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 Abstract – In this paper, neural network (NN) modeling 

is combined with fuzzy logic to estimate Interference Path Loss 
measurements on Airbus 319 and 320 airplanes.  Interference 
patterns inside the aircraft are classified and predicted based on 
the locations of the doors, windows, aircraft structures and the 
communication/navigation system-of-concern.  Modeled results 
are compared with measured data.  Combining fuzzy logic and 
NN modeling is shown to improve estimates of measured data 
over estimates obtained with NN alone.  A plan is proposed to 
enhance the modeling for better prediction of electromagnetic 
coupling problems inside aircraft.    

I.  INTRODUCTION 

 There has been an increased concern about 
electromagnetic interference (EMI) caused by the use of 
Portable Electronic Devices (PEDs) onboard commercial 
airplanes.   PEDs may act as transmitters, both intentional and 
unintentional, and their signals may be detected by various 
receivers on the aircraft.  Researchers at NASA Langley 
Research Center, Eagles Wings Incorporated, and United 
Airlines have collected measurement data in an effort to 
understand the EMI patterns on aircraft.  Previous 
publications include graphical and statistical models of 
Interference Path Loss (IPL) on several United B737 airplanes 
[1].  IPL is the measurement of the radiated field coupling 
between passenger cabin locations and aircraft communication 
and navigation receivers, via their antennas.  The 
measurement is required for assessing the threat of PEDs to 
aircraft radios, and is very dependant upon airplane size, the 
interfering transmitter’s position within the aircraft, and the 
location of the particular antenna for the aircraft system of 
concern.  To date, no modelling technique has been 
successfully used to predict indoor-outdoor coupling 
phenomenon for aircraft. In this paper, a modulated neural 
network and fuzzy logic model is introduced that utilizes 
measured IPL data and incorporates expert knowledge to 
effectively model coupling patterns inside A319 and A320 
airplanes. 

II. TESTING METHODOLOGY 

Before attempting to understand the analysis of IPL data, 
it is necessary to review how the data was measured.  IPL, as 
addressed herein, is particularly focused upon in-band, on-
channel type EMI to aircraft radios, via their antennas.  This 
does not include EMI to aircraft radios outside their radio 

frequency (RF) passband, and does not include radiated field 
(or conducted) coupling to wiring and equipment apertures. 

A. IPL Data 
IPL data were taken by radiating a low powered test 

signal, frequency-synchronized to the spectrum analyzer 
sweep and fed to the test transmitting antenna via a double-
shielded RF cable.  The spectrum analyzer, laptop computer 
controller, signal generators, RF amplifiers and preamplifiers 
were located inside the aircraft passenger cabin.  The 
spectrum analyzer input cable was connected to the aircraft 
radio receiver rack cable in the avionics equipment bay.   

To perform an IPL measurement, the RF power loss was 
measured between the calibrated signal source and a spectrum 
analyzer, via the entire length of test cables plus the aircraft 
cable, plus the free space loss between the reference antenna 
and the aircraft antenna.  For calibration, test cable losses 
were measured separately by connecting the two ends of the 
test cables to the input and output of the spectrum analyzer, 
and subtracting this loss, in dB, from the raw measurement.  
Individual IPL measurements were obtained by moving the 
test antenna from one window to the next, throughout the 
airplane.  Additional data and measurement details may be 
found in [2-7]. 

B. Test Systems and Locations 
IPL measurements were taken at all window locations of 

A319 and A320 airplanes.  From an electromagnetic coupling 
point-of-view, A319 and A320 airplanes are structurally 
different, with different numbers of windows and exits, as 
well as with aircraft antennas installed at different locations. 
Figure 1 shows a side view of the A319 and A320.   As 
described previously, IPL measurements were taken with 
respect to each of the systems pointed to in Figure 1.  
Measurements were performed at each window location of the 
aircraft, on both port and starboard side, resulting in 32 
measurements for the A319 and 40 measurements for the 
A320.  Table 1 includes a list of the systems tested along with 
their operating frequencies. 

TABLE 1: FREQUENCY RANGES OF SYSTEMS TESTED 
Aircraft Systems Frequency Range 
LOC:  Instrument Landing System Localizer 108-118 MHz 
GS:     Glide Slope 325-340 MHz 
DME: Distance Measuring Equipment 960-1215 MHz 
ATC: Air Traffic Control transponder 1090 MHz 
VHF: Very High Frequency communication 118-138 MHz 



 

 

 
Fig. 1 Aircraft systems tested on A-319 (top) and A-320 (bottom) 
 

IPL data were taken on both port and starboard sides of 
the aircraft.  Due to the symmetry of the aircraft, the two 
measurement sets from port and starboard were considered 
two trials for each system, instead of two independent 
measurements.  Eight systems were tested on the A319 (with 
two trials each for port and starboard, resulting in 16 datasets 
for the A319).  Seven systems (with two trials) were tested on 
the A320, resulting in 14 datasets.  Therefore, a total of 30 
datasets were available for training and testing of neural 
networks as explained in the next sections.  For each of the 30 
datasets, data was taken in both vertical and horizontal 
polarizations. 

III.  MODULATED NEURO-FUZZY MODELING (NFM) 

 Modeling techniques, such as ray tracing and fuzzy logic, 
have been proposed to study the interference patterns inside 
commercial aircraft due to PEDs [8]; however, we suggest 
that a combination of neural networks and fuzzy logic provide 
useful results with as little computational effort as possible 
[9].  Neural networks not only have the capability to learn 
various interference patterns according to the locations of 
doors, windows and aircraft antenna location, but they also 
learn interference patterns from one aircraft to the other.  This 
dynamic capability can significantly improve modeling 
accuracy for other aircraft, which may eventually eliminate 
the need to take time consuming and tedious IPL 
measurements of other aircraft. Fuzzy logic, on the other 
hand, incorporates expert knowledge into the modelling which 
may not be apparent to the neural-network module of the 
modelling.  

A. Introduction to Neural Networks  
Feed-forward neural networks have been widely used for 

various tasks, such as pattern recognition, function 
approximation, dynamical modeling, data mining, time-series 
forecasting and more.  Many solutions in different fields have 
been obtained that were otherwise impossible through other 
modeling techniques, such as Markov models and complex 
computational models.  NNs can be used in a variety of 
powerful ways:  to learn and reproduce rules or operations 
from given examples; to analyze and generalize from sample 
facts and make predictions from these; or to memorize 
characteristics and features of given data and to match or 
make associations from new data to the old data.   

The backpropagation algorithm is the most important 
algorithm for the supervised training of multi-layer feed-
forward NNs.  It derives its name from the fact that error 
signals are propagated backward through the network on a 
layer-by-layer basis.  The backpropagation algorithm is based 
on the selection of a suitable error function or cost function, 
whose values are determined by the actual and desired outputs 
of the network and which is also dependant on the network 
parameters such as the weights and the thresholds.   

The layer which intakes the input values is known as the 
input layer; similarly, the last layer is known as the output 
layer.  The layers in between the input and output layers are 
known as hidden layers and consist of several nodes.  Figure 2 
is a good illustration of a feed-forward neural network 
structure in which three layers are shown.  The dashed arrows 
going upward show the application of the backpropagation 
algorithm used to update the two weight matrices labeled at 
the two interconnections of the three layers. 

 
Fig. 2: Feed Forward Neural Network 

The main goal of backpropagation is to train weights 
such that they minimize the squared error described as 
follows: 
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where n is the number of training samples, k is the number of 
output units; the values being subtracted are yk, the target 
output with fk(x), which is the output produced by the NN 
undergoing training or testing. In back propagation, the 
weights of the network are updated starting with the hidden to 
output weights, followed by the input to hidden weights, with 
respect to the sum of square error mentioned above and 
through a series of weight update rules, called the delta rules. 

B. Introduction to Fuzzy Logic  
Fuzzy Logic provides a simple way to arrive at a definite 

conclusion based upon vague, ambiguous, imprecise, noisy or 
missing input information.  The logic extends Boolean logic to 
handle the expression of vague concepts.  To express 
imprecision in a quantitative fashion, it introduces a set of 
membership functions that map elements to real values 
between zero and one (inclusive); the values indicate the 
“degree” to which an element belongs to a set.  A membership 
value of zero indicates that the element is entirely outside the 
set, whereas a one indicates that the element lies entirely 
inside a given set.  Any value between the two extremes 
indicates a degree of partial membership to the set.   

The four-step fuzzy reasoning procedures employed by 
applications includes: Fuzzification, which establishes the fact 
base of the fuzzy system.  First, it identifies the input and 
output of the system and then identifies the appropriate if-then 
rules and uses raw data to derive a membership function.  At 
this point, one is ready to apply the fuzzy logic to the system. 
As inputs are received by the system, inference, the second 
step, evaluates all if-then rules and determines their truth 
values.  If a given input does not precisely correspond to an if-
then rule, then partial matching of the input data is used to 
interpolate an answer.  Then composition, the third step, 
combines all fuzzy conclusions obtained by inference into a 
single conclusion.  Different fuzzy rules might have different 
conclusions, so it is necessary to consider all rules.  The final 
step of defuzzification converts the fuzzy value obtained from 
composition into a “crisp” value; this process is often complex 
since the resulting fuzzy set might not translate directly into a 
crisp value.  Defuzzification is necessary, since controllers of 
physical systems require discrete signals. 

C. Modulated Fuzzy Logic with Neural Networks 
Fuzzy logic and neural networks were combined in 

modulated components to lead to the most optimal IPL 
predictions.  Below are details of each of the 5 modules: 

Module 1: As mentioned earlier, IPL patterns are heavily 
dependent on the location of the doors, windows and aircraft 
antennas.  Therefore, before initiating the modeling process, 
the distance and angle calculations were performed to locate 
the doors, windows and aircraft antenna systems relative to 
each other.  Therefore, in this module, aircraft characteristics 
(summarized in table 2) were used as inputs to calculate 

distances and angles of each aircraft window to doors and 
antenna locations.  Distance with respect to aircraft antenna 
(i.e. from measurement location to aircraft antenna) was 
calculated using parametric formula of an ellipse (drawn in 
Fig. 3). 
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Fig. 3: Visualization of cutting cylindrical fuselage 

Where D represents calculated distance from aircraft antenna 
to test window; a and b are major and minor axis 
(respectively) of the ellipse; x is the distance from test window 
to window closest to aircraft antenna; α is the angle calculated 
between antenna (mounted on fuselage) and test window, 
while β is the angle calculated between antenna (mounted on 
nose) to fuselage.    

Also, as the A319 and A320 vary in length and thus in 
number of windows, every 4th window in A319 was 
duplicated to ensure equal lengths of 40 windows in both 
A319 and A320. 

TABLE 2 
 INPUT CHARACTERISTICS FOR F-NN MODEL  

Features A319 A320 
Aircraft Length (cm) 3383 3750 

Port vs. Starboard  1 or 0 1 or 0 
Number of Windows 32 40 

Exit 1 location 767 780 
Exit 2 location 2810 3050 

Emergency Exit 1 loc. 1604 1002 
Emergency Exit 2 loc. 1604 1709 
Aircraft system loc. (x) 200  3383 200 3750 
Aircraft system loc. (y) -206.8  +206.8 -206.8 +206.8 
Aircraft system loc. (z) -15 +15 -15 +15 
Op. freq. (start, MHz) 108 1565 108 1565 
Op. freq.  (stop, MHz) 108 1585 108 1585 
System’s dominant pol. H (0) or V (1) H (0) or V (1) 

 

Module 2: In the second module, all distance values 
measured in the previous module were read and fuzzy rules 
were applied to determine IPL pattern.  Three specific fuzzy 
rules were created.  The first rule estimated IPL values based 
on the measurement location with respect to location of the 
exits and emergency exits.  As the distance from exits 
increased, the value of coupling was expected to decrease.  
Figure 4 (top, bottom) shows the two variations on Rule 1 (for 
main exit and emergency exit, respectively).  It can be 
observed that we expect coupling to decrease slightly faster 



through emergency exits than main doors as we predict that 
main doors are leakier than emergency exits.  
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Fig. 4: Coupling rule based on location of doors (top: main exit, bottom: 

emergency exits) with respect to seat locations 

The second rule (Fig. 5) predicted IPL values by 
comparing distance from measurement location to the location 
of the aircraft antenna either on top or bottom of the fuselage, 
using calculated D values from previous equation.   
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Fig. 5: Coupling rule based on location of Aircraft Antenna with respect to 

seat locations 

Finally, the last rule utilized the aircraft system’s 
dominant polarization (dominant or vertical based on the last 
row in Table 2) to determine whether the IPL value will 
increase or decrease based on the angle between the measured 
seat location and the aircraft antenna (Fig. 6). Distance values 
from angles α and β were derived and used in the rules (x-
axis) based on whether the system was mounted on the nose, 
or the fuselage (non-nose) of the aircraft.  Three variations of 
Rule 3 were created: First, for systems mounted on the 
fuselage (non-nose) with dominant vertical polarization (i.e 

ATC, DME and VHF).  Second, for systems mounted on the 
fuselage (non-nose) with dominant horizontal polarization. (ie. 
LOC on tail of aircraft. This rule was not used in this 
simulation.)  Third, for systems mounted on the nose with 
dominant horizontal polarization (i.e. GS and LOC).  No rule 
was required for systems mounted in the nose with dominant 
vertical polarization because this combination does not exist 
in our datasets. The results from all rules were added together 
to pass on a single array of IPL values to the next module.  
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Fig. 6: Coupling rules based on dominant polarization and distance from angle 

of the antenna with respect to seat locations 

Module 3: The outputs from the fuzzy logic module 
needed to be defuzzified based on actual measured IPL data.  
However, instead of creating a linear defuzzification mapping 
function, we created a small neural network structure that 
predicted the maximum and minimum IPL value for a 
particular system based on the aircraft length, as well as the 
start and stop frequency for the aircraft system of concern.  
Therefore, this module read in the aircraft characteristics and 
predicted the minimum and maximum IPL values.   



Module 4: In this module, the outputs from the neural 
networks (from Module 3) were used to create a linear 
transformation function for the defuzzification of the IPL 
values generated in Module 2. 

Module 5: This module consisted of the main neural 
network simulation, in which the 20 defuzzified IPL values 
(every other IPL value from the 40 outputs) from Module 4 
were sent in as inputs of the neural network, while the output 
consisted of the IPL values for the 20 windows.  Therefore, 
we created a 20 input, 30 hidden and 20 output neural network 
structure for our simulation.  By passing the defuzzified IPL 
pattern through neural networks, we hoped to incorporate the 
non-linear relationships among the various windows into our 
system.  Finally, the 20 IPL values from the neural network 
output were interpolated to fit a 40 window aircraft.     

IV. NEURO-FUZZY MODELING RESULTS 

In order to test the above design, IPL data was used to 
train the NFM, and then testing was performed to estimate the 
accuracy of the trained NFM.  Training data inputs and 
outputs were used to set the weights of the neural networks 
properly, with the goal of minimizing the error rate.  Once the 
weights were set (using the training set’s outputs and back 
propagation algorithm), testing data input was passed through 
the NFM structure, and the computed outputs were compared 
with actual testing data’s outputs to determine the accuracy of 
the NFM prediction.  Table 3 shows the systems tested for 
each aircraft type.   

TABLE 3 
AVAILABLE DATA FROM EACH AIRCRAFT TYPE 

A319 A320 
ATC-B ATC-B 
ATC-T ATC-T  
DME-L DME-L  
GS-L GS-L 

LOC-L LOC-L 
VHF-C VHF-C 
VHF-L VHF-L 
VHF-R  

Fifteen NFM simulations were performed as per the 
availability of data in Table 3.  In each simulation, one system 
was reserved as test system, while all the other fourteen 
systems were used to train the neural networks.  For example, 
for the first simulation, A319’s ATC-B was reserved to test 
the NFM, while all other systems (A319’s ATC-T, DME-L, 
GS-L, LOC-L, VHF-C, VHF-L, VHF-R, A320’s ATC-B, 
ATC-T, DME-L, GS-L, LOC-L, VHF-C and VHF-L) were 
used to train the neural networks in the model.   

Figure 7 shows a sample NFM output in which A319’s 
VHF-L is used as testing data, while the other systems are 
used in training the neural networks in NFM.  The light 
(green) lines represent the training data (from the other 
fourteen systems in the training set), while the solid (red) 
represents the test data (unknown to the NFM).  The dashed 
line (red) represents the NFM predictions, based on the 13 
inputs of the test dataset.   

 
Fig. 7: Sample Simulation for A319’s VHF-L (vertical polarization).  

Green=training data (all systems), Solid Red=VHF-L measured data, Dashed 
Red=NFM prediction 

Table 4 shows the means and standard deviations for 
actual IPL data versus NFM simulated IPL data for all fifteen 
simulations.  In previous work [10], we performed IPL 
prediction using only neural networks, instead of modulated 
neural networks with fuzzy logic.  For comparison purposes, 
the results from the previous NN simulations are also included 
(labeled ‘NN’). For analysis purposes, we equate “improved 
performance” of one model over the other based on the 
estimates of the modeled mean that more closely matches the 
actual mean.  In the table, values accompanied by an asterisk 
(*) represent the systems in which simple NN performed 
better in prediction than the new NFM.  In previous NN-only 
simulations, ATC and DME-L predicted means and standard 
deviations compared very closely to measured data for both 
A319 and A320 airplanes.  Unfortunately, ATC and DME-L 
did not yield the best predictions when using the new NFM.  
However, as seen in the table, the new NFM model performed 
better than NN-only modeling in most of the other 
simulations. NFM prediction errors will continue to decline as 
more training data is incorporated.  Aside from the 
measurements marked with an ‘*’, all other IPL predicted 
means deviated within 7dB from actual IPL values.  Past 
comparisons of measurement data from B737 and B747 
airplanes showed variations of 3 to 6 dB between similar 
airplanes, so 3 to 7 dB variations between NFM predictions 
and measured IPL data should be considered acceptable. [6, 7] 

Previous work showed that the NN-only model 
performed very well in predicting DME-L IPL patterns for 
both A319 and A320 aircraft, even though the IPL means are 
9dB apart between the two airplane models.  This result 
showed that the NN was dynamically learning from other 
systems, instead of simply copying A320 DME-L results for 
A319 prediction and vice versa. The same dynamic learning 
applied to ATC-B for both aircraft.  However, in the current 
NFM model, the predicted DME-L, ATC-T, and ATC-B mean 
IPL values are very close in both aircraft types (A319 and 



A320).  If more aircraft information is incorporated into the 
neural networks, improved differentiation among various 
tested aircraft may improve this result. Future efforts will 
likely include a special fuzzy rule for DME/ATC systems 
(both L-Band systems with operating frequencies greater than 
800 MHz) to enhance the NFM model.  

VHF-R was only tested on the A319 (and not on the 
A320); therefore, when testing the A319’s VHF-R, the NFM 
did not have reference to another aircraft’s VHF-R patterns.  
Learning from all non-VHF-R systems, the NFM was able to 
predict the A319’s VHF-R pattern very accurately, with only a 
0.4 dB mean difference.  In the previous NN-only model, this 
difference was 5 dB.   

TABLE 4:  
IPL COMPARISON OF ACTUAL, NN AND NFM 

System Actual 
Mean 

NN 
Mean 

NFM 
Mean 

Actual 
Std. 

NN 
Std. 

NFM 
Std. 

ATC-B 70.6 67.2 67.2 4.5 6.2 5.3 

ATC-T 72.0 62.4 66.7 4.1 5.9 5.6 

DME-L 70.6 73.6 69.1 3.6 3.4 5.4 

GS-L 66.0 70.1 68.8 3.4 2.3 5.6 

LOC-L 69.6 61.5 64.4 4.6 7.9 6.5 

VHF-C 67.2 66.7 68.5 5.5 6.7 5.4 

A
32

0 

VHF-L 65.1 71.1 68.8 3.7 6.2 5.1 

ATC-B 58.1 59.5 65.7* 2.5 1.3 6.2 

ATC-T 56.3 59.9 63.5* 1.7 1.5 6.5 

DME-L 61.6 63.6 66.7* 2.9 7.2 5.4 

GS-L 60.0 70.7 66.9 2.0 1.9 5.3 

LOC-L 67.8 55.3 63.2 3.1 2.6 5.3 

VHF-C 60.4 68.9 69.9* 3.8 4.9 3.9 

VHF-L 59.1 74.4 64.9 3.3 3.6 4.9 

A
31

9 

VHF-R 65.9 60.3 65.5 4.9 2.0 6.5 

V. CONCLUSION 

Modeling of IPL inside commercial aircraft has been a 
concern for many years.  Although several modeling 
techniques have been proposed, the techniques have been too 
complex or inflexible for practical application to various 
structurally different aircraft.  Neural network modeling, 
based on artificial intelligence, is an excellent selection for 
this application, due to its ability to learn and predict various 
IPL patterns from one aircraft to another for various system 
antennas installed in different aircraft locations.  Fuzzy Logic 
is also a good selection for this application because IPL 
measurement data have been the subject of extensive 
graphical analysis in previous years, thus providing an 
increased expert knowledge in the IPL predictions that can to 
be incorporated into the model. 

The analysis presented in this paper shows that 
measurement data from two structurally different aircraft can 

be integrated together for effective learning.  With careful 
simulations, the neural networks in the NFM were trained to 
predict IPL patterns inside commercial aircraft, depending on 
the locations of exits, locations of antennas, the length and 
structure of aircraft as well as the location, operating 
frequency and polarization of the aircraft system of concern.  
Incorporation of other aircraft measurement data, (ie. B757 
and B737), should further enhance the modeling.  Most 
importantly, the measurement and NFM simulation results are 
statistically comparable.  Statistical comparisons are necessary 
for developing risk analyses for EMI caused by PEDs being 
used on board airplanes. It is expected that more data 
collection and incorporation of additional aircraft types will 
enhance the training of neural networks for better 
classification.  This work will assist in modeling EMI patterns, 
as opposed to performing tedious and expensive 
measurements, based on the location of the transmitter, the 
size of the aircraft, and the locations of the aircraft’s antennas 
and exits. 
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