Spaceflight alters bacterial gene expression and virulence and reveals role for global regulator Hfq

J.W. Wilson^{1,2}, C.M. Ott³, K. Höner zu Bentrup², R. Ramamurthy², L. Quick¹, S. Porwollik⁴, P.

Cheng⁴, M. McClelland⁴, G. Tsaprailis⁵, T. Radabaugh⁵, A. Hunt⁵, D. Fernandez¹, E. Richter¹, M. Shah⁶, M. Kilcoyne⁶, L. Joshi⁶, M. Nelman-Gonzalez⁷, S. Hing⁸, M. Parra⁸, P. Dumars⁸, K. Norwood⁹, R. Bober⁹, J. Devich⁹, A. Ruggles⁹, C. Goulart¹⁰, M. Rupert¹⁰, L. Stodieck¹⁰, P. Stafford¹¹, L. Catella⁹, M.J. Schurr^{2,12}, K. Buchanan^{2,13}, L. Morici², J. McCracken^{2,14}, P. Allen^{2,15},

C. Baker-Coleman^{2,15}, T. Hammond^{2,15}, J. Vogel¹⁶, R. Nelson¹⁷, D.L. Pierson³, H.M. Stefanyshyn-

Piper¹⁸, C.A. Nickerson^{1,2}*

 ¹The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ; ²Tulane University Health Sciences Center, New Orleans, LA;
³Habitability and Environmental Factors Division, NASA-Johnson Space Center, Houston, TX;
⁴Sidney Kimmel Cancer Center, San Diego, CA; ⁵Center for Toxicology, University of Arizona, Tucson, AZ; ⁶The Biodesign Institute, Center for Glycoscience Technology, Arizona State University, Tempe, AZ; ⁷Wyle Laboratories, Houston, TX; ⁸NASA-Ames Research Center, Moffett Field, CA; ⁹Space Life Sciences Lab, Kennedy Space Center, Cape Canaveral, FL;
¹⁰BioServe, University of Colorado, Boulder, CO; ¹¹The Biodesign Institute, Center for Innovations in Medicine, Arizona State University, Tempe, AZ; ¹²University of Colorado at Denver and Health Science Center, Denver, CO; ¹³Oklahoma City University, Oklahoma City, OK; ¹⁴Section of General Surgery, University of Chicago, Chicago, IL; ¹⁵Southeast Louisiana RNA Biology Group, Berlin, Germany; ¹⁷The Biodesign Institute, Center for Combinatorial Sciences, Arizona State University, Tempe, AZ; ¹⁸Astronaut Office, NASA-Johnson Space Center, Houston, TX

*Corresponding author: The Biodesign Institute, Center for Infectious Diseases and

Vaccinology, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287; phone: 480-727-7520; fax: 480-727-8943

One sentence summary: Spaceflight molecular microbiology reveals a role for the conserved Hfq regulatory network in the bacterial response to this environment.

Abstract

A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen *Salmonella typhimurium* was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

Text

Environmental conditions and crewmember immune dysfunction associated with spaceflight may increase the risk of infectious disease during a long-duration mission (1-4). However, our knowledge of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is limited and unclear. Elucidation of such risks and the mechanisms behind any spaceflight-induced changes to microbial pathogens holds the potential to decrease risk for human exploration of space and provide insight into how pathogens cause infections in Earth-based environments. Numerous logistical and technological hurdles exist when performing biological spaceflight experimentation, and an extremely limited number of opportunities to perform such research are available. Accordingly, comprehensive analysis of cells, including pathogenic microbes, at the molecular and phenotypic level during spaceflight offers a rare opportunity to examine their behavior and response in this environment.

We designed experiments to be flown on Space Shuttle Atlantis Mission STS-115 (September 2006) in which cultures of the bacterial pathogen *Salmonella typhimurium* were activated to grow in space for a specific time period and then either fixed in an RNA/protein fixative or supplemented with additional growth media after this time period (Supplemental Figure 1, Panel A). Immediately upon landing at Kennedy Space Center (KSC), the culture samples were recovered and subsequently used for whole-genome transcriptional microarray and proteomic analysis (fixed samples) or for infections in a murine model of salmonellosis (mediasupplemented samples). In each case, the flight culture samples were compared to culture samples grown under identical conditions on the ground at KSC using coordinated activation and termination times (via real time communications with the Shuttle crew) in an insulated room that

4

maintained the identical temperature and humidity as that on the Shuttle (Orbital Environment Simulator or OES). The culture experiments were loaded into specially-designed hardware (termed fluid processing apparatus or FPA) to facilitate controlled activation and fixation of the cultures while maintaining suitable culture containment requirements (Supplemental Figure 1, Panels B,C).

To determine which genes changed expression in response to spaceflight, total bacterial RNA was isolated from the fixed flight and ground samples, qualitatively analyzed to ensure lack of degradation, quantitated, and then reversed transcribed into labeled, single-stranded cDNA. The labeled cDNA was co-hybridized with differentially-labeled S. typhimurium genomic DNA to whole genome S. typhimurium microarray slides. The cDNA signal hybridizing to each gene spot was quantitated, and the normalized, background-subtracted data was analyzed for statistically-significant, 2-fold or greater differences in gene expression between the flight and ground samples. We found 167 genes differentially-expressed in flight as compared to ground from a variety of functional categories (69 up-regulated and 98 downregulated) (Supplemental Table 1). The proteomes of fixed cultures were also obtained via multi-dimensional protein identification (MudPIT) analysis. We identified 251 proteins expressed in the flight and ground cultures, with 73 being present at different levels in these samples (Supplemental Table 2). Several of the genes encoding these proteins were also identified via microarray analysis. Collectively, these gene expression changes form the first documented bacterial spaceflight stimulon indicating that bacteria respond to this environment with widespread alterations of expression of genes distributed globally throughout the chromosome (Figure 1, Panel A).

Identification of one or more regulators of the spaceflight stimulon represents an important step in understanding the nature of this unique environmental signal. Our data indicated that a pathway involving the conserved RNA-binding regulatory protein Hfq played a role in this response (Table 1). Hfq is an RNA chaperone that binds to small regulatory RNA and mRNA molecules to facilitate mRNA translational regulation in response to periplasmic stress (in conjuction with the specialized sigma factor RpoE), environmental stress (via alteration of RpoS expression), and changes in metabolite concentrations, such as iron levels (via the Fur pathway) (5-9). Hfq is also involved in promoting the virulence of several pathogens including S. typhimurium (10), and Hfq homologues are highly conserved across species of prokaryotes and eukaryotes (11). Our data strongly supported a role for Hfq in the response to spaceflight: (1) The expression of *hfq* was decreased in flight, and this finding matched previous results in which S. typhimurium hfq gene expression was decreased in a ground-based model of microgravity (12); (2) Expression of 64 genes in the Hfq regulon was altered in flight (32% of the total genes identified), and the directions of differential changes of major classes of these genes matched predictions associated with decreased *hfq* expression (see subsequent examples); (3) several small regulatory RNAs that interact with Hfq were differentially regulated in flight as would be predicted if small RNA/Hfq pathways are involved in a spaceflight response; (4) The levels of OmpA, OmpC, and OmpD mRNA and protein are classic indicators of the RpoEmediated periplasmic stress response which involves Hfg (13). Transcripts encoding OmpA, OmpC, and OmpD (and OmpC protein level) were up-regulated in flight, correlating with hfq down-regulation; (5) Hfq promotes expression of a large class of ribosomal structural protein genes (9), and we found many such genes exhibited decreased expression in flight; (6) Hfq is a negative regulator of the large *tra* operon encoding the F plasmid transfer apparatus (14), and

several *tra* genes from related operons on two plasmids present in *S. typhimurium* χ 3339 were up regulated in flight; (7) Hfq is intimately involved in a periplasmic stress signaling pathway that is dependent on the activity levels of three key proteins, RpoE, DksA, and RseB (*5*, *9*). Differential expression of these genes was observed in flight; (8) Hfq regulates the expression of the Fur protein and other genes involved in the iron response pathway (*6*, *8*). We observed several iron utilization/storage genes with altered expression in flight. This finding also matched previous results in which iron pathway genes changed expression in a ground-based model of microgravity, and the Fur protein was shown to play a role in stress resistance alterations induced in the same model (*12*).

Given these findings, we designed experiments to verify a role for Hfq in the spaceflight response using a cellular growth apparatus that serves as a ground-based model of microgravity conditions termed the rotating wall vessel (RWV). Designed by NASA, the RWV has been extensively used in this capacity to study the effects of a low fluid shear growth environment (which closely models the liquid growth environment encountered by cells in microgravity) on various types of cells (*15-18*). Studies with the RWV involve using two separate apparatus: one is operated in the modeled microgravity position (termed low-shear modeled microgravity or LSMMG) and one is operated as a control in a position (termed 1xg) where sedimentation due to gravity is not offset by the rotating action of the vessel.

LSMMG-induced alterations in acid stress resistance and macrophage survival of *S*. *typhimurium* have previously been shown to be associated with global changes in gene expression and virulence (*12*, *19*). We grew wild type and isogenic *hfq* mutant strains of *S*. *typhimurium* in the RWV in the LSMMG and 1xg positions and assayed the acid stress response and macrophage survival of these cultures. While the wild type strain displayed a significant

7

difference in acid resistance between the LSMMG and 1xg cultures, this response was not observed in the hfq mutant, which contains a deletion of the hfq gene and replacement with a Cm-r cassette (Figure 2, Panel A). Two control strains, hfq 3'Cm and *invA* Km, gave the same result as the WT strain. We also observed increased intracellular replication of the LSMMGgrown WT (hfq 3'Cm) strain in infected J774 macrophages as compared to the 1xg control, and this phenotype was not observed in the hfq mutant strain (Figure 2, Panel B). Collectively, these data indicate that Hfq is involved in the bacterial spaceflight response as confirmed in a groundbased model of microgravity conditions. In addition, the intracellular replication phenotype inside macrophages correlates with the finding that spaceflight and LSMMG cultures exhibit increased virulence in mice (see text below and reference (*19*)).

Since growth during spaceflight and potential global reprogramming of gene expression in response to this environment could alter the virulence of a pathogen, we compared the virulence of *S. typhimurium* spaceflight samples to identical ground controls as a second major part of our study. Bacteria from flight and ground cultures were harvested and immediately used to inoculate female Balb/c mice via a per-oral route of infection on the same day as landing. Two sets of mice were infected at increasing dosages of either flight or ground cultures, and the health of the mice was monitored every 6-12 hours for 30 days. Mice infected with bacteria from the flight cultures displayed a decreased time to death (at the 10⁷ dosage), increased percent mortality at each infection dosage and a decreased LD₅₀ value compared to those infected with ground controls (Figure 2, Panels B,C,D). These data indicated increased virulence for spaceflight *S. typhimurium* samples and are consistent with previous studies in which the same strain of *S. typhimurium* grown using LSMMG conditions displayed enhanced virulence in a murine model as compared to 1xg controls (*19*). To determine any morphological differences between flight and ground cultures, scanning electron microscopic (SEM) analysis of bacteria from these samples was performed. While no difference in the size and shape of individual cells in both cultures was apparent, the flight samples demonstrated clear differences in cellular aggregation and clumping that was associated with the formation of an extracellular matrix (Figure 2, Panel E). Consistent with this finding, several genes associated with surface alterations related to biofilm formation changed expression in flight (up-regulation of *wca/wza* colonic acid synthesis operon, *ompA*, *fimH*; down-regulation of motility genes) (Table 1). SEM images of other bacterial biofilms show a similar matrix accumulation (20, 21). This phenotype indicates a change in bacterial community potentially related to the increased virulence of the flight bacteria in the murine model.

These results present the first documented gene expression changes that occur in bacterial cells (and any microbial pathogen) during spaceflight and therefore demonstrate that a microgravity growth environment represents a *bona fide* signal that can induce molecular changes in bacterial cells. These results also provide the first direct evidence that growth during spaceflight can alter the virulence of pathogen; in this case, a bacterial pathogen grown in spaceflight displayed increased virulence in a murine model of infection. Strategies designed to counteract the virulence-enhancing effects of spaceflight in microbes provide important potential benefits to crew health and open insight into novel antimicrobial strategies on Earth. The identification of global regulators of these responses such as Hfq provides targets at which these strategies can be directed.

References

- 1. A. I. Grigoriev, E. N. Svetaylo, A. D. Egorov, *Environ Med* 42, 83 (Dec, 1998).
- 2. G. Sonnenfeld, W. T. Shearer, *Nutrition* **18**, 899 (Oct, 2002).
- 3. G. R. Taylor, *J Leukoc Biol* **54**, 202 (Sep, 1993).
- 4. G. R. Taylor, I. Konstantinova, G. Sonnenfeld, R. Jennings, *Adv Space Biol Med* 6, 1 (1997).
- 5. N. Figueroa-Bossi et al., Mol Microbiol 62, 838 (Nov, 2006).
- 6. E. Masse, S. Gottesman, *Proc Natl Acad Sci U S A* **99**, 4620 (Apr 2, 2002).
- 7. A. Muffler, D. D. Traulsen, D. Fischer, R. Lange, R. Hengge-Aronis, *J Bacteriol* **179**, 297 (Jan, 1997).
- 8. B. Vecerek, I. Moll, T. Afonyushkin, V. Kaberdin, U. Blasi, *Mol Microbiol* **50**, 897 (Nov, 2003).
- 9. E. Guisbert, V. A. Rhodius, N. Ahuja, E. Witkin, C. A. Gross, *J Bacteriol* 189, 1963 (Mar, 2007).
- 10. A. Sittka, V. Pfeiffer, K. Tedin, J. Vogel, Mol Microbiol 63, 193 (Jan, 2007).
- 11. P. Valentin-Hansen, M. Eriksen, C. Udesen, *Mol Microbiol* **51**, 1525 (Mar, 2004).
- 12. J. W. Wilson et al., Proc Natl Acad Sci US A 99, 13807 (Oct 15, 2002).
- 13. P. Valentin-Hansen, J. Johansen, A. A. Rasmussen, *Curr Opin Microbiol* **10**, 152 (Apr, 2007).
- 14. W. R. Will, L. S. Frost, *J Bacteriol* **188**, 124 (Jan, 2006).
- 15. T. G. Hammond, J. M. Hammond, Am J Physiol Renal Physiol 281, F12 (Jul, 2001).
- 16. C. A. Nickerson, C. M. Ott, ASM News 70, 169 (2004).
- 17. C. A. Nickerson et al., J Microbiol Methods 54, 1 (Jul, 2003).
- 18. C. A. Nickerson, C. M. Ott, J. W. Wilson, R. Ramamurthy, D. L. Pierson, *Microbiol Mol Biol Rev* 68, 345 (Jun, 2004).
- 19. C. A. Nickerson *et al.*, *Infect Immun* **68**, 3147 (Jun, 2000).
- 20. B. Little, P. Wagner, R. Ray, R. Pope, R. Scheetz, J Ind Microbiol 8, 213 (1991).
- 21. J. H. Priester et al., J Microbiol Methods 68, 577 (Mar, 2007).
- 22. L. J. Reed, H. Muench, Am J Hyg 27, 493 (1938).
- 23. Acknowledgments: All supporting team members at Kennedy Space Center, Johnson Space Center, Ames Research Center, Marshall Spaceflight Center, and BioServe Space Technologies; the Crew of STS-115; Neal Pellis; Roy Curtiss III; Marc Porter; Lucy Shapiro; Brian Haight; Shawn Watts; Michael Caplan; Joseph Caspermeyer; Clint Coleman; Charles Arntzen; and all of our family and friends for their support. This work was supported by NASA grant NCC2-1362 to CAN; Louisiana Board of Regents grant NNG05GH22H to CBC; Arizona Proteomics Consortium supported by NIEHS grant ES06694 to the SWEHSC, NIH/NCI grant CA023074 to the AZCC, and by the BIO5 Institute of the University of Arizona.

Figure legends

Figure 1. Data from STS-115 *Salmonella typhimurium* **experiments.** Panel A: Map of the 4.8 Mb circular *Salmonella typhimurium* genome with the locations of the genes belonging to the spaceflight transcriptional stimulon indicated as black hatch marks. Panel B: Decreased time-to-death in mice infected with flight *S. typhimurium* as compared to identical ground controls. Female Balb/c mice perorally infected with 10^7 bacteria from either spaceflight or ground cultures were monitored every 6-12 hours over a 30 day period and the percent survival of the mice infected with spaceflight cultures across a range of infection dosages. Groups of mice were infected with increasing dosages of bacteria from spaceflight and ground cultures and monitored for survival over 30 days. The percent mortality (calculated as in (22)) of each dosage group is graphed versus the dosage amount. Panel D: Decreased LD₅₀ value (calculated as in (22)) for spaceflight bacteria in murine infection model. Panel E: Scanning electron microscopy (3500X magnification) of spaceflight and ground *S. typhimurium* bacteria showing the formation of an extracellular matrix and associated cellular aggregation of spaceflight cells.

Figure 2. Hfq is required for *S. typhimurium* LSMMG-induced phenotypes in RWV

culture. Panel A: The survival ratio of wild type and isogenic *hfq*, *hfq* 3' Cm, and *invA* mutant strains in acid stress after RWV culture in the LSMMG and 1xg positions is plotted (p-value < 0.05).

Panel B: Fold intracellular replication of *S. typhimurium* strains *hfq* 3'Cm and Δhfq in J774 macrophages after RWV culture as above. Intracellular bacteria were quantitated at 2 hours and 24 hours post-infection, and the fold increase in bacterial numbers between those two time periods was calculated (p-value < 0.05).

Figure 1.

Table 1: Spaceflight stimulon genes belonging to Hfq regulon or involvedwith iron utilization or biofilm formation

	Fold	
Gene*	<u>change</u>	Function

Hfq regulon genes

Up-regulated

Outer membrane pr	<u>roteins</u>	
ompA	2.05	outer membrane porin
ompC	2.44	outer membrane porin
ompD	3.34	outer membrane porin
Plasmid transfer ap	<u>paratus</u>	
traB	4.71	conjugative transfer, assembly
traN	4.24	conjugative transfer, aggregate formation
trbA	3.14	conjugative transfer
traK	2.91	conjugative transfer
traD	2.87	conjugative transfer, DNA transport
trbC	2.68	conjugative transfer
traH	2.59	conjugative transfer, assembly
traX	2.37	conjugative transfer, fimbrial acetylation
traT	2.34	conjugative transfer
trbB	2.32	conjugative transfer
traG	2.21	conjugative transfer, assembly
traF	2.11	conjugative transfer
traR	1.79	conjugative transfer
Various cellular fund	<u>ctions</u>	
gapA	7.67	glyceraldehyde-3-phosphate dehydrogenase A
sipC	6.27	cell invasion protein
adhE	4.75	iron-dependent alcohol dehydrogenase of AdhE
glpQ	2.58	glycerophosphodiester phosphodiesterase, periplasmic
fliC	2.11	flagellin, filament structural protein
sbmA	1.67	putative ABC superfamily transporter
Down-regulated		
Small RNAs		
alpha RBS	0.305	small RNA
rnaseP	0.306	small RNA regulatory
csrB	0.318	small RNA regulatory
tke1	0.427	small RNA

	···-·	
oxyS	0.432	small RNA regulatory
RFN	0.458	small RNA
rne5	0.499	small RNA
Ribosomal proteins		
rpsL	0.251	30S ribosomal subunit protein S12
rpsS	0.289	30S ribosomal subunit protein S19
rplD	0.393	50S ribosomal subunit protein L4
rpsF	0.401	30S ribosomal subunit protein S6
rplP	0.422	50S ribosomal subunit protein L16
rplA	0.423	50S ribosomal subunit protein L1
rpme2	0.473	50S ribosomal protein L31 (second copy)
rplY	0.551	50S ribosomal subunit protein L25

Various cellular function	ons	
ynaF	0.201	putative universal stress protein
ygfE	0.248	putative cytoplasmic protein
dps	0.273	stress response DNA-binding protein
hfq	0.298	host factor for phage replication, RNA chaperone
osmY	0.318	hyperosmotically inducible periplasmic protein
mysB	0.341	suppresses protein export mutants
rpoE	0.403	sigma E (sigma 24) factor of RNA polymerase
cspD	0.421	similar to CspA but not cold shock induced
nlpb	0.435	lipoprotein-34
ygaC	0.451	putative cytoplasmic protein
удаМ	0.453	putative inner membrane protein
gltI	0.479	ABC superfamily, glutamate/aspartate transporter
рріВ	0.482	peptidyl-prolyl cis-trans isomerase B (rotamase B)
atpE	0.482	membrane-bound ATP synthase, F0 sector, subunit c
yfiA	0.482	ribosome associated factor, stabilizes against dissociation
trxA	0.493	thioredoxin 1, redox factor
nifU	0.496	NifU homologs involved in Fe-S cluster formation
rbfA	0.506	ribosome-binding factor, role in processing of 10S rRNA
rseB	0.514	anti-sigma E factor
yiaG	0.528	putative transcriptional regulator
ompX	0.547	outer membrane protease, receptor for phage OX2
rnpA	0.554	RNase P, protein component (protein C5)
hns	0.554	DNA-binding protein; pleiotropic regulator
lamB	0.566	phage lambda receptor protein; maltose high-affinity receptor
rmf	0.566	ribosome modulation factor
tpx	0.566	thiol peroxidase
priB	0.571	primosomal replication protein N

Iron utilization/storage genes

adhE	4.76	iron-dependent alcohol dehydrogenase of AdhE
entE	2.24	2,3-dihydroxybenzoate-AMP ligase
hydN	2.03	electron transport protein (FeS senter) from formate to hydrogen
dmsC	0.497	anaerobic dimethyl sulfoxide reductase, subunit C
nifU	0.495	NifU homologs involved in Fe-S cluster formation
fnr	0.494	transcriptional regulator, iron-binding
fdnH	0.458	formate dehydrogenase-N, Fe-S beta subunit, nitrate-inducible
frdC	0.411	fumarate reductase, anaerobic, membrane anchor polypeptide
bfr	0.404	bacterioferrin, an iron storage homoprotein
ompW	0.276	outer membrane protein W; colicin S4 receptor
dps	0.273	stress response DNA-binding protein and ferritin

Genes implicated in/associated with biofilm formation

wza	2.30	putative polysaccharide export protein, outer membrane
wcaI	2.07	putative glycosyl transferase in colanic acid biosynthesis
ompA	2.06	outer membrane protein
wcaD	1.82	putative colanic acid polymerase
wcaH	1.76	GDP-mannose mannosyl hydrolase in colanic acid biosynthesis
manC	1.71	mannose-1-phosphate guanylyltransferase
wcaG	1.68	bifunctional GDP fucose synthetase in colanic acid biosyntheis
wcaB	1.64	putative acyl transferase in colanic acid biosynthesis
fimH	1.61	fimbrial subunit
fliS	0.339	flagellar biosynthesis

flgM	0.343	flagellar biosynthesis
flhD	0.356	flagellar biosynthesis
fliE	0.438	flagellar biosynthesis
fliT	0.444	flagellar biosynthesis
cheY	0.461	chemotaxic response
cheZ	0.535	chemotaxic response

*For specific parameters used to identify these genes, please refer to Materials and Methods in the Supplementary Material.

Wilson, et. al.

Supplemental Material

Materials and Methods

Strains, media, and chemical reagents

The virulent, mouse-passaged *Salmonella typhimurium* derivative of SL1344 termed χ 3339 was used as the wild type strain in all flight and ground-based experiments (1). Isogenic derivatives of SL1344 with mutations Δhfq , hfq 3'Cm, and *invA* Km were used in ground-based experiments (2, 3). The Δhfq strain contains a deletion of the hfq open reading frame (ORF) and replacement with a chloramphenicol resistance cassette, and the hfq 3'Cm strain contains an insertion of the same cassette immediately downstream of the WT hfq ORF. The *invA* Km strain contains a kanamycin resistance cassette inserted in the *invA* ORF. Lennox broth (LB) was used as the growth media in all experiments (4) and phosphate buffered saline (PBS) (Invitrogen, Carlsbad, CA) was used to resuspend bacteria for use as inoculum in the FPAs. The RNA fixative RNA Later II (Ambion, Austin, TX), glutaraldehyde (16%) (Sigma, St. Louis, MO), and formaldehyde (2%) (Ted Pella Inc., Redding, CA) were used as fixatives in flight experiments.

Loading of fluid processing apparatus (FPA)

An FPA consists of a glass barrel that can be divided into compartments via the insertion of rubber stoppers and a lexan sheath into which the glass barrel is inserted (refer to Supplemental Figure 1). Each compartment in the glass barrel was filled with a solution in an order such that the solutions would be mixed at specific timepoints in flight via two actions: (1) downward plunging action on the rubber stoppers and (2) passage of the fluid in a given compartment through a bevel on the side of the glass barrel such that it was released into the compartment below. Glass barrels and rubber stoppers were coated with a silicone lubricant (Sigmacote, Sigma, St. Louis, MO) and autoclave separately before assembly. A stopper with a gas exchange membrane was inserted just below the bevel in the glass barrel before autoclaving. FPA assembly was performed aseptically in a laminar flow hood in the following order: 2.0 ml LB media on top of the gas exchange stopper, one rubber stopper, 0.5 ml PBS containing bacterial inoculum (approximately 6.7 x10⁶ bacteria), another rubber stopper, 2.5 ml of either RNA fixative or LB media, and a final rubber stopper. Syringe needles (gauge 25 5/8) were inserted into rubber stoppers during this process to release air pressure and facilitate assembly. To facilitate group activation of FPAs during flight and to ensure proper containment levels, sets of 8 FPAs were loaded into larger containers termed group activation packs (GAPs).

Murine infection assay

Six to eight week old female Balb/c mice (housed at the Space Life Sciences Lab at Kennedy Space Center) were fasted for approximately 6 hours and then per-orally infected with increasing dosages of *S. typhimurium* harvested from flight and ground FPA cultures and resuspended in buffer saline gelatin (5). Ten mice per infectious dosage were used, and food and water were returned to the animals within 30 minutes post-infection. The infected mice were monitored every 6-12 hours for 30 days. The LD_{50} value was calculated using the formula of Reed and Muench (6).

Scanning electon microscopy

A portion of cells from the viable, media-supplemented cultures from flight and ground FPAs were fixed for scanning electron microscopic analysis using 8% glutaraldehyde and 1% formaldehyde and were processed for SEM as described previously (7).

Microarray analysis

Total cellular RNA purification, preparation of fluorescently-labeled, single stranded cDNA probes, probe hybridization to whole genome S. typhimurium microarrays, and image acquisition was performed as previously described (8) using three biological and three technical replicates for each culture condition. Flow cytometric analysis revealed that cell numbers in flight and ground biological replicate cultures were not statistically different. Data from stored array images were obtained via QuantArray software (Packard Bioscience, Billerica, MA) and statistically analyzed for significant gene expression differences using the Webarray suite as described previously (9). GeneSpring software was also used to validate the genes identified with the Webarray suite. To obtain the genes comprising the spaceflight stimulon as listed in Supplemental Table 1, the following parameters were used in Webarray: a fold increase or decrease in expression of 2 fold or greater, a spot quality (A-value) of greater than 9.5, and p-value of less than 0.05. For some genes listed in Table 1, the following parameters were used: a fold increase or decrease in expression of value greater than 1.6 or less then 0.6 respectively, an A-value of 8.5 or greater, and p-value of less then 0.1. The vast majority of genes listed in Table 1 had an A-value of greater than 9.0 (with most being greater than 9.5) and a p-value of 0.05 or less. The exceptions were as follows: *sbmA* (pvalue=0.06), oxyS (A-value=8.81), rplY (A-value=8.95), cspD (A-value=8.90), yfiA (pvalue=0.08), *ompX* (p-value=0.09), *hns* (p-value=0.08), *rmf* (A-value=8.82), *wcaD* (p-value=8.82), *wcaD* (p-value value 0.09), and *fliE* (A-value=8.98). To identify spaceflight stimulon genes also contained in the Hfq regulon, proteins or genes found to be regulated by Hfq or RNAs found to be bound by Hfq as reported in the indicated references were scanned against

the spaceflight microarray data for expression changes within the parameters above (2, *10-13*).

Multidimensional protein identification (MudPIT) analysis via tandem mass spectrometry coupled to dual nano-liquid chromatography (LC-LC-MS/MS)

Acetone-protein precipitates from whole cell lysates obtained from flight and ground cultures (representing three biological replicates) were re-suspended in water and assayed for amount using a BioRad Model 680 microplate reader according to published procedures (14, 15). Eighteen μ g of total protein from the whole cell lysate samples was digested in triplicate with trypsin (10 µg/mL) at 37°C overnight following reduction with dithiothreitol and alkylation with iodoacetamide (16). For the nano LC-LC-MS/MS, a microbore HPLC system (Paradigm MS4, Michrom, Auburn, CA) was used with two separate strong cation exchange (SCX) and reversed phase (RP) columns: a 100 µm I.D. capillary packed with 7 cm of 5 µm Vydac C18 reversed phase resin and a separate 250 μm I.D. capillary packed with 7cm of 5 μm Partisphere strong cation exchanger resin (Whatman, Clifton, NJ). The samples $(18 \,\mu g)$ (representing three technical replicates) were acidified using TFA and manually injected onto the SCX column, the effluent from the column being fed through RP column. A representative twelve step LC-LC-MS/MS analysis would be as follows. Solutions used are: 10% methanol/0.1% formic acid, 0.01%TFA (buffer A), 95% methanol/0.1% formic acid, 0.01% TFA (buffer B), 10% methanol/0.1% formic acid, 0.01% TFA (buffer C) and 500 mM ammonium acetate/10% methanol/0.1% formic acid, 0.01% TFA (buffer D). Step 1 consists of a 5 min equilibration step at 100% buffer A, followed by another equilibration step for 5 min at 25% buffer B (75% buffer A), followed by a 40 min gradient from 25% buffer B to 65%

buffer B, followed by a 10 min 65% buffer B and 10 min of 100% buffer A. Chromatography steps 2 to 12 follow the same pattern: 15 min of the appropriate % of buffers C & D followed by a 2 min 100% buffer C wash, a 5 min wash with 100% A, equilibration with 25% buffer B for 5 min, followed by a gradient from 25% buffer B to 65% buffer B in 40 min, followed by a 10 min 65% buffer B and 10 min of 100% buffer A. The buffer C/D percentages used were 95/5%, 90/10%, 85/15%, 80/20%, 70/30%, 60/40%, 40/60%, 20/80%, 0/100%, 0/100%, 0/100% respectively, for the 11 salt steps. The flow rate was approximately 350 nl/min, with elution directly into a custom built nanoelectrospray ionization source of a ThermoFinnigan LCQ-Deca XP Plus ion trap mass spectrometer (ThermoFinnigan, San Jose, CA). Dependent data scanning was performed by X calibur v 1.4 software (17) with a default charge of 2, an isolation width of 1.5 amu, an activation amplitude of 35%, activation time of 30 msec, and a minimal signal of 10000 ion counts. Global dependent data settings were as follows, reject mass width of 1.5 amu, dynamic exclusion enabled, exclusion mass width of 1.5 amu, repeat count of 1, repeat duration of 1 min, and exclusion duration of 5 min. Scan event series included one full scan with mass range 380 – 2000 Da, followed by 3 dependent MS/MS scan of the most intense ion. Tandem MS spectra of peptides were analyzed with TurboSEQUEST[™] v 3.1, a program that allows the correlation of experimental tandem MS data with theoretical spectra generated from known protein sequences (18). The peak list (dta files) for the search were generated by Bioworks 3.1. Parent peptide mass error tolerance was set at 1.5 amu and fragment ion mass tolerance was set at 0.5 amu during the search. The criteria that were used for a preliminary positive peptide identification are the same as previously described, namely peptide precursor ions with a +1 charge having

a Xcorr >1.8, +2 Xcorr > 2.5 and +3 Xcorr > 3.5. A dCn score > 0.08 and a fragment ion ratio of experimental/theorical >50% were also used as filtering criteria for reliable matched peptide identification (*19, 20*). All matched peptides were confirmed by visual examination of the spectra. All spectra were searched against a *Salmonella typhimurim* database created from the latest version of the non-redundant protein database downloaded July 7, 2006 from NCBI. At the time of the search this *Salmonella typhimurim* database contained 11,970 entries. The results were also validated using XTandem, another search engine (*21*), and with Scaffold, a program that relies on various search engine results (ie: Sequest, XTandem, MASCOT) and which uses Bayesian statistics to reliably identify more spectra (*22, 23*). Please refer to Supplementary Table 2 for the specific parameters used in Scaffold to identify the proteins in this study.

Ground-based RWV cultures and acid stress and macrophage survival assays

S. typhimurium cultures were grown in rotating wall vessels in the LSMMG and 1xg orientations and assayed for resistance to pH=3.5 and survival inside J774 macrophages as described previously (5), except that the RWV cultures were grown for 24 hours at 37 degrees C. For acid stress assays, the percentage of surviving bacteria present after 45-60 minutes acid stress (compared to the original number of bacteria before addition of the stress) was calculated. A ratio of the percent survival values for the LSMMG and 1xg cultures was obtained (indicating the fold difference in survival between these cultures) and is presented as the acid survival ratio in Figure 2 in the text. The mean and standard deviation from three independent experimental trials is presented. For macrophage survival assays, the number of bacteria present inside J774 macrophages at 2 hours and 24 hours post-infection was determined, and the fold difference between these two

numbers was calculated. The mean and standard deviation of values from three independent experimental trials (each done in triplicate tissue culture wells) is presented. The statistical differences observed in the graphs in Figure 2 were calculated at p-values less than 0.05.

Supplemental Figure Legend

Supplemental Figure 1. Experimental setup for STS-115 Salmonella typhimurium microarray and virulence experiments. Panel A: This flowchart displays a timeline of how the STS-115 experiment was designed and organized. Fluid processing apparatuses (FPAs) were loaded as in Panel B below and delivered to Shuttle, activated during spaceflight, and recovered upon landing as outlined in the flowchart. OES: Orbital Environmental Simulator. SLSL: Space Life Sciences Lab. Panel B: Photograph of loaded FPAs in pre-flight configuration. An FPA consists of a glass barrel that contains a short bevel on one side and stoppers inside that separate individual chambers containing fluids used in the experiment. The glass barrel loaded with stoppers and fluids is housed inside a lexan sheath containing a plunger that pushes on the top stopper to facilitate mixing of fluids at the bevel. The bottom stopper in the glass barrel (and also the bottom of the lexan sheath) is designed to contain a gas-permeable membrane that allows air exchange during bacterial growth. In the STS-115 experiment, the bottom chamber contained LB media, the middle chamber contained the bacterial inoculum suspended in PBS, and the top chamber contained either RNA/protein fixative or additional LB media. Upon activation, the plunger was pushed down so that only the middle chamber fluid was mixed with the bottom chamber to allow media inoculation and bacterial growth. After the 25 hour growth period, the plunger was pushed so that the top chamber fluid was added. Panel C: Photograph of FPAs in post-flight configuration showing that all stoppers have been pushed together and the entire fluid sample is in the bottom chamber.

Supplemental References

- 1. P. A. Gulig, R. Curtiss, 3rd, Infect Immun 55, 2891 (Dec, 1987).
- 2. A. Sittka, V. Pfeiffer, K. Tedin, J. Vogel, *Mol Microbiol* 63, 193 (Jan, 2007).
- 3. J. W. Wilson, C. A. Nickerson, *BMC Evol Biol* **6**, 2 (2006).
- 4. E. S. Lennox, *Virology* **1**, 190 (Jul, 1955).
- 5. C. A. Nickerson *et al.*, *Infect Immun* **68**, 3147 (Jun, 2000).
- 6. L. J. Reed, H. Muench, *Am J Hyg* **27**, 493 (1938).
- 7. C. A. Nickerson et al., Infect Immun 69, 7106 (Nov, 2001).
- 8. J. W. Wilson *et al.*, *Proc Natl Acad Sci US A* **99**, 13807 (Oct 15, 2002).
- 9. W. W. Navarre *et al.*, *Science* **313**, 236 (Jul 14, 2006).
- 10. N. Figueroa-Bossi et al., Mol Microbiol 62, 838 (Nov, 2006).
- 11. E. Guisbert, V. A. Rhodius, N. Ahuja, E. Witkin, C. A. Gross, *J Bacteriol* **189**, 1963 (Mar, 2007).
- 12. W. R. Will, L. S. Frost, *J Bacteriol* 188, 124 (Jan, 2006).
- 13. A. Zhang *et al.*, *Mol Microbiol* **50**, 1111 (Nov, 2003).
- 14. O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, *J Biol Chem* **193**, 265 (Nov, 1951).
- 15. G. L. Peterson, Anal Biochem 100, 201 (Dec, 1979).
- 16. A. Shevchenko, M. Wilm, O. Vorm, M. Mann, Anal Chem 68, 850 (Mar 1, 1996).
- 17. N. L. Andon et al., Proteomics 2, 1156 (Sep, 2002).
- 18. J. K. Eng, A. L. McCormack, J. R. Yates, J Am Soc Mass Spectrom 5, 976 (1994).
- 19. B. Cooper, D. Eckert, N. L. Andon, J. R. Yates, P. A. Haynes, *J Am Soc Mass Spectrom* 14, 736 (Jul, 2003).
- 20. W. J. Qian et al., J Proteome Res 4, 53 (Jan-Feb, 2005).
- 21. R. Craig, R. C. Beavis, *Bioinformatics* **20**, 1466 (Jun 12, 2004).
- 22. A. Keller, A. I. Nesvizhskii, E. Kolker, R. Aebersold, *Anal Chem* 74, 5383 (Oct 15, 2002).
- 23. A. I. Nesvizhskii, A. Keller, E. Kolker, R. Aebersold, *Anal Chem* **75**, 4646 (Sep 1, 2003).

<u>Supplemental Table 1: Salmonella typhimurium genes differentially-regulated during spaceflight</u> <u>mission STS-115</u>

UP-regulated

Gene	Fold	Gene	
<u>number</u>	<u>change</u>	<u>name</u>	Known or putative function
Secreted prote	eins:		
STM1959	2.10	fliC	flagellar biosynthesis: flagellin, filament structural protein
STM2066	2.31	sopA	Secreted effector protein of Salmonella dublin
STM2883	2.57	sipD	cell invasion protein
STM2884	6.28	sipC	cell invasion protein
Membrane pro	oteins:		
STM0374	2.04	vaiV	putative inner membrane protein
STM1070	2.05	ompA	putative hydrogenase, membrane component
STM1572	3.34	nmpC	new outer membrane protein: predicted bacterial porin
STM2267	2.44	ompC	outer membrane protein 1b (ib:c), porin
STM3420	3.12	secY	preprotein translocase of IISP family, putative membrane ATPase
Other function	<u>1:</u>		
STM0152	2.18	aceE	pyruvate dehydrogenase, decarboxylase component
STM0182	2.21	panB	3-methyl-2-oxobutanoate hydroxymethyltransferase
STM0240	2.02	yaeJ	putative-tRNA hydrolase domain
STM0272	2.36	2	putative ATPase with chaperone activity; homologue of Yersinia clpB
STM0596	2.24	entE	2,3-dihydroxybenzoate-AMP ligase
STM0730	4.75	gltA	citrate synthase
STM1040	2.12	-	Gifsy-2 prophage; probable minor tail protein
STM1290	7.67	gapA	glyceraldehyde-3-phosphate dehydrogenase A
STM1749	4.76	adhE	iron-dependent alcohol dehydrogenase of AdhE
STM2106	2.07	wcaI	putative glycosyl transferase in colanic acid biosynthesis
STM2118	2.30	wza	putative polysaccharide export protein, outer membrane
STM2181	2.06	yohJ	putative effector of murein hydrolase LrgA
STM2282	2.58	glpQ	glycerophosphodiester phosphodiesterase, periplasmic
STM2314	2.58		putative chemotaxis signal transduction protein
STM2708	2.03		Fels-2 prophage: similar to tail fiber protein (gpI) in phage P2
STM2719	2.12		Fels-2 prophage: similar to gpR in phage 186
STM2843	2.03	hydN	electron transport protein (FeS senter) from formate to hydrogen
STM2846	2.26	hycH	processing of HycE (part of the FHL complex)
STM2855	3.25	hypB	hydrogenase-3 accessory protein, assembly of metallocenter
STM4311	3.58	tnpA	IS200 transposase
STM4325	6.39	dcuA	Dcu family, anaerobic dicarboxylate transport protein
STM4415	2.71	fbp	fructose-bisphosphatase
STM4466	4.07		putative carbamate kinase
SSL_2286	2.97	orf36	putative phage replicase

Putative, unknown function:

STM0289	2.08	putative cytoplasmic protein
STM0699	2.76	putative cytoplasmic protein
STM2744	2.44	putative cytoplasmic protein
STM3752	2.05	putative cytoplasmic protein
SSL_T1747	4.06	putative cytoplasmic protein

Plasmid genes:

Plasmid 1 (pSLT):

PSLT011	2.20	srgA	sdiA-regulated gene; putative thiol-disulfide isomerase or thioredoxin
PSLT015	4.44	orf5	putative outer membrane protein
PSLT039	2.21	spvB	Salmonella plasmid virulence: hydrophilic protein
PSLT043	4.21	-	putative phosphoribulokinase / uridine kinase family
PSLT044	4.43		putative integrase protein
PSLT054	2.37	samB	mutagenesis by UV and mutagens; related to umuDC operon
PSLT068	2.04		putative ParB-like nuclease domain
PSLT072	2.11		putative transglycosylase
PSLT081	4.71	traB	conjugative transfer: assembly
PSLT095	4.24	traN	conjugative transfer: aggregate stability
PSLT099	2.32	trbB	conjugative transfer
PSLT100	2.59	traH	conjugative transfer: assembly
PSLT101	2.20	traG	conjugative transfer: assembly abd aggregate stability
PSLT104	2.87	traD	conjugative transfer: DNA transport
PSLT110	2.37	traX	conjugative transfer: fimbrial acetylation

Plasmid 2:

SSL_36	2.02	colIb	colicin Ib protein
SSL_T3	2.68	trbC	conjugative transfer
SSL_T5	3.14	trbA	conjugative transfer
SSL_T12	2.34	traT	conjugative transfer
SSL_T20	2.91	traK	conjugative transfer
SSL_T24	2.10	traF	conjugative transfer
SSL_T35	3.03	pilL	lipoprotein
SSL_T45	2.32	yagA	unknown function
SSL_T52	2.17	stbA	plasmid stability
SSL_T53	5.31	orf05	unknown function
SSL_T66	2.93	ygbA	unknown function

Plasmid 3:

SSL_T69	2.39	tnpB	putative transposase
SSL_T70	14.1	strB	streptomycin resistance
SSL_T71	3.55	strA	streptomycin resistance
SSL_T72	7.43	sulII	sulphonamide resistance
SSL_5085	2.08	repA	plasmid replication

DOWN-regulated

Protein secreti	ion:		
STM1153	0.342	msyB	suppresses protein export mutants
STM2895	0.417	invB	surface presentation of antigens; secretory proteins
STM3293	0.432	secG	preprotein translocase IISP family
STM3701	0.473	secB	molecular chaperone in protein export
STM3974	0.445	tatB	component of Sec-independent protein secretion pathway
STM4147	0.392	secE	preprotein translocase IISP family, membrane subunit
Flagella:			
STM1916	0 458	cheY	chemotaxis regulator transmits signals to flagellar motor
STM1925	0 356	flhD	regulator of flagellar biosynthesis acts on class 2 operons
STM1962	0.443	fliT	flagellar biosynthesis; possible export chaperone for FliD
Fimbrial:			
STM0543	0.434	fimA	major type 1 subunit fimbrin (pilin)
Stress proteins	<u>5:</u>		
STM0831	0.273	dps	stress response DNA-binding protein
STM1652	0.200	ynaF	putative universal stress protein
Regulatory:			
STM sRNA	0.458	RFN	putative small regulatory RNA
STM sRNA	0.499	rne5	putative small regulatory RNA
STM sRNA	0.318	csrB	regulatory RNA
STM0473	0.389	hha	hemolysin expression modulating protein
STM0606	0.493	ybdO	putative transcriptional regulator, LysR family
STM0959	0.415	lrp	regulator for lrp regulon (AsnC family)
STM1444	0.391	slyA	transcriptional regulator for hemolysin (MarR family)
STM1660	0.494	fnr	transcriptional regulator
STM2640	0.402	rpoE	sigma E (sigma 24) factor of RNA polymerase
STM3466	0.438	crp	catabolite activator protein (CAP), cyclic AMP protein (CRP family)
STM4315	0.445	rtsA	AraC-type DNA-binding domain-containing protein
STM4361	0.298	hfq	host factor I for bacteriophage Q beta replication
Ribosomal:			
STM0216	0.344	rpsB	30S ribosomal subunit protein S2
STM0469	0.474	rpmE2	putative 50S ribosomal protein L31 (second copy)
STM2675	0.356	rimM	16S rRNA processing protein
STM3345	0.310	rplM	50S ribosomal subunit protein L13
STM3425	0.403	rplF	50S ribosomal subunit protein L6
STM3428	0.438	rplE	50S ribosomal subunit protein L5
STM3430	0.182	rplN	50S ribosomal subunit protein L14
STM3433	0.422	rplP	50S ribosomal subunit protein L16
STM3436	0.289	rpsS	30S ribosomal subunit protein S19
STM3438	0.457	rplW	50S ribosomal subunit protein L23
STM3439	0.393	rplD	50S ribosomal subunit protein L4, regulates S10 expression

STM3448	0.250	rpsL	30S ribosomal subunit protein S12
STM4150	0.423	rplA	50S ribosomal subunit protein L1, regulates L1 and L11
STM4391	0.401	rpsF	30S ribosomal subunit protein S6

Membrane/periplasmic proteins:

yceB	putative outer membrane lipoprotein
	putative periplasmic protein
ydhO	putative cell wall-associated hydrolase
ydgK	putative inner membrane protein
ompW	outer membrane protein W; colicin S4 receptor
ycgR	putative inner membrane protein
	putative inner membrane protein
smpA	small membrane protein A
ygaM	putative inner membrane protein
	putative inner membrane protein
yggN	putative periplasmic protein
yqjC	putative periplasmic protein
yqjD	putative inner membrane protein
yqjK	putative inner membrane protein
yhcB	putative periplasmic protein
yjfN	putative inner membrane protein
osmY	hyperosmotically inducible periplasmic protein
	yceB ydhO ydgK ompW ycgR smpA ygaM yggN ydjC ydjD ydjK yhcB yjfN osmY

Other function:

STM0186	0.406	dksA	dnaK suppressor protein
STM0368	0.386	prpB	putative carboxyphosphonoenolpyruvate mutase
STM0369	0.403	prpC	putative citrate synthase
STM0417	0.382	ribH	riboflavin synthase, beta chain
STM0536	0.483	ppiB	peptidyl-prolyl cis-trans isomerase B (rotamase B)
STM0665	0.480	gltI	ABC superfamily (bind_prot), glutamate/aspartate transporter
STM0759	0.492	ybgS	putative homeobox protein
STM0803	0.408	moaB	molybdopterin biosynthesis, protein B
STM0966	0.497	dmsC	anaerobic dimethyl sulfoxide reductase, subunit C
STM1196	0.336	acpP	acyl carrier protein
STM1291	0.474	yeaA	putative peptide methionine sulfoxide reductase
STM1569	0.458	fdnH	formate dehydrogenase-N, Fe-S beta subunit, nitrate-inducible
STM1783	0.478	pth	peptidyl-tRNA hydrolase
STM2488	0.436	nlpB	lipoprotein-34
STM2542	0.495	nifU	NifU homologs involved in Fe-S cluster formation
STM2549	0.460	asrB	anaerobic sulfide reductase
STM2646	0.294	yfiD	putative formate acetyltransferase
STM2746	0.344		putative Excinuclease ATPase subunit
STM2767	0.491		putative Superfamily I DNA and RNA helicase
STM3039	0.455	idi	isopentenyldiphosphate isomerase
STM3054	0.431	gcvH	glycine cleavage complex protein H
STM3241	0.458	tdcE	pyruvate formate-lyase 4/ 2-ketobutyrate formate-lyase
STM3443	0.404	bfr	bacterioferrin, an iron storage homoprotein
STM3702	0.453	grxC	glutaredoxin 3

STM3703	0.321	yibN	putative Rhodanese-related sulfurtransferases
STM3870	0.484	atpE	membrane-bound ATP synthase, F0 sector, subunit c
STM3915	0.492	trxA	thioredoxin 1, redox factor
STM4341	0.411	frdC	fumarate reductase, anaerobic, membrane anchor polypeptide
STM4414	0.475	ppa	inorganic pyrophosphatase

Putative ORF	<u>, unkno</u>	wn func	<u>etion:</u>
STM0474	0.435	ybaJ	putative cytoplasmic protein
STM1367	0.378	ydiH	putative cytoplasmic protein
STM1583	0.441		putative cytoplasmic protein
STM2390	0.290	yfcZ	putative cytoplasmic protein
STM2801	0.451	ygaC	putative cytoplasmic protein
STM3461	0.493		putative cytoplasmic protein
STM3654	0.341		pseudogene; in-frame stop following codon 23
STM3995	0.459	yihD	putative cytoplasmic protein
STM4002	0.172		putative cytoplasmic protein
STM4088	0.357	yiiU	putative cytoplasmic protein
STM4239	0.334		putative cytoplasmic protein
STM4240	0.411	yjbJ	putative cytoplasmic protein
STM4250	0.422	yjbQ	putative cytoplasmic protein
STM4499	0.494	yeeN	putative cytoplasmic protein

Supplemental Table 2: Salmonella typhimurium proteins identified in flight and ground total cell samples from STS-115 using MudPIT analysis (251 proteins total)

		Protein	Ground	Flight
		molecular	total cell	total cell
	Accession	weight	protein ID	protein ID
Protein name	number	(Daltons)	probability*	probability*
aspartate ammonia-luase	ail 16767575	<u>(Dartons)</u> 52269 1	100%	100%
translation elongation factor EE-Tu A	gi[10/0/3/3	122200.1	100%	100%
clangation factor C	gil 1676672E	43233.0	100%	100%
	yij10/00/35	207/7	100%	100%
putative hydrogenase memorane component precursor	gi 16764429	3/49/.2	100%	100%
GroEL protein	gi 16/6/5/9	5/26/.8	100%	100%
30S ribosomal protein S1	gi 16/64341	61154.4	100%	100%
L-asparaginase	gi 16766407	36908.5	100%	100%
phosphoenolpyruvate carboxykinase	gi 16766788	59559.8	100%	100%
enolase	gi 16766258	45468	100%	100%
glyceraldehyde 3-phosphate dehydrogenase A	gi 16764641	35568.6	100%	100%
periplasmic glycerophosphodiester phosphodiesterase	gi 16765609	40407.8	100%	100%
molecular chaperone DnaK	gi 16763402	69241.2	100%	100%
30S ribosomal protein S3	gi 16766723	25965.5	100%	100%
formate acetyltransferase 1	gi 16764333	84989.4	100%	100%
50S ribosomal subunit protein L7/L12	gi 16767406	12281	100%	100%
ribosomal protein S7	qi 16766736	17572.5	100%	100%
histone like DNA-binding protein HU-alpha (NS2) (HU-2)	ail16767424	9503.1	100%	100%
alvcerol kinase	ail16767352	56046.2	100%	100%
dibydrolipoamide debydrogenase	gi 16763544	50621.8	100%	100%
sn-alveerol-3-phosphate dehydrogenase	gi 16766813	56908 5	100%	100%
trigger factor	gi[16763828	48048 1	100%	100%
cold shock protoin	gi 16765179	72040.1	100%	100%
DNA hinding protoin LUD II	gi 16765176	15525	100%	100%
ATD syntheses hats suburit	gi 10/05095	10025	100%	100%
AIP synthase beta subunit	gi 16/6/149	50265.5	100%	100%
phosphoglycerate kinase	gi 16/663/0	41115.1	100%	100%
iron-dependent alcohol dehydrogenase AdhE	gi 16/65093	96199.8	100%	100%
50S ribosomal subunit protein L1	gi 16/6/404	24/10.5	100%	100%
30S ribosomal protein S4	gi 16766705	23467.7	100%	100%
50S ribosomal subunit protein L13	gi 16766640	16000.7	100%	100%
putative outer membrane porin precursor	gi 16764916	39662.7	99%	99%
FKBP-type peptidyl-prolyl cis-trans isomerase	gi 16766742	28928.6	100%	100%
transketolase 1 isozyme	gi 16766377	72117	100%	100%
50S ribosomal subunit protein L5	gi 16766717	20300.6	100%	100%
DNA-directed RNA polymerase beta' subunit	gi 16767408	155220	100%	100%
30S ribosomal protein S13	gi 16766707	13144.1	100%	100%
alkyl hydroperoxide reductase C22 subunit	gi 16763985	20729.7	100%	100%
30S ribosomal subunit protein S5	gi 16766712	17585	100%	100%
50S ribosomal protein L24	gi 16766718	11298.3	100%	100%
DNA protection during starvation protein	ai 16764193	18699.8	100%	100%
ribosomal protein L19	ai 16765988	13112	100%	100%
acyl carrier protein	ail16764551	8621.4	100%	100%
isocitrate dehydrogenase	ail16764593	45771	100%	93%
triosenhosnhate isomerase	ail16767347	26899	100%	100%
50S ribosomal subunit protein L3	gil16766729	22228 7	100%	100%
30S ribosomal protein S2	gi 16763606	26741.2	100%	100%
lysine decarboxylase	gi 16765870	81220 5	100%	100%
nutative universal stress protein	gi 16762001	15002.0	100%	100%
putative third allow by dranarovide reductase	gil16762792	13002.0	100%	100%
FOC ribesempl protein LO	gi 16763782	15765.0	100%	100%
505 ribosonial protein L9	gi 16/6/640	13703.8	100%	100%
50S ribosomai subunit protein L10	gi 16/6/405	1//82.8	100%	100%
30S ribosomal subunit protein S16	gi 16/65991	9216.7	100%	100%
50S ribosomal protein L20	gi 16764687	13479.6	100%	100%
pyruvate kinase	gi 16764728	50639.5	100%	98%
6-phosphogluconate dehydrogenase	gi 16765411	51379.2	100%	93%
inorganic pyrophosphatase	gi 16767660	19658.8	100%	100%
50S ribosomal protein L4	gi 16766728	22068.6	100%	100%
50S ribosomal protein L11	gi 16767403	14857.5	100%	100%
50S ribosomal subunit protein L17	gi 16766703	14377.2	100%	100%

succinyl-CoA synthetase beta chain	gi 16764108	41462.8	100%	100%
50S ribosomal subunit protein L6	gi 16766714	18841.3	100%	100%
fructose 1,6-bisphosphate aldolase	gi 16766369	39138.4	100%	100%
aconitate hydratase 2	gi 16763548	93513.7	100%	100%
iron superoxide dismutase	gi 16764779	21290.4	100%	100%
50S ribosomal protein L22	gi 16766724	12208.6	100%	100%
sn-glycerol-3-phosphate dehydrogenase large subunit	gi 16765611	59039.6	100%	100%
RNA polymerase, alpha subunit	gi 16766704	36494.1	100%	100%
30S ribosomal protein S10	gi 16766730	11748.8	100%	100%
RNA polymerase, beta subunit	gi 16767407	150586.6	100%	99%
polynucleotide phosphorylase	gi 16766580	77020.9	100%	100%
Lpp1 murein lipoprotein	gi 16764727	8373.6	100%	93%
malate dehydrogenase	gi 16766654	32457.8	100%	100%
citrate synthase	gi 16764100	48089.9	100%	100%
GroES protein	gi 16767578	10300.1	100%	100%
putative glutamic dehyrogenase-like protein	gi 16765136	48020.6	100%	100%
succinyl-CoA synthetase alpha subunit	gi 16764109	29757.8	99%	100%
transaldolase B	gi 16763397	35154.5	100%	100%
glycine dehydrogenase	gi 16/66354	1042/0.1	93%	100%
transcription elongation factor NusA	gi 16/66585	55408.3	100%	100%
flagellar biosynthesis filament structural protein	gi 16/66083	52518.5	100%	100%
elongation factor Is	gi 16/6360/	30339.6	100%	100%
N-acetyIneuraminate lyase	gi 16766634	32437.7	100%	100%
50S ribosomal subunit protein L32	gi 16764546	6428.4	100%	100%
AIP synthase alpha subunit	gi 16/6/151	55096	100%	97%
50S ribosomal subunit protein L14	gi 16/66/19	13550.2	99%	100%
phosphate acetyltransferase	gi 16/65/92	82305.8	100%	100%
50S ribosomal subunit protein L15	gi 16/66/10	14948.9	100%	100%
ribose-phosphate pyrophosphokinase	gi 16/65121	34198.6	100%	88%
nydrogenase-2 large subunit	gi 16766447	62420.6	100%	100%
	gi 16/652/6	19262.5	100%	100%
FIDONAVIN SYNTHASE SUDUNIT DETA	gi 16763797	15990.5	100%	97%
substitue universal stress protein L29	g 16/66/21	15606.7	100%	93%
putative universal stress protein	GIL16765597	15090.7	93%	100%
peripiasifiic filtrate reductase	gi 16767902	92850.9	100%	93%
nyperosmotically-inducible peripiasific protein	gi 10/0/802	21430.3	93%	93%
205 ribosomal protoin 511	gi 16766706	12012 0	100%	100%
formate debudrogenace alpha subunit	gil16767302	112257 /	100%	100%
nucloosido dinhosphato kinaso (ndk)	gil16765946	15502.7	100%	100%
nutativo pyruvato-flavodovin ovideroductaco	gil16764005	129562 7	5504	100%
alvcoprotein/polycaccharide metabolism protein	gil16763846	10/58 0	100%	100%
	gil11514514	24414 7	0304	100%
30S ribosomal subunit protein S21	gi[1514514 gi[16766509	8/82 1	100%	100%
ornithing decarboxylase isozyme	gil16764071	82432.6	100%	00%
fumarate reductace	gi 16767591	27157 3	100%	100%
anaerohic alveerol-3-phosphate dehydrogenase subunit B	gi[16765612	45653 3	100%	100%
alucose-specific PTS system enzyme IIA component	gi[16765753	18229 5	100%	100%
DNA-directed RNA polymerase omega subunit	gi[16767026	10225.5	100%	100%
EKBP-type pentidyl-prolyl cis-trans isomerase	gi 16766744	20767.9	100%	100%
nyruvate debydrogenase E1 component	gi 16763542	99564	100%	97%
nhosnhate acetyltransferase	gi 16765665	77261 1	100%	93%
alucose-6-nhosphate isomerase	gi 16767471	61412 3	100%	93%
nutative oxidase	gi 16764715	113118 3	93%	99%
50S ribosomal subunit protein L16	gi 16766722	15176.6	100%	100%
enterobactin synthetase component F	gil16763965	141727.2	78%	99%
50S ribosomal subunit protein L2	ail 16766726	29802.1	93%	100%
acetyl-coenzyme A carboxylase subunit alpha	gil16763622	35327.3	100%	59%
pyruvate kinase	ail 16765230	51369.5	100%	93%
serine hydroxymethyltransferase	gi 16765875	45437	100%	93%
50S ribosomal subunit protein L28	gi 16767013	9032.6	93%	93%
isoaspartyl dipeptidase	qi 16767756	40306.8	100%	93%
sensory histidine kinase	gi 16765598	106264.3	100%	79%
putative inner membrane lipoprotein	gi 16765852	179631.1	87%	87%
Initiation factor IF-3	gi 16419853	16619.9	100%	100%

putative protease	gi 16764427	65586.3	99%	97%
thiosulfate reductase electron transport protein PhsB	gi 16765394	21300.7	93%	100%
dihydrolipoamide acetyltransferase	gi 16764107	43839.8	100%	100%
protein-export protein SecB	gi 16766986	17227	100%	100%
cytochrome d terminal oxidase polypeptide subunit I	gi 16764110	58299.5	100%	100%
putative detox protein in ethanolamine utilization	gi 16765785	9824.4	100%	100%
galactose transport protein	gi 16765520	35796.1	100%	99%
putative translation initiation inhibitor	gi 16767703	13557.2	100%	93%
dihydrolipoamide acetyltransferase	gi 16763543	66121.5	100%	93%
glutamine ABC transporter periplasmic-binding protein	gi 16764192	27245.6	93%	93%
putative selenocysteine synthase	gi 16767692	39874.5	47%	93%
30S ribosomal protein S20	gi 16763433	9637.9	100%	93%
NADH dehydrogenase I chain G	gi 16420864	100254.5	100%	100%
acetyl-CoA carboxylase	gi 16766675	49245.8	99%	100%
RNase E	gi 16764541	119381.7	100%	100%
fructose-1,6-bisphosphatase	gi 16767661	36781.5	100%	100%
phosphoenolpyruvate synthase	gi 16764700	87191.6	100%	100%
putative formate acetyltransferase	gi 16765966	14326.2	100%	93%
lipoprotein	gi 16765808	36919.8	100%	93%
sensory transduction histidine kinase	gi 16764736	65221.8	93%	54%
sensory kinase in two-component system with CreB	gi 16767830	51666.7	93%	59%
agmatinase	gi 16766379	33585.5	100%	100%
aminoacyl-histidine dipeptidase	gi 16763698	52419.9	93%	100%
30S ribosomal subunit protein S19	gi 16766725	10398.5	100%	93%
glucose-1-phosphate adenylyltransferase	gi 16766822	48444.5	100%	83%
acetate kinase	gi 16765664	43240.3	100%	92%
ABC superfamily peptide transport protein	gi 16765039	30654.8	48%	100%
potassium-transporting ATPase subunit B	gi 16764075	72125	99%	74%
adenylosuccinate synthetase	gi 16767612	47359.7	100%	100%
ATP synthase delta subunit	gi 16767152	19394.2	97%	100%
glycerol dehydrogenase	gi 16767374	38723.5	100%	96%
succinate dehydrogenase catalytic subunit	gi 16764105	26847.2	100%	93%
FkbP-type peptidyl-prolyl cis-trans isomerase	gi 16767643	23719.2	100%	93%
putative sigma(54) modulation protein	gi 16765980	12634.6	100%	93%
AIP synthase epsilon subunit	gi 16/6/148	15046.6	100%	93%
putative cytoplasmic protein	gi 16/65/1/	10269.4	100%	93%
needle complex major subunit PrgI	gi 16/661/9	8839.3	93%	100%
cytochrome o ubiquinol oxidase subunit I	gi 16/63823	/4265./	93%	100%
fumarate reductase, flavoprotein subunit	gi 16767592	654/3.9	93%	100%
putative lipoprotein	gi 16764058	12218.6	72%	96%
phase 1 flagellin	gi 16765297	51594.5	100%	100%
transcription termination factor kno	gi 16767192	46977.2	100%	100%
	gi 16767712	45544.5	99%	100%
serine endoprolease	gi 16766643	4/310.1	93%	100%
NADU debudrogenege Lebein E	gi 16767344	31/25.2	93%	100%
NADH denydrogenase i chain F	gi 16765051	49229.2	100%	93%
sindle strand DNA binding protoin	gi 16760000	10055 5	93%	100%
single-straine DNA-binding protein	gij 10707500	19055.5	93%	100%
Dilo ATD binding protoin	gi 3065916	49239.3	93%	100%
RinA GTPace	gi[32470237	67250 /	90%	66%
Trap binding protoin WrbA	gi 16764477	20840 7	100%	00%
	gil16764660	20049.7	03%	100%
ethanolamine utilization protein Futl	gil16765776	22678	100%	81%
nikB plasmid protein	gi[10/05//0	103002 3	70%	100%
thioredoxin	gi[20521500	11789 4	100%	100 /0
aldose 1-enimerase	gi 16764640	32541.6	100%	0
phosphopentomutase	gi[16767810	44227 1	100%	0
D-ribose-binding protein	ail1070661	28512.8	93%	0
oriT nickase/helicase	ail16445291	191664	100%	0
DNA polymerase I	gi 16767264	103114 9	93%	0
ATPase subunit	ail7594817	46171 1	100%	0
phosphoglyceromutase	ail16766989	56237 5	100%	0
putative periplasmic protein	ail16765796	38706.3	100%	0
inositol-5-monophosphate dehydrogenase	gi 16765831	51930.1	100%	0

putative ATP-dependent helicase	gi 16765162	70268.1	93%	0
hydrogenase 3 large subunit	gi 16766155	65003.1	100%	0
mannose-specific enzyme IIAB	gi 16765171	34969.2	100%	0
30s ribosomal protein S6	gi 16767637**	15154.9	100%	0
dipeptide transport protein	gi 16766917	60202.5	100%	0
D-fructose-6-phosphate amidotransferase	gi 16767145	66860.7	100%	0
tetrathionate reductase subunit A (TtrA)	gi 16764733	110976.9	97%	0
uridine phosphorylase	gi 16422527	27205.9	100%	0
anaerobic dimethyl sulfoxide reductase chain B	gi 16764326**	22761.6	100%	0
virulence-associated protein mkfB	gi 7443056	62570.6	100%	0
prolyl-tRNA synthetase	gi 16763631	63522.6	100%	0
cytosine deaminase	gi 16766629	47608	100%	0
ribosome recycling factor	gi 16763609	20538	100%	0
dihydrodipicolinate synthase	gi 16765809**	31276.4	100%	0
putative dehydrogenase	gi 16765715	77238.8	99%	0
outer membrane-bound fatty acid transporter	gi 16765718	47688.5	93%	0
putative cytoplasmic protein	gi 16763672**	79560.5	99%	0
2-dehydro-3-deoxyphosphooctonate aldolase	gi 16765113	30777.4	93%	0
periplasmic maltose-binding protein	gi 16767479	43468	100%	0
chemotactic response protein	gi 16765257**	23902.4	100%	0
putative acetyltransferase	gi 16765805	74000	100%	0
phosphoglucosamine mutase	gi 16766590	47424.2	100%	0
ATP-dependent RNA helicase	gi 16765963	50040.2	100%	0
glutamine synthetase	gi 16767272	51768.7	100%	0
outer membrane protein Tsx	gi 16763793	32761.5	100%	0
ribonuclease R (RNase R)	gi 16767614	92033.1	99%	0
DNA-binding protein HU-beta	gi 16763832	9222	99%	0
putative zinc-binding dehydrogenase	gi 16764887	37229	100%	0
transcriptional repressor for rbs operon (GalR/LacI family)	gi 16767170	36702.1	100%	0
ubiquinone/menaquinone methyltransferase UbiE	gi 16767240	28118.9	100%	0
phosphoheptose isomerase	gi 16763693	20878.5	100%	0
ClpB ATP-dependent protease	gi 16765976	95421.8	99%	0
putative pyrophosphatase	gi 16766260	30812.9	99%	0
putative GTP-binding protein	gi 16766597	43086.7	99%	0
putative 5'-nucleotidase/2',3'-cyclic phosphodiesterase	gi 16767370	56560	98%	0
hypothetical ABC transporter ATP-binding protein	gi 16763887	24467.3	98%	0
putative glycosyl transferase	gi 16765625	36500	98%	0
citrate lyase alpha chain	gi 56967225	54561.7	97%	0
arginine-binding periplasmic protein 1 precursor	gi 16764251	26979.4	0	93%
cold shock-like protein cspE	gi 16764006	7433.5	0	93%
outer membrane protein C	gi 16765595**	41222.1	0	93%
lysine decarboxylase 2	gi 16763624	80747.8	0	93%
putative integral membrane protein	gi 16764196	59589.3	0	93%
aminopeptidase B	gi 16765856	46339	0	93%
glycerate kinase II	gi 16763905	39003.1	0	99%
ecotin precursor	gi 16765590	18199.7	0	100%
3,4-dihydroxy-2-butanone 4-phosphate synthase	gi 16766495	23292.3	0	86%
2-oxoglutarate dehydrogenase	gi 16764106	104805.9	0	100%
D-ribose-binding periplasmic protein	gi 16767168	30944.8	0	99%
flagellar hook-associated protein	gi 16765298	49818.7	0	87%
cysteine desulfurase	gi 16765863	45075.7	0	83%
hydrogenase-3 accessory protein	gi 16766161**	31375.2	0	99%
putative imidazolonepropionase or amidohydrolase	gi 16767659	42408	0	100%
asparagine synthetase B	gi 16764050	62555.9	0	100%
50S ribosomal subunit protein L30	gi 16766711**	6495.8	0	100%
50S ribosomal subunit protein L23	gi 16766727**	11194.9	0	100%
membrane-bound ATP synthase, epsilon-subunit	gi 6625704	14848.1	0	100%
hydrogenase-2 small chain protein	gi 16766450	39604.2	0	100%
ATP synthase subunit C	gi 16767150	31538	0	100%
precorrin-8X methylmutase	gi 16765363	23016.8	0	99%
translation initiation factor IF-2	gi 16766584	97383.5	0	99%
ethanolamine ammonia-lyase heavy chain	gi 16765778	49432	0	99%
putative copper-transporting ATPase	gi 16763878	87893	0	99%

*Peptide samples obtained from MudPIT were analyzed using Sequest and X!Tandem software, and the data was organized using the Scaffold program. To be considered a positive identification in Scaffold, the following parameters were used: a minimum of 2 peptides from a given protein identified with peptide and protein thresholds of 80% to give an overall protein identification (ID) probability of at least 80%. Note that a protein ID probability of greater than 80% in at least one of the samples warranted inclusion in the table so as to allow identification of possible differential expression of a given protein.

**Proteins identified via MuDPIT analysis as differentially expressed that also displayed differential expression via microarray analysis.