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Chapter 1

CFD to Flight: Some
Recent Success Stories of
X-plane Design to Flight
Test at the NASA Dryden
Flight Research Center

Gary B. Cosentino1

1.1 Introduction

Several examples from the past decade of success stories involving the design and
flight test of three true X-planes will be described: in particular, X-plane design
techniques that relied heavily upon computational fluid dynamics (CFD). Three
specific examples chosen from the authors personal experience are presented: the
X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat
Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator
Aircraft. An overview will be presented of the uses of CFD analysis, comparisons
and contrasts with wind tunnel testing, and information derived from the CFD
analysis that directly related to successful flight test. Some lessons learned on
the proper application, and misapplication, of CFD are illustrated. Finally,
some highlights of the flight-test results of the three example X-planes will be
presented. This overview paper will discuss some of the authors experience with

1X-48B Blended Wing Body Project Manager.
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2 CFD to Flight

taking an aircraft shape from early concept and three-dimensional modeling
through CFD analysis, wind tunnel testing, further refined CFD analysis, and,
finally, flight. An overview of the key roles in which CFD plays well during
this process, and some other roles in which it does not, are discussed. How
wind tunnel testing complements, calibrates, and verifies CFD analysis is also
covered. Lessons learned on where CFD results can be misleading are also
given. Strengths and weaknesses of the various types of flow solvers, including
panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper
concludes with the three specific examples, including some flight test video
footage of the X-36, the X-45A, and the X-48B.

1.2 Background

During the decade of the 1980s the birth of the supercomputer, and the enabled
application of CFD techniques, both took off in a dedicated development effort
within the aircraft research and design industry. In particular, the efforts of
the National Aeronautics and Space Administration (NASA) in cultivating the
development of both the supercomputer and CFD were unsurpassed. At the
NASA Ames Research Center (Moffet Field, California), an entire division of
the organization was dedicated to obtaining and operating what was at that
time the state-of-the-art supercomputer, with another division of extremely tal-
ented individuals immersed in the development, application, and validation of
CFD techniques. These early CFD algorithms were targeted for and made great
use of the newly procured supercomputers computing away in close proximity
just across the parking lot. It was a productive, interdependent relationship.
The gains made not only at Ames but across the country during that decade
were unprecedented; one technology complementing and enabling the other.
Because of the tremendous increases in computing speed and memory storage
that were occurring almost on a quarterly basis the ambitions and abilities of
the researchers grew at a rate to match. What took days or perhaps weeks
to compute (and therefore was not undertaken as being impractical) in the
late 1970s could be done in just several hours with the advent of the Cray-1
computer (Cray Research, Incorporated, Bloomington, Minnesota) in the 1981
timeframe. Once this computing speed became possible, the ability to increase
the scope of the computations became available to the researchers, which then
yielded CFD codes that required the next generation of supercomputer, and
so on. Both computing speed and calculation fidelity involving ever-increasing
fluid physics representations grew rapidly throughout the decade. Interestingly,
the newly-emerging computer architectures required new and unique ways of
actually measuring their speed and throughput. It was obvious that computing
power was increasing rapidly, but evaluating that power quantitatively required
the development of a set of standardized benchmarks that could be uniformly
applied to the new supercomputers, and tasked them in ways representative
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of the computational algorithms that were desired to be run in the day. The
group at NASA Ames that was dedicated to obtaining and running the fastest
computers available put together just such a set of benchmarks that measured,
fairly and repeatedly, the power that was available to the researcher with each
new generation of supercomputer operated at Ames (Reference 1). In the early
1980s, CFD techniques were developed for calculation of flow fields about air-
foils (2D) and wings (3D) using potential flow theory. Complex fluid physics
including viscosity were neglected with this formulation. Nonetheless, very use-
ful aerodynamic solutions were obtained within reasonable amounts of central
processing unit (CPU) time. With the advent of true supercomputers such as
the Cray-1s in 1981, the CPU time required for some 3D potential solutions
became so small (in some cases just 10 seconds), a new possibility for CFD ap-
plication emerged: performing computational design optimization. Toward that
end, various researchers began looking at optimization algorithms and identified
one method, the so-called quasi-Newton method, as a robust and general means
of driving some objective function to a local (hopefully, global) minimum. Com-
bining this with a fast CFD flow solver able to compute the lift-to-drag (L/D)
ratio of a wing geometry in seconds or minutes of computer time rather than
hours allowed the new supercomputers to not only analyze aerodynamics, but
alter the geometry to optimize them, within some suitable constraints. One
successful example of this is given in Reference 2. As the transformational
decade of the 1980s progressed, the trend toward faster processors, multiple
processors, and more memory (speed) continued. Periodic upgrades of comput-
ing power could be counted on by the many researchers who were developing
the complementary CFD algorithms for the new capability. The researchers,
in turn, were then ready to challenge the capacity of the latest installed su-
percomputer to cope with these new, more complex algorithms. Increasing
fidelity of fluid physics were modeled by the new CFD codes, surpassing the
relatively simple panel and potential equation solutions with the non-viscous
Euler equations of motion (adding vorticity effects) and finally, the full viscous
Navier-Stokes equations. In parallel with the increasing fidelity of fluid physics
came the increasing scope of geometry modeling. More and more dense 3D grids
about complex geometries were created. Multiple body problems, internal flow
problems, and even moving grids (store separation problems) were undertaken.
Computational times of hours became the status quo; it seemed as though the
problems undertaken were matched to the supercomputer capacity available at
the time that would result in turnaround times of a few to several hours. It was
as though this was the threshold of pain of the researchers and engineers for the
time they could wait to see their answers. Complex problems requiring days
were generally avoided, if for no other reason than it could not be reasonably
assured that the computer would remain up for that length of time. A crash,
reset, required maintenance, or reboot would cause such a long-running problem
to be lost. Thus, a balance was struck between the computing power available,
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and scope and ambition of the problem to be solved. As was stated, both areas
enjoyed periodic upgrades throughout the decade.

1.3 Computational Fluid Dynamics and the Air-
craft Design Process

When starting with a clean sheet of paper, the typical aircraft design process
usually begins with a configurator laying out a rough sketch of the outer lines
of the new shape on the computer aided design (CAD) system at hand. After
the overall planform and other shaping characteristics are decided upon, the de-
signer will usually have enough information to create a three-dimensional model
of the aircrafta model suitable for early, lower-order CFD analysis. Efficient,
flexible CFD tools including panel and potential equation codes and other linear
methods are available and are extremely useful at this early stage of design to
generate preliminary aerodynamics for the new shape. This information allows
redesign and refinement to proceed quickly, maturing the aircraft design almost
in real time. At this point, there is sufficient detail in the CAD system to begin
discretizing the shape and preparing the electronic model of the aircraft for more
detailed and refined analysis, including both CFD and finite-element structural
codes to be brought into the process. It is generally at this point that some
state-of-the-art CFD methods are applied and detailed fluid dynamics gener-
ated. Based on these results, further design refinement can occur, going back
to the CAD model from which the original analysis was based. This iterative
process can continue until the designers agree that the new aircraft shape meets
initial criteria and performance characteristics, and is worthy of still more com-
plex analysis, to include building a model of the aircraft for wind tunnel testing.
The author feels that it is at this point in the design process that CFD plays its
most important role. Wind tunnel models are generally very expensive, costing
perhaps hundreds of thousands of dollars or even more. Wind tunnel test time
is a significant cost driver in a project. Viscous CFD methods applied to the
candidate geometry before cutting metal for the model is generally time and
effort extremely well spent. It can make, and has made, the difference between
building a costly, disappointing model and one that simply verifies the adequacy
of the design as predicted by the CFD methods. A no surprises wind tunnel
test is generally the goal at this stage of the design process. As part of the wind
tunnel test/CFD analysis stage, CFD can provide a link from the model con-
figuration and data to the actual aircraft configuration. To support the model
in the wind tunnel test section, a modification is generally made at the aft end
of the shape to allow the wind tunnel sting to be inserted in the rear of the
model, which in turn is connected to the strain gage balance inside the model
for force and moment resolution, and at the other end, affixed to the tunnel
test section itself. The modification of the shape at the aft end of the model to
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accommodate the typically cylindrical sting is called the sting distortion. Ob-
viously, the data taken is then for the shape with this distortion, not of the
actual aircraft (undistorted shape). Computational fluid dynamics can provide
a unique and generally quite accurate sting distortion correction, allowing the
designers to correlate, using this correction, the forces and moments measured
in the tunnel to what they would be on the actual, undistorted aircraft shape.
In fact, one way to accomplish this is to model the aircraft shape in CFD with a
perfectly expanded jet plume shape emanating from what would be the engine
nozzle, which should give the forces and moments on the actual aircraft shape
as it would be in flight with the engine plume. This can then be correlated
to the wind tunnel measurements, which represent a distorted body shape and
a cylindrical solid plume (sting). As a double check, one can also model this
sting/distortion shape in CFD, giving all of the increments for correlation and
prediction of actual aircraft performance. In addition to forces and moments,
wind tunnel models typically have several pressure orifices in order to measure
the pressure distribution on the surface of the model. By their very nature, CFD
solutions provide surface pressures everywhere on the surface of the model, lim-
ited only by the grid density (discretization) of the surface. Therefore, good
correlations can be made between the surface pressure measurements at the few
locations on the model, and the overall pressure distribution predicted by CFD.
If the correlations are good, the designer can be relatively confident that the
forces and moments predicted by CFD are good as well. If not, the wind tunnel
data can be used to calibrate or even improve the CFD method, by making im-
provements to the calculation method and/or grid density, and then having the
solutions rerun. The relationship of CFD and wind tunnel testing is synergistic
and complementary they are not exclusionary. In the authors experience, the
best usage of CFD early in the aircraft design phase is two-fold: first, it can
assist the designer (and configurator) in shaping the aircraft in a preliminary
way to meet early performance criteria. Second, it can greatly aid in designing
a wind tunnel model that can be reasonably expected to perform well. Gross
errors in design are usually predicted well enough by CFD to make corrections
with confidence in the model design. Once a model design is committed to,
and cutting the metal begins, CFD analysis can continue before entry into the
wind tunnel to fill out the database of flow conditions for later reference once
the wind tunnel data begins to be generated. Indeed, it can be extremely useful
to have the CFD-generated aerodynamic database available in the wind tunnel
to correlate immediately with the data coming out of the test in real time. In
the authors experience, there was even one occurrence in which the wind tunnel
testing was stopped because the data did not at all correlate with the CFD
predictions, and in fact, an error in the wind tunnel data reduction parameters
was found and corrected. Without this capability, the tunnel testing and data
acquisition would have continued with this error unnoticed, thus requiring a to-
tal recalculation of the tunnel database after the test once the error, hopefully,
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was found.

1.4 Comparisons and Contrasts with Wind Tun-
nel Data

Using CFD effectively in the manner described in the previous section, and
upon detailed comparisons of the CFD predictions to the wind tunnel data,
several conclusions are generally evident. Assuming a robust and accurate
Navier-Stokes flow solver (and sufficiently dense flow field grid) were used, typ-
ical strengths and weaknesses of the CFD analysis are brought forth. For flow
conditions of low angle of attack and/or sideslip (benign flow with little or no
separation), the CFD-predicted forces and moments as well as surface pressure
distributions are usually found to be in good to very good correlation with
the wind tunnel data. Once a few conditions of this nature are checked, the
CFD method can be used with good confidence for examining the flow field
in detail, perhaps with an eye toward minor redesign of the shape. This can
help tremendously in taking the design further along the path to a prototype
aircraft post-wind-tunnel test. Because the CFD analysis was found to be in
good agreement with the wind tunnel data at these benign conditions, one could
conclude it might be safe to trust the method to aid in refining the shape fur-
ther, without, perhaps, building a new wind tunnel model and retesting. This
therefore saves a step, and an expensive and time-consuming one, for the next
iteration of the design process. Another strength of CFD analysis, again for
these benign flow conditions, would be to extract the increment to the results of
the sting distortion mentioned earlier. The overall predicted lift-to-drag (L/D)
ratio of the design will be altered in the wind tunnel data due to the presence
of the sting and the attendant distortion of the aft section of the aircraft. Com-
putational fluid dynamics analysis of the undistorted shape will produce the
increment of this alteration in performance. Thus, the wind tunnel data, with
CFD-generated corrections, can be recalculated to better represent the aircraft
design in flight. This is routinely done for aircraft configurations, especially
those in which the sting is insert at the aft end (engine nozzle end) of the air-
craft. It is an extremely useful correction technique. The success with which
CFD can be compared to wind tunnel data is usually confined to the benign
flow conditions of small to moderate angle of attack. For the higher transonic
Mach numbers, where strong shocks are prominent on the aircraft shape, the
ability of CFD to cope with and accurately predict flow field separation, shock-
induced separation, or massive flow separation at very high angles of attack is
limited at best. Highly viscous-dominated flow conditions, wherein many sim-
plifying assumptions used in formulating CFD codes are not valid, create the
limitations evidenced upon comparing both the forces and moments and the
surface pressures to the wind tunnel data. What is generally found is that, for
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example, the lift curve slope of the aircraft configuration is followed quite well
over the small to moderate angle of attack range. Above this range, near the
onset of lift breakdown, the slope generated by the CFD methods will diverge
from the data. The CFD methods can still give an approximation of where the
lift curve knee will appear, but likely will not be very accurate in the calculation
of maximum lift coefficient (CLmax), for example. It may also be found that
upon looking at the surface pressure distributions, the shock location, strength,
and sharpness will be inaccurate. The stronger the shock waves, generally the
poorer the CFD calculations of their strength will be. Specifically, over the
range of approximately Mach numbers 0.90 to 1.10, the strength of the shocks
and their ability to separate the boundary layer are difficult for CFD methods to
model accurately. Increase the Mach numbers to, for instance, 1.2 and above,
however, and the calculations again become more accurate in terms of forces
and moments and surface pressure distribution predictions. Drag calculation
is another general area of CFD weakness. Since the drag is usually, for most
aircraft configurations, small when compared to the lift and moment forces, in-
accuracies play a larger role in the values obtained. Also, since drag onset due
to separation is largely a viscous-dominated flow characteristic, the extent of
separation is difficult for CFD to compute well. This weakness will manifest
itself when comparing drag polars of the configuration to the wind tunnel data.
It should be mentioned here that even for the benign flow conditions and lower
angles of attack, the absolute drag computed by the CFD method may be off by
an almost constant increment over the entire range of the data, diverging finally
at the more severe conditions. This increment may come about from the differ-
ence between the calculated skin friction drag and the wind tunnel data. The
increment can sometimes be determined to be fairly constant at a given Mach
number, therefore, upon examination of the data, it may be possible to correct
this incremental difference by adding a constant to the CFD calculated drag
via post-processing of the computed data, and then replotting the CFD results
with the wind tunnel data superimposed, effectively compensating for this in-
cremental error in the absolute drag numbers. Other major areas of comparison
include the moment curves and the derivation of stability derivatives. Often,
again for the more moderate flow conditions, these curves are fairly linear, and
CFD can do a very good job of predicting these quantities. Asymmetrical cal-
culations of a model at sideslip conditions in CFD require a full grid, without
taking advantage of a symmetry plane. Therefore, these calculations double the
time and computing resources required. Once comparisons with wind tunnel
data are made and found to be favorable, investing these resources to compute
asymmetric stabilities derivatives becomes worthwhile. Finally, surface pressure
distributions are easily compared (if the wind tunnel model is so equipped), and
for flow conditions where good comparisons exist, the CFD pressures can then
be used for other detailed analysis of the configuration. For example, the dense
surface pressure data can be used in conjunction with a finite-element struc-
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tural model for calculation of loads and moments about the aircraft. Lastly,
as was mentioned earlier, the all-important calibration of the sting distortion
increment is usefully provided by CFD methods. It allows extrapolation of the
characteristics of the wind tunnel model (with sting distortion) to the actual
aircraft configuration with the correct aft shaping. This correction makes the
wind tunnel data even more useful for prediction of full-scale aircraft perfor-
mance parameters. Again, one of the best uses of CFD is to ensure that the
wind tunnel model that is built yields a largely no surprises wind tunnel test.
Once the CFD methods are so calibrated from one test, it is possible to apply
them with even greater confidence to the next design iteration, even perhaps
allowing refinements to be made to the design without the need for a subsequent
wind tunnel reentry. This is clearly where investment in CFD pays dividends.

1.5 Difficult Areas for Application of Computa-
tional Fluid Dynamics

The discussion in the previous section often referred to benign or moderate flow
conditions. These conditions are typically the low to medium angles of attack
(or sideslip), and the low transonic or lower supersonic Mach numbers. Once
significant flow separation is present, or at high transonic Mach numbers (ap-
proximately 0.90 to 1.10) where very strong shocks are present, discrepancies
with test data are likely to be prominent. In typical CFD codes used for full
aircraft configuration analysis, turbulence is generally modeled to some approx-
imation in order to provide a reasonably sized problem. The various turbulence
models do a fairly good job for areas of no to small separated flow. Once the sep-
aration becomes significant, with large areas of stagnated and recirculating flow,
these models generally break down. The result is the under- or overprediction
of the separated regions, with the attendant inaccuracies in the surface pressure
distribution and integrated forces and moments. Where very strong shocks are
present, first the shock strength and location are usually poorly predicted, and
then the resulting flow separation and recirculation regions are accordingly mis-
predicted. When applying CFD under these conditions, great caution should
be taken unless there are test data to either validate the results, or to calibrate
the errors of the computations. Even under benign flow conditions, CFD can
still be misleading when applied to certain regions of the aircraft shapes flow
field. For example, applying CFD in a boattail region, perhaps in an aft-facing
step area or in area of the exhaust nozzle, significant flow separation can exist
even for benign flow conditions. Drag calculations for a configuration with aft-
facing steps will likely be inaccurate. Configurations with landing gear in the
flow stream are similarly troublesome. Landing gear are often complex shapes,
both difficult to model in the computational grid, and difficult to compute for
the CFD flow solver. It is often desired to evaluate the increment of drag with
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landing gear down versus landing gear retracted, and thus the temptation to use
CFD methods to evaluate this early in the design stage. Again, caution should
be exercised in these areas of interest unless wind tunnel data is available to
calibrate and correct the results.

1.6 Application of Computational Fluid Dynam-
ics to Internal Flows

Most of the discussion thus far has been made in the context of CFD analy-
sis of the external shape of an aircraft configuration, for the purposes of force
and moment calculation and surface pressure distribution. Computational fluid
dynamics can be and has been applied very effectively to the calculation of in-
ternal flows, specifically the calculation of inlet and nozzle flows including the
ducting before and aft of a simulated engine. In fact, many more detailed wind
tunnel models have provision for so-called flow-through configurations, wherein
an inlet is uncovered and flow is allowed to enter the inlet, flow through the
model, and exit at the aft end of the model near the sting area. To control
the flow through this ducting, different inserts can be fabricated to choke down
the flow at the exit, thus giving the effects of varying mass flow. To correctly
compute the flow about (and through) such a model, it is necessary to grid and
model the internal flow, including the effects of varying mass flow. This allows
calculation and prediction of inlet drag and inlet spill. These effects clearly
show up in the surface pressures near and immediately behind the inlet, and of
course affect the drag and base pressures near the sting. Including these in the
CFD model can greatly improve the agreement of the computations with the
wind tunnel data. In fact, if the CFD analysis is seriously used in the detailed
design of the wind tunnel model, these effects should be included. In addition
to flow-through models, purely propulsion-related internal flows can also be ef-
fectively computed. Inlet and ducting designs can be fairly accurately assessed
provided the attendant flow separations are reasonably subdued. Reference 3
outlines some detailed internal flow calculations and their comparisons with ex-
perimental data. Similarly, nozzle flow paths can be designed using internal
CFD computations with care toward and knowledge of the inherent limitations.
These are generally more complex flow problems than purely external calcula-
tions, yet very good results can be obtained that aid greatly the designers efforts
to refine a configuration before committing it to costly metal fabrication and
testing. In addition, CFD analysis can help direct where wind tunnel model
instrumentation (e.g., pressure taps) should be placed on the surface for the
best results.
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1.7 Computational Fluid Dynamics Analysis Yields
Results Directly Applicable to Flight Test
Success

The processes of applying CFD analysis to aircraft design in the manner illus-
trated above, with all of its limitations, has been instrumental in first allowing
a well-performing wind tunnel model to be built, and second, to allow the ex-
trapolation of both computed and measured quantities to full-scale flight test
articles. Many of the corrections to wind tunnel data, extrapolation of wind
tunnel data, and modeling of physical features of an actual aircraft can play
a major role in ensuring flight test success. Often, the X plane aircraft design
will undergo many design changes after the wind tunnel model (and its testing)
are completed. These may be minor changes, but nevertheless some quantifica-
tion of the effect on aerodynamics and/or performance must be made in order
to develop the flight control software. Computational fluid dynamics analysis,
especially after having been compared (and somewhat calibrated) to the wind
tunnel test data, can be confidently used in assessing these changes to the flight
article, and the increments used to modify the database for inclusion into the
flight control law development. This was done repeatedly during the design
and testing process for each of the three X plane examples given in this paper,
and the flight test results reflect the benefits of such an approach. In short,
the CFD corrections, when properly applied where they are valid, can be more
accurate than simple extrapolation. In particular, stability derivatives can be
computed from the CFD forces and moments, and over the regions of validity
(benign to moderate flow conditions), have been found to be quite accurate dur-
ing flight test. For neutrally to highly unstable aircraft configurations, accurate
calculation of these stability derivatives is critical.

1.8 X-36

First of the three examples cited in this paper, the X-36 design, followed the
path described herein almost exactly, and was the authors first end-to-end suc-
cess story of CFD-to-flight. The X-36 was a tailless fighter agility demonstrator
aircraft that proved, both via full-scale simulation and subscale flight test, that
it is possible to achieve fighter-class agility with a configuration without any
vertical tail surfaces. Yaw control was provided entirely by using split ailerons
(drag rudders) and/or thrust vectoring. Extensive analysis was performed on
both this and precursor (similar) configurations using the full spectrum of com-
putational analysis tools available to the designer. Each of the various types
of CFD methods were used at the appropriate time during the configuration
development, and each refinement of the design was aided significantly by the
CFD analysis that was performed. As the design matured, more sophisticated
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Figure 1.1: The X-36 Tailless Fighter Agility Research Aircraft in flight over
the Mojave Desert.

CFD methods were employed. Critical to this process was an assessment of the
stability and control derivatives of the design, as instability was a given byprod-
uct of the goals of the aircraft. Thus, candidate configurations were assessed
using the various analytical methods that were applied in determining the levels
of instability, making sure that they were tractable given the capabilities of the
modern digital flight control systems of the day. Occasionally, the analysis tools
showed levels of instability that could not be tolerated, and design adjustments
had to be made to bring the configuration back within the acceptable limits of
stability and control.

Before designing the X-36 wind tunnel model, extensive full Navier-Stokes
CFD analysis was performed on the wind tunnel configuration (including the
sting distortion), again providing valuable data to fine-tune the shape and help
locate instrumentation on the model. Once committed to metal, further exten-
sive CFD runs were performed, pre-running many of the cases to be run in the
wind tunnel, and producing a database similar to what was to be generated in
the wind tunnel testing. Therefore, when the actual data acquisition began in
the tunnel, the CFD database was already in place for early comparisons with
the data, almost in real-time as it came out of the tunnel data system. It was
because of this that an early error in the data reduction scheme in the wind
tunnel calibrations was found and corrected before too much time had passed.



12 CFD to Flight

Figure 1.2: The X-36 Tailless Fighter Agility Research Aircraft in flight.

As a result of the preliminary analysis using full Navier-Stokes CFD, the
initial results of the wind tunnel data indicated, as desired, no surprises. This
meant that the model designed was performing exactly as had been hoped, and
as had been evident from the CFD database. Further, the piloted simulation of
the aircraft using the stability derivatives of the configuration as analyzed by
CFD was no only entirely flyable by the test pilot, but also met the maneuver-
ability and agility goals that were defined early in the program.

From the successes noted above, the decision was made to take the next
step, and actually build a subscale flyable prototype that would be remotely
piloted from a fixed ground station, and hand flown by the same pilots who
evaluated the handling characteristics in the simulations performed earlier using
the combination of CFD and wind tunnel derived stability coefficients. The
success of the flight test was exemplary, as the X-36 flew 33 safe and successful
research flights from 1997 to 1998. An assessment of the success of the flight
test and stability and control characteristics is found in Reference 4.

1.9 X-45A UCAV

The second example cited in this paper is the X 45A Unmanned Combat Air
Vehicle (UCAV). As can be seen in the photo below, the X-45A followed in the
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Figure 1.3: Figure 3. The X-45A Unmanned Combat Air Vehicle in flight over
the Mojave Desert.

footsteps of the X 36 in that it too was configured without any vertical control
surfaces. In this case, oppositely deflected outboard elevons, in a so-called crow
mix fashion, along with thrust vectoring, were used for yaw stability and control.
The design evolution of the X-45A followed a very similar, if abbreviated, path
of CFD analysis, design refinement, wind tunnel model design, and finally flight
article design and fabrication. Much of success of the X-36 approach to tailless,
highly unstable configuration design and control led to another tremendously
successful X-45A flight test program. No fewer than 64 safe and successful
research flights were conducted on two X-45A demonstrators, some of which
were dual vehicle flights. Much more about the X-45A UCAV program and
flight test can be found in References 5 and 6.

1.10 X-48B Blended Wing Body Demonstrator

The third and final example cited in this paper is the X-48B Blended Wing
Body research aircraft. In this particular case, the configuration has been of
interest and under investigation for more than 20 years. Extensive CFD analysis
encompassing all methods described in this paper have been utilized to establish
and refine the aerodynamics of this unique configuration. Until just recently,
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Figure 1.4: Figure 4. The X-45A Unmanned Combat Air Vehicle in flight.

no actual flight test data has been obtained. The X-48B represents the first
attempt to obtain quality, scalable data from both wind tunnel and flight test.
The Boeing Company has subcontracted to a British firm, Cranfield Aerospace
(Cranfield, Bedford, United Kingdom), the design and fabrication of two high-
fidelity 8.5 percent scale models of a notional prototype (full-scale) aircraft.
Careful attention has been paid to the scalability of data in order to infer,
as much as possible, the flight characteristics of the full-size aircraft from the
subscale flight test. The design of the shape of this aircraft has been developed
and refined over many years using both CFD analysis and limited wind tunnel
test data. Upon completion of the first of the two Cranfield Aerospace-built
models, a wind tunnel entry at NASA Langleys Full-Scale Wind Tunnel was
performed in March of 2006. This vehicle matched identically the second, flight-
worthy model, which would undergo subsequent flight test. An extremely high-
quality wind tunnel database for the X-48B was obtained in over five straight
weeks of testing. This database, along with CFD supplements, was used to
produce the flight control law derivations that would later be used to control
and stabilize the aircraft in flight.

REST OF THIS SECTION TBD NOT FLOWN YET
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Figure 1.5: Figure 5. The X-48B Blended Wing Body research aircraft at rest
on the Rogers Dry Lake. bed

1.11 Summary

This paper has described and given examples of successful CFD application
to the design process of three true X planes. The process of conceptual de-
sign, CAD modeling and refinement, followed by CFD methods application and
further refinement has been described. Specifically, how CFD can aid in the
design of a wind tunnel model to yield few if any surprises during wind tunnel
testing was explained. Once in the wind tunnel, data can then be directly cor-
related to the computed CFD database, thus calibrating the CFD methodology
and in some cases ensuring that the wind tunnel data reduction is being per-
formed correctly. CFD can be and has been an enabling technology on the path
to getting a new aircraft shape to flight. Controlling an inherently unstable
configuration is critically dependent on determination of its aerodynamics and
stability derivatives; CFD can provide preliminary estimates of these quanti-
ties accurately enough for the development of early control laws and a flyable
simulation. Configuration assessments and incremental redesign can then be
accomplished in a deliberate fashion, with the goal of arriving at a final con-
figuration to be committed to more detailed (and expensive) analysis leading
toward a flight model, with greatly improved chances of success.
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