³⁹AR-⁴⁰AR 'AGE' OF BASALTIC SHERGOTTITE NWA-3171. Jisun Park¹ and Donald D. Bogard, ARES, NASA-JSC, Houston, TX 77058. ¹NASA Postdoctoral Fellow, JISUN.PARK@NASA.GOV North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites [1,2]. Its exposure age has the range of 2.5-3.1 Myr [3], similar to those of Zagami and Shergotty [4]. We made ³⁹Ar-⁴⁰Ar analyses of a "plagioclase" (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets.. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of <2.85 g/cm³. The ³⁹Ar-⁴⁰Ar age spectrum of NWA-3171 plag displays a rise in age over 20-100% of the ³⁹Ar release, from 0.24 Gyr to 0.27 Gyr. The first 20% of the ³⁹Ar release involves terrestrial weathering products characterized by adsorbed terrestrial Ar and likely terrestrial K contamination. Over the last 80% of the ³⁹Ar release, constant values of the ³⁶Ar/³⁷Ar ratio indicate that essentially all ³⁶Ar released is cosmogenic. An isochron plot (⁴⁰Ar/³⁶Ar vs. $^{39}\mathrm{Ar}/^{36}\mathrm{Ar})$ of these data (R^2 =0.996) has a slope corresponding to an age of 225 ±4 Myr. Essentially the same age is obtained whether we use total ³⁶Ar or correct for trapped ³⁶Ar. A radiometric formation age for NWA-3171 has not yet been reported. However, the Ar-Ar age spectrum of NWA-3171 closely resembles that of Zagami, and the Arrhenius diffusion plots of ³⁹Ar for the two shergottites also are similar. Thus, the "true" age of NWA-3171 may be similar to the Zagami age (177 ±3 Myr; [5]). This implies NWA contains an extra component of ⁴⁰Ar, not accompanied by significant trapped ³⁶Ar, an inference that we have made for Zagami as well (Bogard & Park, this volume). We suggest this excess ⁴⁰Ar was inherited from the basaltic melt. The ³⁹Ar-⁴⁰Ar age spectrum for the glass inclusion is very different and shows apparent Ar-Ar ages ranging between 0.3 and 1.9 Gyr. Variations in the ³⁶Ar/³⁷Ar ratios indicate release of trapped ³⁶Ar throughout most of the extraction. An isochron plot of ³⁶Ar/⁴⁰Ar vs ³⁹Ar/⁴⁰Ar suggests the release of terrestrial Ar in the first ~30% of the ³⁹Ar release, and high K/Ca ratios in these extractions also suggest terrestrial weathering. We used trapped 36Ar in the isochron by subtracting a cosmogenic ³⁶Ar_{cos} component obtained from average data reported for Zagami and Shergotty whole rock [4, 6-8]. Measured 36 Ar/ 37 Ar ratios were used to apportion this 36 Ar $_{\cos}$ over individual releases. The temperature extraction data of 780-1160 °C (corresponding to ~37%-93% of the ³⁹Ar release) define a mixing line between a radiogenic component and Martian atmospheric Ar with ⁴⁰Ar/³⁶Ar ≅1800, consistent with previously reported values for Mars atmospheric Ar [9].. Like other impact glasses in shergottites, NWA-3171 glass contains martian atmosphere incorporated at the time of impact formation, and does not directly yield a formation age. References: [1] Irving A. J. et al. 2005, MaPS 39, A49. [2] Meyer C. 2004, The Mars Meteorite Compendium. http://www-curator.jsc.nasa.gov/antmet/mmc/XXXII NWA3171.pdf [3] Nishiizumi & Caffee 2006, MaPS 69, A133. [4] Eugster et al. 1997, GCA 61:2749-2757. [5] Nyquist et al. 2001, Space Sci. Rev. 96,:105-164. [6] Park J. 2005, Ph.D. Thesis, Univ. of Tokyo. [7] Schwenzer et al. 2007, MaPS 42, 387-412. [8] Terribilini et al. 1998, MaPS 33, 677-684. [9] Bogard & Garrison, 1999. MaPS 34, 451.