica-Fe (biotite) were weighed for use as standards and controls.  Each was 

mixed with crushed ultra-pure silica glass to closely reproduce the geometry of the larger 

unknown samples.  The samples were loaded into four irradiation cans, with one standard and 

one control in each can, at the Texas A&M University Nuclear Science Center.  The cans were 

irradiated for 4 hours at a thermal neutron flux of 6.6x1012 n cm-2 sec-1, and then allowed to 

decay for six days.  The samples were returned to Johnson Space Center, the vial exteriors were 

cleaned, and counted in the Gamma-ray Spectroscopy facility.  The samples were counted on 

two intrinsic Ge high efficiency detectors in the low-level counting room.  Data reduction was 

done following normal JSC procedures (Mittlefehldt, 1994).  The results are given in Table 2. 

 

Transmission Electron Microscopy: 

TEM images were obtained on multiple samples from each suite.  The TEM analysis was 

performed on a Phillips 420 at Brown University and a JEOL 2000FX at Johnson Space Center.  

Samples were prepared by embedding grains of the silica gel in epoxy and thin sectioning with 

an ultramicrotome to obtain ~70 nm thick sections.  It was generally found that the npFe0 

particles were well dispersed throughout the grains, although occasionally concentrations were 

observed near grain edges.  The npFe0 particles are typically round, but some more angular 

shapes are observed.  Not uncommon, particularly among the larger particles, are squares with 

facets at the corners; this is the equilibrium shape (Wulff form) of α-Fe (e.g. Zangwill, 1988).   
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Electron diffraction data were obtained for representative samples from all four suites.  The 

silica substrate resulted in diffuse rings, typical of an amorphous material.  There were no 

observed diffraction spacings due to any of the crystalline silica polymorphs, which indicates 

that the substrate remained amorphous even after heating.  The npFe0 was found to be 

dominantly α-Fe, though γ-Fe was identified as well.  There does not appear to be any clear 

trend with size of iron and preference for one polymorph over the other.  We observed no 

electron diffraction evidence for oxidized forms of Fe (e.g. FeO, Fe3O4, Fe2O3). 

For each pore size a range of npFe0 sizes were observed (Table 1).  The average npFe0 size 

within each size suite was significantly larger than the manufacturer’s stated pore size of the 

silica gels, with the exception of the 50 nm-pore suite (SG50), which averaged somewhat smaller 

than its stated pore size.  The SG50 suite also contained the widest range of npFe0 sizes, up to 

200 nm, but the average size was around 40 nm, not much larger than the SG25 suite.  A similar 

size range was observed for samples with 100 nm pores.  It appears that it is difficult to create 

larger npFe0 with this method and that, at this point, npFe0 size is no longer being controlled by 

pore size.  All attempts to create larger npFe0 by this method proved unsuccessful.  As the TEM 

sections are only ~70 nm thick, the size distributions observed will be skewed slightly towards 

smaller sizes as some of  the npFe0 spheres will be cut at various cross-sections, particularly for 

the larger iron suites, thus we expect the true average sizes for the SG25 and SG50 suites are 

likely slightly larger than observed. 

Representative TEM bright field images from microtomed thin sections of each of the four 

powders are shown in Fig. 2.  While the different original pore sizes clearly affected the final 

size of the npFe0, the particles were not strictly confined to the pores.  The reason for this is 

unknown, though one possibility is that since the pores are so well connected the original 
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hematite may have been able to occupy several connected pores, which, after reduction, would 

result in a larger npFe0 particle.   

In addition to the nominal range of npFe0 sizes produced for each suite (Table 1), occasional 

large particles (up to several hundred nanometers) were observed in all samples regardless of 

pore size.  These large particles often occurred near edges where pores did not confine them, 

though some are also found in grain interiors.  Several examples of these large particles are 

shown in Fig. 3.   

 

Mossbauer Spectra: 

Representative samples from the SG2, SG6 and SG25 suite were analyzed by Mössbauer 

spectroscopy to confirm the iron structure identified in TEM.  Mossbauer spectra were acquired 

at 295K using a source of 50-30 mCi57Co in Rh on a WEB Research Co. model W100 

spectrometer equipped with a Janus closed-cycle He refrigerator.  Run times were 24 hours.  The 

sample from the SG25 suite was found to have a well-ordered iron spectrum.  As shown in Fig. 

4, it is nearly indistinguishable from an α-Fe foil.  The SG2 and SG6 samples also display long-

range ordered α-Fe, but there is an additional doublet in both spectra that may be due to the 

smaller grain size Fe or to the presence of γ-Fe.  There is no evidence for the presence of 

hematite or other iron oxides.  Therefore, based on detection limits for the instrument, if present, 

these oxides would have to constitute less than 1% of the total iron in the samples. 

 

Visible/Near-Infrared Spectra:   

Bidirectional Vis/NIR spectra for all samples were measured in RELAB at Brown University 

at i=30°, e=0°.  The reflectance spectra for the four experimental suites of samples with npFe0 
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are shown in Fig. 5.  For each of the four suites of silica gels, a null sample was included in the 

suite in which no iron was added, though the samples were exposed to the same heating and 

reducing conditions as the others (see Appendix).  These null samples, the highest albedo 

spectrum in each suite, contain only the trace amounts of iron that are inherent to the silica gel 

(Table 2).  The remaining samples contain increasing amounts of iron and exhibit a correlated 

decrease in reflectance.   

Silica gels are commonly used as a desiccant, and given the high surface area of these 

materials, it is not surprising that adsorbed water was an issue with all of the samples.  In 

general, the smaller pore sizes adsorbed more water than the larger pores.  Absorbed water is 

shown by the OH absorption peaks, most prominent at ~1350 nm and smaller at ~950 and 1250 

nm.  The strength of these bands decrease with increasing iron content as their signature is 

masked by the absorption properties of the iron particles.  The features are rather sharp 

absorption bands and, in general, they do not affect the continuum shape over the wavelength 

region of interest.  Hydroxyl and water bands do become more prominent at longer wavelengths 

(>2 μm) and begin to interfere with the continuum, so all of the spectra were truncated at 1800 

nm to avoid that interference and facilitate comparisons among samples.  

Allen et al. (1996) were the first to use silica gels as an optical analog for lunar space 

weathering products.  Their study concentrated on gels similar to those used here with 6 nm 

pores.  Our spectra of the SG6 suite (Fig. 5b) are in general agreement with their results.  The 

spectral trends seen in the SG6 suite also correspond with the theoretical modeling results of 

Hapke (2001) who modeled the Vis/NIR optical properties of 10 nm diameter npFe0-bearing 

coatings on 10 μm grains.  
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Using the SG6 suite as an example (Fig. 5b), the spectral trends with increasing npFe0 

content exhibit four distinct stages:  (1) Initially, with small amounts of npFe0 (~0.02 wt %) a 

steep curvature develops in the visible region while longer wavelengths (>750 nm) remain 

relatively unaffected. (2) With additional iron (>0.1 wt %), the spectra become very red 

(reflectance increases with increasing wavelength), while the curvature becomes less extreme 

and extends to longer wavelengths.  (3) As more iron is added (>0.2 wt %), the spectra lose their 

curvature and become increasingly linear.  (4) Finally, at the highest iron concentrations (>1 wt 

%), the spectra become increasingly dark with a slightly convex shape.   

The SG2 suite spectra, shown in Fig. 5a, display significant differences from the SG6 suite.  

Again, the brightest spectrum contains only trace amounts of iron, while the remaining samples 

increase in iron concentration as reflectance decreases.  The OH bands are more prominent for 

this suite, and more problematic.  Adsorbed water is affecting the continuum of some of the 

spectra at wavelengths beyond the 1350 nm OH band causing an apparent reduction in the 

albedo.  The introduction of this very small size (5-15 nm) npFe0 results in a dramatic curvature 

in the visible region, much stronger than what was seen in the SG6 suite with larger npFe0.  

Adding additional npFe0 results in an overall decrease in the albedo, but does not produce the 

strong reddening in the infrared that was seen in the SG6 suite.  By scaling the SG2 suite to unity 

at 1300 nm (Fig. 5a), it becomes clear that wavelengths greater than ~700 nm remain virtually 

unaffected by the npFe0 until very high concentrations are reached.  Only the two highest iron 

samples (those with >1 wt % npFe0) show any redness in the infrared. 

Larger npFe0 particles also have unique optical properties.  The reflectance spectra for the 

SG25 suite are shown in Fig. 5c.  With small amounts of these larger iron particles (<0.1 wt %), 

the spectrum is only slightly curved in the visible region and exhibits a significant red slope into 
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the near infrared.  This spectrum is higher in albedo, but similar in shape, to the “stage 2” of the 

SG6 suite.  Intermediate iron contents (~0.1-1.0 wt %) result in very linear, very red-sloped 

spectra.  Additional npFe0 (>1 wt % npFe0) in this size range results in spectra with an 

increasingly dark and more convex shape. 

The reflectance spectra of the SG50 suite, the largest npFe0 particles in our study, are shown 

in Fig. 5d.  Although albedo is strongly affected, the overall shapes of these spectra show little 

change as a function of increasing npFe0 content.  The lowest iron-content sample (0.02 wt % 

npFe0) is nearly linear with a slight red slope.  Adding additional npFe0 particles results in a 

progressively lower albedo and a slight increase in the red slope at wavelengths greater than 

~1000 nm.  The most iron-rich sample (1.89 wt % npFe0) displays the convex continuum that 

was observed in the other suites. 

 

Discussion: 

Effects of npFe0 size:  

The size of the npFe0-particles dramatically influences the spectra of these samples.  To 

illuminate these differences, spectra of samples with similar iron contents from each of the four 

pore-size suites are shown in Fig. 6.  Even low concentrations (0.02 wt %) of npFe0 cause 

dramatic spectral effects (Fig. 6a).  The SG2, SG6 and SG25 suite all show a substantial 

reddening in the visible region.  In addition, the SG6 and SG25 spectra also display reddening 

throughout the near-IR.  In addition, the SG6, SG25 and SG50 samples show a dramatic 

reduction in albedo.  Recall that the individual size of particles in the SG50 gels is smaller than 

the others (Table 1).  As a result, the SG50 sample appears relatively bright in relation to the 

other suites, although it is still considerably darker than the no-iron-added sample from that suite 
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(Fig. 5d).  The second plot (Fig. 6b) contains reflectance spectra of samples with ~0.2 wt % 

npFe0, 10x as much iron as in the previous plot (Fig. 6a).  Here the differences between the four 

sizes of npFe0 are most prominent.  All four spectra have considerably lower albedos compared 

to the results for 0.02 wt % npFe0 (Fig. 6a).  The continuum shape for the SG2 sample has not 

changed significantly from the 0.02 wt % sample, in that there is still a sharp curvature in the 

visible region and almost no change in the near-IR.  The SG6 sample has become redder 

throughout the Vis/NIR relative to the other samples, though it still displays a curvature towards 

the visible region.  The SG25 sample, by contrast, has lost its curvature and is now linear and 

very red.  The SG50 sample is still flat in the visible region, but shows a slight reddening at 

longer (>1000 nm) wavelengths. 

A clear correlation can be observed between the npFe0 size and the wavelengths that are 

affected.  The smallest npFe0 particles strongly affect the visible region of the spectrum.  At 

longer wavelengths, though, the iron in the SG2 suite appears to have little, if any, effect.  For 

larger particles, the visible region is less affected, while influence on the near-IR grows stronger.  

The SG6 and SG25 suites show a dramatic reddening in the near-IR region.  At npFe0 sizes 

greater than ~40 nm (i.e. the SG50 suite), there is a distinct change as all wavelengths are 

similarly affected and the greatest change as a function of npFe0 concentration is a reduction in 

albedo.  

Based on the results of the SG50 suite, the occasional anomalously large particles (e.g. Fig. 

3), which occur in all samples, would likely cause a general darkening of the spectra across all 

wavelengths of interest, and thus should have no significant effect on the shape of the continua.  

Further, since they are observed in all sample suites, any minor darkening effects attributed to 

the anomalously large particles would be shared by all samples and thus should not affect 
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comparisons between suites.  Nevertheless, their presence complicates a quantitative comparison 

of albedo. 

 

Mixing issues: 

In addition to size and abundance, the microscale distribution of npFe0 is another important 

variable that depends on environment.  In the lunar case, the shape of the space weathering 

continuum appears dependent only on the total amount of npFe0 present, independent of how 

much FeO was in the soil initially (Noble et al., 2001).  The standard measure of lunar soil 

maturity is Is/FeO (Morris, 1978), i.e. the amount of npFe0 (measured by Is) normalized to the 

total amount of Fe in the sample (measured by FeO).  Consequently, it is possible for a mare and 

highland soil with different quantities of FeO to have different maturities but similar quantities of 

npFe0.  This pair will have similar continuum shapes although the mare soil, being less mature, 

will likely have fewer rims and agglutinates with somewhat more densely packed npFe0 than the 

more mature highland soil. 

In more extreme cases, however, npFe0-distribution might become an important factor.  This 

can be demonstrated by synthetic mixtures of our SG6 analog soils with the highest iron content 

(2.1 wt % iron) and the SG6 no-iron-added sample (Fig. 7).  The resulting spectra of these 

mixtures vary largely in albedo while the general shape of the continua remains virtually 

unchanged from the high-iron end-member spectrum.  The continua of these spectra for mixed 

samples are behaving as would be expected for large npFe0 particles.  However, TEM analysis 

confirms that this is not the case; the size of npFe0 in this sample is on average the same as was 

observed in lower concentration samples.  It is our hypothesis that the npFe0 particles are so 

densely packed here that, optically, they are behaving as larger particles.   
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Lunar soils have been observed to contain a wide range of npFe0 sizes.  In particular, the 

npFe0 in vapor/sputter deposited and irradiated rims is generally much smaller than the npFe0 

found in the interior of agglutinates.  Mixing of smaller and larger particles results in a roughly 

linear mixing of the spectra for Vis/NIR wavelengths.  In Fig. 8, spectra are shown that contain 

roughly equal amounts of iron (~0.2 wt %) from the SG6 and SG25 suites.  Because the 

spectrum of this mixed sample was measured several months after the originals, there is more 

adsorbed water and that appears to be affecting the continuum, particularly at wavelengths 

greater than ~1300 nm, reducing the reflectance.  This unfortunately complicates the 

interpretation, as it is difficult to separate the water effects.  When the two are mixed together in 

roughly equal proportions, the resulting spectrum falls roughly equidistance between the 

endmembers in the visible region, then slightly closer to the SG25 sample up to ~1300 nm where 

the continuum is highly influenced by the adsorbed water and a good comparison is no longer 

possible.  We conclude that the continuum shape of a given spectrum is generally a reflection of 

the average npFe0-size for that sample, though larger iron may have slightly more influence. 

 

Implications: 

A major objective of this work was to quantify the effects of npFe0 size, density, and 

distribution and to use that data to better understand space weathering.  It is useful to compare 

our experimental samples to naturally space-weathered materials and surfaces.  The possible 

implications of our results for understanding the products of space weathering created in 

different environments throughout the inner solar system are explored below. 
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The Moon: 

In Fig. 9 we compare the reflectance spectra of several lunar soils to samples of the SG2, 

SG6 and SG25 suites.  (The ~1 μm-band in the lunar samples is due to pyroxene and olivine in 

those samples.)  Compared to the SG2 suite, the soils are far too red in the near-IR and not red 

enough in the visible region.  The natural soils show the greatest similarity to the SG6 suite, 

though when examined in detail, the soils are slightly redder in the near-IR, and slightly less red 

in the visible region.  This trend suggests that the npFe0 in the lunar soils is on average slightly 

larger than the SG6 suite.  However, the lunar npFe0 must be smaller than the npFe0 in the SG25 

suite as the soils are not red enough in the near-IR and are too red in the visible region compared 

to those analogues.  The lunar space weathering continuum, then, appears to be created by npFe0 

that is slightly larger than the SG6 suite npFe0, on the order of ~15-25 nm on average. 

The average size of npFe0 observed in lunar soils rims with TEM is only about 3 nm (Keller 

and Clemett, 2001).  However, agglutinates and agglutinate fragments comprise a significant 

fraction of lunar soils and contain npFe0 that is considerably larger than the iron found in rims 

(Keller and Clemett, 2001; James et al., 2001, Fig. 10).  It was once thought that agglutinates 

were the main cause of the spectral alterations that are referred to as “space weathering,” from 

the original (erroneous) idea of vitrification-darkening (e.g. Conel and Nash, 1970; Adams and 

McCord, 1973) to the discovery of the role of npFe0 (Hapke et al, 1975; Cassidy and Hapke, 

1975).  In recent years, however, the role of agglutinates in the weathering process has been 

often overshadowed by the focus on npFe0-bearing rims.  A major finding of this work is the 

observation that it is in fact the combination of both the small npFe0 in the rims and the larger 

npFe0 in agglutinates that results in the unique continuum of lunar soils. 
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Mercury: 

Mercury’s reflectance spectrum has a significant red slope and is essentially free of 

detectable absorption bands in the Vis/NIR.  The lack of absorption bands, particularly the lack 

of a 1 μm pyroxene absorption band, has been cited as evidence that Mercury’s surface is devoid 

of iron (e.g. Vilas, 1985).  However, the red slope has been attributed by others (McCord and 

Clark, 1979; Hapke, 2001) to space weathering products.  Hapke (2001) suggests that the red 

slope represents soils with 2-3 wt % FeO.  Independent of the Vis/NIR data, microwave data also 

suggests that Mercury’s surface is very iron-poor, containing only about 1 wt % FeO (Jeanloz, 

1995).   

Mercury’s surface must contain some iron: even if the native surface rocks are completely 

devoid of iron (metallic and ferrous), the iron brought in by meteorite and comet impacts should 

accumulate in the soil and would be enough to affect the optical properties.  From trace element 

abundances, iridium in particular, it has been estimated that 1-4% of the lunar soil is meteoritic 

contamination (Haskin and Warren, 1991).  The flux of impactors on Mercury is nearly six times 

the lunar flux (Cintala, 1992).  Depending on the composition of the impactor population (for 

example, the ratio of comets to asteroids is likely greater on Mercury – Hartmann, 1977), the 

surface soils may contain as much as 5-20 % meteoritic components.  Iron brought in by 

meteorites therefore, could account for as much as 1-5 wt % FeO in the regolith.  The addition of 

meteoritic components necessarily requires that the iron content of the Mercurian regolith must 

be measurably greater than zero. 

We have shown in earlier sections that it takes little npFe0 (>0.02 wt %) to dramatically 

affect the spectral properties of a material.  For lunar soils, we have found the effects of very 

small amounts of npFe0 are significantly different than for larger amounts (Noble et al., 2004).  
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Like the SG6 suite, small amounts of npFe0 in lunar soils result in a steeply curved spectrum 

with the visible region much more strongly affected than longer wavelengths.  Only at relatively 

high iron concentrations does the continuum become linear.  After removal of the thermal 

component, telescopic spectra of Mercury’s Vis/NIR spectrum is remarkably linear (e.g. Sprague 

et al., 2004).  If Mercury’s surface contains so little iron, and by extension, very little npFe0, then 

its linear spectrum does not fit the lunar model.  Mercury’s spectrum with its red and linear slope 

is more compatible with our results for the SG25 suite where a linear continuum results from 

small amounts of larger npFe0 particles.   

Blewett et al. (1997) measured the continuum slope of several Mercury spectra from 745 to 

1078 nm (scaled to 1 at 1.02 μm) and found the slope to fall in the range of 0.65-0.7 μm-1, 

generally redder than several telescopic measurements of lunar anorthosites, which ranged from 

0.3-0.59.  An analog sample from the SG25 suite containing 0.2 wt % iron, was found to have a 

continuum slope of 0.88 over the same region when similarly scaled.  Two Earth-based 

telescopic spectra of Mercury (Vilas, 1984) are compared to several analog spectra in Fig. 11.  

Similar to the lunar soils, the spectrum of Mercury does not compare well with the SG2 suite 

because it is far too red in the near-IR and not red enough in the visible region.  Though the 

SG25 sample is arguably the better fit, the Mercury spectra are similar in shape and redness to 

samples from both the SG6 and SG25 suites.  Closer inspection however, reveals important 

discrepancies.  The Mercury spectra do not match well the curvature of the lower-iron SG6 gel 

sample (0.19 wt % npFe0) in the visible region.  The higher-iron SG6 sample (0.30 wt % npFe0) 

is by comparison more linear, and thus more similar to the Mercury spectra, however, it requires 

a very large amount of npFe0.  Recall that the lunar soil spectra were closest in shape to silica 

gels with roughly 0.1-0.2 wt % npFe0 (Fig. 10).  This implies that if npFe0 on Mercury and the 
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Moon is of similar size, then Mercury’s soils would have to be more npFe0-rich than even the 

lunar mare.  If however, the npFe0 particles are larger on Mercury (more similar to the SG25 

suite), then less is required for the optical effects observed.  Though, even with larger iron, our 

results predict that Mercury’s surface is still more npFe0-rich than typical lunar highlands.   

 

Why is the npFe0 on Mercury larger than on the Moon?:   

The space weathering environment at Mercury differs substantially from the Moon.  One 

major difference is the diurnal variation of surface temperature (~300°C for the Moon, ~700°C 

on Mercury).  The high temperatures on the Mercurian surface may result in larger npFe0, 

particularly near the equator, due to Ostwald ripening processes (Noble and Pieters, 2003).  

Therefore, one might predict that areas near the equator would have a lower albedo, and in fact, 

recent Earth-based telescopic spectra suggest that the Mercurian continuum may in fact be 

darkest near the equator and become redder with increasing latitudes (Warell, 2002), though no 

latitudinal variations have been seen in Mariner 10 data (Hapke, 1977). 

In addition to the extreme temperature regime, Mercury also has an increased impactor flux 

of micrometeorites and its location in the solar system and greater mass result in higher velocity 

impacts.  These factors combine to make Mercury much more efficient than the Moon at creating 

both melt and vapor.  Per unit area, impacts on Mercury are expected to produce 13.5x the melt 

and 19.5x the vapor than is produced on the Moon (Cintala, 1992).  Agglutinitic glass-like 

deposits and vapor-deposited coatings should be created significantly faster and more efficiently 

on Mercury than on the Moon. 

As noted earlier, agglutinitic glass contain significantly larger npFe0 than is found in npFe0-

bearing rims (Keller and Clemett, 2001; James et al., 2001).  It has been proposed that the reason 
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for this disparity in npFe0 size is that as grains with npFe0-bearing rims melt to form 

agglutinates, the reduced iron in the rims can coalesce to form larger particles (Taylor et al., 

2001).  The increased melting/vaporization rates on Mercury suggest that more recycling should 

be occurring there than is observed on the Moon.  Grains will melt and vaporize to form 

agglutinates and rims, and these will be re-melted and re-vaporized to form new generations of 

agglutinates and rims.  With each cycle comes the opportunity to create ever-larger npFe0.  Pulse 

laser heating experiments to simulate micrometeorite bombardment show that repetitive heat 

pulses do indeed result in growth of npFe0 particles (Sasaki and Kurahashi, 2004).  While 

vaporization/condensation will continually be creating new (i.e. small) npFe0, the average npFe0 

size on Mercury will evolve to larger sizes than the Moon.   

Our data indicate that, even assuming larger npFe0 grains, there is considerable npFe0 in the 

Mercurian regolith (~0.2 wt %), more than the typical amounts seen in lunar highlands soils (Fig. 

9).  This does not necessarily require that the Mercurian surface has as high a bulk FeO content 

as the lunar highlands (~5-7 wt %).  Because of the significantly greater weathering rates, it is 

expected that, for a mature soil on Mercury, a much larger percentage of the total iron will exist 

in a reduced form (i.e. as npFe0) than is seen in lunar soils, where only a minor, though highly 

variable, fraction of the total iron is reduced through weathering (Keller et al., 1999). 

 

Asteroids: 

There is a wide variety of asteroid compositions and environments in our solar system, and 

these differences will almost certainly influence the products of space weathering (see Chapman, 

2004 for a review of space weathering on asteroids).  Here we will focus only on S-type 

asteroids, the class for which lunar-like weathering processes have long been suggested.  It is 
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worth pointing out, however, that even among S-type asteroids, there is thought to be 

considerable compositional variation, which may influence weathering on any particular 

asteroid.  In addition, the near-Earth environment is likely to differ substantially from the main-

belt environment in terms of solar wind flux, and impact rates and velocities, which may also 

affect weathering products. 

There has been much debate in the asteroid and meteorite communities about the existence 

and nature of space weathering.  As the concept of space weathering has become more accepted 

(e.g. Chapman, 2004), it has been repeatedly suggested that the spectral differences between S-

type asteroids and ordinary chondrites can be accounted for by very small amounts of lunar-like 

space weathering products (i.e. npFe0-bearing rims) (e.g. Binzel et al., 1996; Pieters et al., 2000; 

Hapke, 2001; Noble et al., 2004, 2006).  The results of the current study also support this 

hypothesis.  In Fig. 12 are shown reflectance spectra of two near-Earth S-type asteroids (Binzel 

et al., 2001) compared to samples from the SG2, SG6, and SG25 suites.  These spectra, like 

those from the Moon and Mercury, do not compare well to the SG2 suite, they are too red in the 

near-IR and do not share the dramatic curvature of the SG2 suite in the visible region.  The SG25 

suite fits reasonably well in the near-IR, but the asteroid spectra are too red in the visible region.  

Like the lunar soils, the continua shapes of S-type asteroid spectra are best approximated by the 

SG6 suite.  Here though, the asteroid spectra display continua which are slightly less red in the 

near-IR than the SG6 samples.  This suggests that the size of npFe0 particles in asteroid regolith 

is slightly smaller on average than the iron in the SG6 suite, and therefore, smaller than the 

average lunar npFe0 as well.  We predict that the average npFe0-size for these S-type asteroids 

must be roughly 10-15 nm.   
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Why might the npFe0 on the asteroids be smaller than on the Moon?: 

One explanation for this size difference of npFe0 may be a lack of agglutinates in asteroid 

soils.  Several studies of regolith breccia meteorites have confirmed the rarity of agglutinates in 

asteroid regoliths (e.g. Basu and McKay, 1983).  As discussed above, in lunar soils npFe0-

particles in weathering rims are significantly smaller than those found in agglutinates (Keller and 

Clemett, 2001).  Ergo, fewer agglutinates relative to npFe0-bearing rims would result in a 

population of npFe0 that are on average smaller in diameter than lunar soils.  

Smaller average size of npFe0 particles in asteroid soil would account for the lower redness 

in the near-IR region.  The particles still must be considerably larger than the 3 nm average of 

particles in lunar soil rims, however, since the asteroid continuums are much closer to the SG6 

suite than the SG2 suite.  This suggests that agglutinates may be more common in asteroid 

regoliths than is predicted by what is seen in regolith breccia meteorites, or the formation of 

npFe0 in asteroidal weathering rims results in the average size being larger than for the lunar 

case.  Alternatively, Horz et al. (2005) suggests that nano-scale Fe-Ni and troilite particles 

created during impact shock and melting may be responsible for the optical changes observed on 

asteroids rather than the rims and agglutinates of lunar-style weathering.  However, the results of 

the impact experiments carried out by Horz et al. suggest that this process may create particles 

which average considerably larger than our prediction of 10-15 nm. 

 

Conclusions: 

The creation of analog space weathering products has allowed us to explore the effects of 

varying both size and concentration of nanophase iron on visible and near-infrared reflectance 
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spectra.  These effects were found to be quite dramatic: Vis/NIR reflectance spectra vary in 

significant but predictable ways due to the size and amount of npFe0.   

The size of npFe0 has a distinct impact on the wavelengths influenced.  Smaller npFe0 (>10 

nm in diameter) more strongly affects the visible wavelengths, dramatically reddening those 

wavelengths while leaving the infrared largely unaffected.  In contrast, larger npFe0 (>40 nm in 

diameter) impacts the entire Vis/NIR wavelength range, resulting in significantly lower albedos 

with little change in the continuum shape.  Intermediate sizes, like those found in lunar soils, 

follow a unique pattern as npFe0 concentration is increased: beginning with an initial steep 

curvature in the visible region.  Then the curvature becomes less extreme and extends to longer 

wavelengths as reddening increases.  Finally the spectra lose their curvature and become 

increasingly dark and linear with a strong red slope.   

By analyzing the specific spectral trends of several suites of analog materials with different 

npFe0 sizes, we have found evidence that suggests that npFe0 sizes vary throughout the inner 

solar system.  Although the same fundamental space weathering processes act on all airless 

bodies, average npFe0 sizes on the asteroids appear to be slightly smaller than average lunar 

npFe0, while the npFe0 on Mercury appears to be significantly larger. 
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Appendix: 

Some notes on the properties of silica gel: 

While silica gels provide a reasonably spectrally-neutral background for us to observe the 

effects of npFe0, there are several interesting issues that have arisen with respect to the inherent 

properties of the silica gels themselves.  These effects are worth noting, but are small and can be 

largely ignored for our purposes.  

Particle size is known to strongly influence albedo and, as noted earlier, we were unable to 

attain silica gel starting material of the various pore sizes that were all the same particle sizes 

(see Table 1).  These differences may make it difficult to compare albedo across suites.  The 

shape of the continuum, though, is found to be largely unaffected by changes in particle size.  To 

test the effect of particle size on individual silica gel grains, a sample of the SG6 gel was crushed 

to create a suite of size fractions.  The sample was then impregnated with an intermediate 

amount of npFe0 (~0.3 wt %).  After iron reduction, the sample was dry sieved into six size 

fractions.  In Fig. 13 is shown the reflectance spectra of the suite.  As was expected from silicate 

samples (Adams and Filice, 1967), the smaller size fractions have higher albedo.  The range of 

brightness observed, however, is smaller than that typical of this range of particle sizes for 

silicate samples.  Much of the light scattering is thus occurring within the particles rather than at 
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particle boundaries.  After scaling to unity at 1300 nm (Fig. 13b), it can be seen that particle size 

of the silica gel host has only a minor effect on the spectral character of the continuum.  There 

are nevertheless clear differences in the strength of the OH bands with the finer particles having 

smaller absorption bands.  The spectra of the finer particles also appear to be slightly more 

curved throughout the visible region.  The differences though, are small, particularly for the 

particle sizes utilized in our study (Table 1).  These inherent particle size differences of the host 

material appear to be far overshadowed by the differences in npFe0 sizes. 

For each of the four suites of silica gels, a null sample was included in the suite in which no 

iron was added, though the samples were exposed to the same heating and reducing conditions as 

the others.  These no-iron-added samples provide an opportunity to examine the inherent spectral 

characteristics of the different gel suites.  In Fig. 14 are shown spectra for these null samples 

scaled at 1300 nm.  The spectra do show slight variations.  All four spectra exhibit a small but 

sharp downturn at wavelengths short of 350 nm.  There is also some variation between the 

samples in their general slope.  The SG2.0 sample displays a slightly red slope while the other 

three samples have slightly blue slopes.  The initial slope differences are not negligible, although 

they are quickly overwhelmed by the changes seen with the addition of npFe0. 
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Table 1. Silica gels used in this study and resulting dispersed npFe0

npFe0 size  Name Particle size Pore size
nominal range average

SG2* 125-250μm 2.3 nm 5-15 nm 8 
SG6* 75-150μm 6 nm 10-25 nm 15 
SG25* 75-150μm 25 nm 25-50 nm 35 
SG50# 30-75μm 50 nm 20-200 nm 40 

*Manufactured by GRACEDavidson 
#Manufactured by Mallinckrodt Baker Inc. 
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Table 2. Iron concentration measured for prepared silica gels 
 Fe 
 Sample # wt% ±  
SG2.0 0.00508 0.00010 
SG2.1 0.01822 0.00020 
SG2.22 0.1091 0.0010 
SG2.37 0.1651 0.0015 
SG2.42 0.373 0.004 
SG2.43 0.539 0.005 
SG2.5 1.209 0.010 
SG2.6 1.646 0.014 
SG6.0 0.00488 0.00009 
SG6.1 0.01868 0.00022 
SG6.2 0.0690 0.0007 
SG6.22 0.1329 0.0016 
SG6.22 0.1334 0.0013 
SG6.23 0.1921 0.0021 
SG6.3 0.297 0.003 
SG6.5 2.112 0.019 
SG25.0 0.00550 0.00013 
SG25.1 0.02382 0.00026 
SG25.2 0.2024 0.0018 
SG25.23 0.3359 0.0028 
SG25.23 0.348 0.003 
SG25.3 0.580 0.005 
SG25.4 0.940 0.009 
SG25.5 3.780 0.020 
SG50.0 0.00799 0.00017 
SG50.1 0.02516 0.00028 
SG50.12 0.0794 0.0009 
SG50.15 0.0962 0.0010 
SG50.22 0.1505 0.0018 
SG50.23 0.1845 0.0020 
SG50.4 0.498 0.005 
SG50.5 1.895 0.016 
SG50.5 1.885 0.016 
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Figure Captions: 

Figure 1. BSE image of sample from the SG6 suite showing the grain-to-grain and intra-grain 
variability in iron content.  The greater the npFe0 content, the brighter the grain appears in 
backscatter. 
 
Figure 2. Example TEM bright field images of each of the four powders used in this study:  a) 
SG2  b) SG6  c) SG25  d) SG50.  The porous texture of the powders is readily apparent.  The 
npFe0 is black. 
 
Figure 3. Examples of several anomalously large npFe0-particles: Such particles, while 
uncommon, were identified in all four silica gel types.  a) A small cluster of large particles on 
edge of grain from SG2 suite.  b) Several large irregular particles along an apparent defect in the 
silica gel of a grain from SG6 suite.  c) Two very large particles on the edge of a grain from the 
SG50 suite.  d) A single large particle in the interior of a grain from the SG50 suite. 
 
Figure 4. Mössbauer spectra of the highest-npFe0 sample from SG25 suite compared to an 
alpha-Fe foil and a hematite sample (Mössbauer data courtesy M. Darby Dyar). 
 
Figure 5. Reflectance spectra and scaled reflectance spectra of the four silica gel suites: a) SG2 
suite, b) SG6 suite, c) SG25 suite, d) SG50 suite.  
 
Figure 6. Reflectance spectra of samples from each of the four suites with similar iron contents: 
a) 0.02 wt% Fe0, and b) 0.2 wt% Fe0. 
 
Figure 7. Reflectance spectra of the results of mixing in the SG6 suite.  The no-iron-added 
sample (SG6.0) was mixed in varying proportions with the most iron-rich sample (SG6.5 - 2.1 wt 
% Fe).  The entire SG6 suite is shown in gray for comparison. 
 
Figure 8. Reflectance spectrum of the results of mixing roughly equal proportions of samples 
from the SG6 and SG25 suites, each containing similar amount of npFe0, roughly 0.2 wt %. 
 
Figure 9. Reflectance spectra of silica gels from the SG2, SG6 and SG25 suites versus the <45 
μm fraction of three lunar soils, scaled to unity at 550 nm.  Lunar soil 14141 is a very immature 
soil with an Is/FeO value of 6, soil 64801 is a mature highland soil (Is/FeO=82), and soil 15071 is 
a submature mare soil (Is/FeO=52).  The iron contents (wt % npFe0) of the silica gel samples are 
labeled. 
 
Figure 10. TEM bright field image of a typical npFe0-bearing rim surrounding a grain of lunar 
soil 10084 (a), and compared to a typical region of agglutinitic glass (b).  The npFe0 in 
agglutinates is, on average, considerably larger than the sizes seen in rims.  
 
Figure 11. Reflectance spectra of silica gels from the SG2, SG6 and SG25 suites versus 
telescopic spectra from Mercury scaled to unity at 550 nm.  The Mercury spectra (Vilas et al., 
1984) represent areas dominated by intercrater plains (Sept 74) and smooth plains plus the 
Caloris basin (Oct 74).  The iron contents (wt% npFe0) of the silica gel samples are labeled. 
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Figure 12. Reflectance spectra of silica gels from the SG2, SG6 and SG25 suites versus two near 
earth asteroids (NEA) scaled to unity at 550 nm.  NEA spectra from Binzel et al. (2001) were 
obtained online, courtesy MIT (http://smass.mit.edu/).  The iron contents (wt% npFe0) of the 
silica gel samples are labeled. 
 
Figure 13. Reflectance spectra (a) and scaled reflectance spectra (b) of an SG6 powder with 
~0.3 wt % npFe0 sieved into several size fractions to demonstrate the effects of changing particle 
size. 
 
Figure 14. Reflectance spectra of powders processed with no iron added.  These silica gels 
shown small but nontrivial differences in their reflectance spectra before the addition of npFe0. 
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Figure 5c. 
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Figure 5d. 
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Figure 7. 
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Figure 8. 
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Figure 10. 
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Figure 11. 
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Figure 12. 
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