Thermal-Mechanical Testing of Hypersonic Vehicle Structures

Larry Hudson and Craig Stephens
NASA Dryden Flight Research Center
Edwards, CA

Hypersonics / MURI Review Meeting
University of California, Santa Barbara
Santa Barbara, CA
July 9-11, 2007
U.S. Laboratories for Hot Structures Testing

- Large-scale thermal, structural and dynamic testing
 - Thermal-structural and dynamic analyses
 - High-temperature instrumentation
 - Non-destructive evaluation

Flight Loads Laboratory
NASA DFRC, Edwards, CA

Structures Test Facility, Bldg. 65
AFRL/VA Wright-Patterson AFB, Dayton OH

Structures & Materials Research Laboratory
NASA LaRC, Hampton, VA
General Description
- Laboratory for structural and thermal testing of aerospace structures
- Large high-bay test area (164’ x 120’)

Structural Loading Capabilities
- Structural loading equipment: load frames, load cells, and hydraulic actuators
- Aircraft ground vibration and structural mode interaction testing
- 84 channels of hydraulic load control

Thermal Loading Capabilities
- Vacuum furnaces, low and high temperature chambers, liquid and gaseous nitrogen supply systems
- Quartz lamp and graphite element heating
- 20 MW of available power
- 4000 gal of liquid nitrogen storage for cryogenic testing
- Potential for 512 channels of thermal control

Data Acquisition Capabilities
- Potential for 1280 channels of data acquisition
Hot Structures Test Programs (1990’s)

- 1500°F w/ Load: NASP TMC Panels DFRC, 1990-1994
- 2000°F w/ Load: NASP C/C Wing Box AFRL, 1992
- 1200°F w/ Load: NASP TMC Panel Joint Test LaRC, 1993
- 1200°F w/ Load: NASP TMC Splice Joint Panel AFRL, 1993
- 900°F w/ Load: NASP TMC Side Shear Panel DFRC, 1995
- 2250°F w/ Load: AFRL C/C Wing Box AFRL, 1999
Hot Structures Test Programs (2000’s)

- NGLT C/C Control Surface
 - DFRC, March 2003
 - 2000°F w/ Load

- NGLT C/SiC Bodyflap
 - DFRC, Nov 2003
 - 2100°F w/ Load

- X-37 C/SiC Flaperon Subcomponent
 - DFRC, May 2004
 - 2400°F w/ Load

- X-37 C/C Flaperon Qual Unit
 - DFRC, Aug 2005
 - 2500°F

- X-37 C/C Ruddervator Subcomponent
 - AFRL, Sep 2004
 - 2300°F

Dryden Flight Research Center
Hot Structures Test Programs

- **NASP / NGLT Carbon-Carbon Elevon (2003)**
 - Concept validation test of a flight-weight C/C hot structure component
 - Fabricated in 1989 for the NASP Tech Mat program
 - Simultaneous heating and loading to 2000°F and 100% DLL in nitrogen atmosphere
 - 128 quartz-lamp heaters (32 control zones)
 - Approximately 1.5 MW of electrical power
 - Instrumentation
 - 50 thermocouples and 54 strain gages (first hot structure application of fiber optic strain sensors)

Test at 2000°F & 100% DLL
Hot Structures Test Programs

♦ X-37 Carbon-Carbon Flaperon (2005)
 • Thermal & mechanical qualification test of a flight design C/C hot structure control surface
 • Tested in nitrogen purged atmosphere
 • 35 quartz lamp heaters (18 control zones)
 • Instrumentation
 – 82 thermocouples channels (124 on test setup)
 – 14 fiber-optic strain sensors
 – 12 deflection measurements
 • Key test challenges
 – Bonding high-temp instrumentation to C/C
 – Achieving desired boundary conditions
Typical Sequence for Hot Structures Testing

Design / Development
- Aero / Aerothermal Database
- Hot Structure Design
- Hot Structure Modeling & Analysis
- Hot Structure Fabrication
- Hot Structure Test Condition Analysis
- Pre-Test Predictions

Testing
- Test Requirements (loads, boundary conditions, instrumentation, NDE, etc.)
- Test Plan (procedures, lab systems instrumentation, safety, etc.)
- Test Setup Design
- Test Setup Fabrication (PDRs, CDRs)
- Hot Structure Baseline NDE
- Test Setup Instrumentation
- Hot Structure Instrumentation

- Test Setup Assembly
- Test Readiness Review
- Test Execution
- Hot Structure Post-Test NDE
- Test Report
- Hot Structure Design & Model Validation (data correlation)
Typical Sequence for Hot Structures Testing

1. Aero / Aerothermal Database
2. Hot Structure Design
3. Hot Structure Modeling & Analysis
4. Hot Structure Fabrication
5. Test Requirements (loads, boundary conditions, instrumentation, NDE, etc.)
6. Test Plan (procedures, lab systems instrumentation, safety, etc.)
7. Test Setup Design
8. Test Setup Fabrication (PDRs, CDRs)
9. Hot Structure Baseline NDE
10. Test Setup Instrumentation
11. Test Setup Assembly
12. Test Readiness Review
13. Test Execution
14. Hot Structure Post-Test NDE
15. Test Report
16. Hot Structure Design & Model Validation (data correlation)
17. Pre-Test Predictions
18. Hot Structure Test Condition Analysis
Test Requirements Definition

- Test article description (material, size, type, etc.)
- Type of test (proof, acceptance, qualification, validation, research)
- Type of loading (thermal, mechanical, dynamic, combined)
- Boundary condition definition
- Type of heating system (quartz lamp, graphite)
- Type of test atmosphere (purged, air, level of O₂)
- Test matrix definition (test sequence)
- Instrumentation (type, number, location)
- Handling requirements
- Inspection requirements
- Documentation requirements
Test Setup Development

♦ Goal: Design test setup to simulate desired boundary conditions
 • Heating system to meet desired temperature distribution
 • Mechanical loading system to meet desired pressure distribution

♦ Perform a test condition analysis to include real boundary conditions
 • Provides more representative pre-test predictions
 • Provides best correlation between test data and analysis
Test Setup Development

Quartz Lamp Heater

- Aluminum reflector
- Six 2000 W quartz lamps
- Water & gas cooled

\[T_{\text{max}} \approx 2700^\circ F \]

Current Quartz Lamp Heater Setup

Graphite Heater

\[T_{\text{max}} \approx 3200^\circ F \]

Graphite Heater Evaluation Test (3100°F)
High-Temperature Instrumentation

Issues
- Hot structures are utilizing advanced materials that operate at temperatures that exceed current ability to measure structural performance
- Robust strain sensors that operate accurately and reliably beyond 1800°F do not exist

Implications
- Hinders ability to validate analysis and modeling techniques
- Hinders ability to optimize structural designs
High-Temperature Instrumentation

- **Goal:** Provide valid strain and temperature data to analysts
 - Supports FEM and thermal-structural analysis validation

- **Key Issue:** Develop attachment techniques for strain & temperature sensors on hot structure materials (superalloys, C/C, C/SiC, etc.)
 - Validate attachment techniques through characterization testing

Typical Systems for Sensor Validation Testing
High-Temperature Instrumentation

Evolution of Hot-Structure Strain Measurements

1960-1970

Flame-Sprayed Resistive
Weldable Resistive
Weldable Capacitive

Large thermal outputs and measurement uncertainties

1980-1990

Improved temperature-compensation using flame-sprayed resistive gages

Improved measurement accuracy applying Silica and Sapphire EFPI Technology

>2000

Fiber-Optic Strain Sensor

X-33
NASP
X-37
CEV

Dryden Flight Research Center
High-Temperature Instrumentation

Fiber Optic Strain Sensor Installation

- Gold-coated silica fiber (125 micron)
- Nextel overbraid
- Ceramic cement
- Plasma/Rokide basecoat
- Max use ≈ 1850°F

Thermocouple Installation

- Ceramic cement
- Plasma/Rokide thermal sprayed basecoat
- C/SiC
- Max use ≈ 2500°F
High-Temperature Instrumentation

- Dryden advanced fiber-optic measurement system for heat shield health monitoring
 - Simultaneous strain and temperature measurements
 - Flight system currently available
 - 480 sensors per optical fiber
 - 2-fiber mode at 35 sps
 - 4-fiber mode at 20 sps
 - Flight testing on Predator B in Sep '07

Proposed Ground Validation Test of Heat Shield Health Monitoring System
Hot Structures NDE

- NDE is an essential part of any hot structures test program
 - Must be able to detect, locate, identify and track defects / damage to fully characterize the hot structure component under test
- IR Pulsed Thermography NDE for high-temperature composite structures (C/C, C/SiC)
 - Locates and maps material delaminations and porosity
 - Locates precise depth of defect
 - Technique improvements are required to better characterize damage in C/C & C/SiC materials
 - Currently looking to develop standards with engineered defects
Current Hot Structures Testing

♦ Objective: Test a C/SiC Ruddervator Subcomponent under relevant thermal, mechanical & dynamic loading

♦ Supports NASA ARMD Hypersonics Material & Structures Program

♦ Test Phases
 • Phase 1: Acoustic-Vibration Testing (LaRC) – completed
 • Phase 2: Thermal-Mechanical Testing (DFRC) – in design / fab
 • Phase 3: Mechanical Testing (DFRC) – in design / fab
 • Phase 4: Thermal-Acoustic Testing (LaRC) – in design
Concluding Remarks

♦ Hot structures are currently finding applications on real vehicles

♦ Current structural sensing technologies do not meet the peak temperature requirements for hot structure applications
 - Innovative sensors are needed
 - Advanced sensor attachment techniques are required
 - Sensor characterization and validation is required

♦ Improved NDE techniques and engineered standards are required to better detect and identify damage in C/C & C/SiC materials

♦ U.S. laboratories must maintain core competencies to effectively meet imminent demands for hot structures testing