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A statistically-based method for using flight data to update aerodynamic data tables used 
in flight simulators is explained and demonstrated.  A simplified wind-tunnel aerodynamic 
database for the F/A-18 aircraft is used as a starting point.  Flight data from the NASA F-18 
High Alpha Research Vehicle (HARV) is then used to update the data tables so that the 
resulting aerodynamic model characterizes the aerodynamics of the F-18 HARV.  Prediction 
cases are used to show the effectiveness of the automated method, which requires no ad hoc 
adjustments by the analyst.   

Nomenclature 
x y za , a , a  = body-axis translational accelerometer measurements, ft/sec2 

b = wing span, ft 
c  = mean aerodynamic chord, ft 
Cov = covariance matrix 
E{  } = expectation operator 

x y z xzI , I , I , I  = mass moments of inertia, slug-ft2 
J = cost function 
m = aircraft mass, slug 
M = Mach number 
p, q, r  = body-axis roll, pitch, and yaw rates, rad/sec 
q  = dynamic pressure, lbf/ft2 
s = standard error 
S = wing reference area, ft2 
T = thrust, lbf 
V = airspeed, ft/sec 
α  = angle of attack, deg 
β  = sideslip angle, deg 

s n f, ,δ δ δ  = stabilator, leading-edge flap, and trailing-edge flap deflections, deg 
θ  = parameter vector 

superscripts 
T = transpose 
 ̂  = estimate 
 �  = time derivative 
–1 = matrix inverse 

subscripts 
o = reference value 
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I. Introduction 
IRCRAFT research, development, and testing programs require high-fidelity simulations and aerodynamic 
models.  As an aircraft is readied for flight testing, considerable effort is spent in developing aerodynamic 

models based on tabular data obtained from wind-tunnel tests.  Updating these wind-tunnel-derived aerodynamic 
models using flight data is important because wind-tunnel data is not fully representative of the full-scale aircraft, 
due to effects such as Reynolds number differences, wind-tunnel model geometry differences, wind-tunnel sting 
effects, flow angularity and blockage in the wind tunnel, inability to test in the wind-tunnel at certain flight 
conditions and vehicle configurations, and wind-tunnel wall effects, among others.   

A 

The current state-of-the-art for updating a simulation aerodynamic database from flight data involves 
time-intensive and ad hoc adjustments to individual values in the aerodynamic data tables to improve the match 
between flight data and corresponding quantities computed from the simulation.  Another approach is to use system 
identification methods to identify increments that can be added to the original wind-tunnel database to improve the 
match between flight data and the simulation.  The problems with these approaches are: 1) a large amount of time 
and judgment is required from a human analyst, and 2) the updates may work well for the individual maneuver(s) on 
which the update was based, but the updated simulation may predict poorly for other maneuvers.  Because of the 
cost and technical challenges associated with updating simulation databases, such updating is frequently not done.   

In this paper, a statistically-based method is developed for automatically identifying updates to aerodynamic data 
tables, based on flight data.  The approach involves localized multivariate polynomial modeling of the aerodynamic 
data tables, and the use of these local models as a priori information for the flight data analysis.  In effect, the 
information in the aerodynamic data tables, which is diffused over many data table values, is converted to a 
parametric model in the local subspace corresponding to the flight maneuver.  Because of the large number of 
variables that influence the aerodynamics, these local models are hyper-surfaces.  The local hyper-surface model 
provides a valid basis for the model structure and parameter values, which are used as a priori information for the 
flight data analysis.  If the flight data have information content relative to any of the local hyper-surface model 
parameters, those model parameters are modified to best fit the information in both the a priori hyper-surface model 
and the flight data, using statistical weighting.  If there is no information in the flight data relative to a given model 
parameter, then that hyper-surface model parameter remains unchanged and equal to its a priori value.  The result is 
a modified local hyper-surface model that gives the best characterization of the local multivariate functional 
dependencies, based on all the available data.  All of this is done in an automated fashion, using statistical measures 
of parameter accuracy, so there is no need for the analyst to make ad hoc adjustments to the data tables or the 
procedure.   

Following the update, the modified surface model is smoothed at the edges of the local subspace where it is 
valid, to avoid discontinuities with adjacent parts of the aerodynamic database that have not been updated using 
flight data.  This is done using a multivariate Gaussian blending function to retain continuity of magnitudes and 
derivatives at the edges.  Finally, the aerodynamic database can be re-populated using the updated aerodynamic 
model, or the updates can be recorded as increments.   

The paper is organized as follows.  First, background and theory are introduced, and the algorithms for the flight 
updates and edge smoothing are developed.  Then a realistic example is given, where a simplified wind-tunnel 
aerodynamic database for the F/A-18 aircraft is modified using flight data from the F-18 High Alpha Research 
Vehicle (HARV), so that the resulting aerodynamic model characterizes the F-18 HARV.  Prediction maneuvers are 
used to validate that the updated aerodynamic model accurately characterizes the F-18 HARV aerodynamics.   

II. Method 
A. Response Surface Modeling 

The procedure begins with a local hyper-surface model, also called a response surface model, based on the 
aerodynamic data tables in the simulation.  The aerodynamic database is interrogated to obtain values of the 
non-dimensional force and moment coefficients for various settings of the variables that influence the aerodynamics.  
The non-dimensional force and moment coefficients represent response variables, and the variables that influence 
the response variables (usually non-dimensional aircraft states and control surface deflections) are called 
explanatory variables.  The intent is to collect sufficient data for local hyper-surface modeling.  The ranges of 
explanatory variables used for this data collection are defined by the ranges of the those variables observed during 
the flight test maneuver(s) that will be used for the update.  An example would be to interrogate the aerodynamic 
database for values of lift coefficient as the angle of attack, Mach number, pitch rate, and stabilator deflection vary 
over the range of values observed in a flight test maneuver.  The data points collected from the aerodynamic 
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database are specified as actual data points from the wind tunnel database, rather than interpolated points.  This is 
done so that the proper statistical weighting is implemented when the local hyper-surface model is updated based on 
flight data.  If many interpolated points are included when collecting data from the wind tunnel database for local 
hyper-surface modeling, then the uncertainty of the local hyper-surface model will be artificially reduced, and the 
flight data will not be given proper statistical weighting.   

Once the data is collected by interrogating the aerodynamic database, the local response surface modeling is 
done using multivariate orthogonal functions1-3.  In this method, arbitrary functions of the explanatory variables, 
usually specified as multivariate polynomials, are generated first.  These functions are then orthogonalized using a 
Gram-Schmidt orthogonalization procedure, which will be described later.   

The form of the model to be identified is 

 1 1 2 2 n na a ... a= + + + +z p p p ε  (1) 

where z  is an N-dimensional vector of measured response variable values, , modeled in terms of 
a linear combination of n mutually orthogonal modeling functions 

[ 1 2
T

Nz ,z ,...,z=z ]
1 2j , j , ,...,n=p .  Each  is an N-dimensional 

vector which in general depends on the explanatory variables.  The  are constant model parameters 

to be determined, and ε denotes the modeling error vector.   

jp

1 2ja , j , ,...,n=

Equation (1) represents a mathematical model used to fit a response surface to measured data.  We put aside for 
the moment the important questions of determining how the modeling functions  are computed from the 
explanatory variables, as well as which modeling functions should be included in Eq. (1), which implicitly 
determines .  Now define an  matrix , 

jp

n N xn P

 [ ]1 2 n, , ...,=P p p p  (2) 

and let .  Eq. (1) can then be written as a standard least squares regression problem, [ 1 2
T

na ,a ,...,a=a ]

 = +z Pa ε  (3) 

The variable ε represents a vector of errors that are to be minimized in a least squares sense.  The goal is to 
determine a that minimizes the least squares cost function 

 ( ) ( )1
2 2

T TJ − − =z P a z Pa 1 ε ε=  (4) 

The parameter vector estimate  that minimizes this cost function is computed as1 â

  (5) 
1Tˆ

−
⎡ ⎤= ⎣ ⎦a P P PT z

The estimated parameter covariance matrix is1 

 ( ) ( )( ) ( )2T Tˆ ˆ ˆCov E σ 1−⎡ ⎤= − − =
⎣ ⎦

a a a a a P P  (6) 

where E is the expectation operator, and the fit error variance σ 2  can be estimated from the residuals 

 ˆ= −v z Pa  (7) 

using 

 
( ) ( ) ( ) ( )

1 TTˆ ˆˆ
N n N n

σ ⎡ ⎤− − =⎢ ⎥⎣ ⎦− −
v vz Pa z Pa2 =  (8) 
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Parameter standard errors are computed as the square root of the diagonal elements of the  matrix from 

Eq. (6), using 

( )ˆCov a

σ̂ 2  from Eq. (8).  The identified model output  is computed as y

 ˆ=y Pa  (9) 

In conventional response surface modeling, the modeling functions (columns of P) are often polynomials in the 
explanatory variables.  This approach corresponds to using the terms of a multivariate Taylor series expansion to 
approximate the functional dependence of the response variable on the explanatory variables.  If the modeling 
functions are instead multivariate orthogonal functions generated from the explanatory variable data, it is easier to 
determine an appropriate model structure for response surface modeling, because the explanatory capability of each 
modeling function is completely distinct from all the others.  This decouples the least squares modeling problem, as 
will be shown now.   

For mutually orthogonal modeling functions, 

 0T
i j 1 2, i j , i, j , , ..., n= ≠ =p p  (10) 

and  is a diagonal matrix with the inner product of the orthogonal functions on the main diagonal.  Using 
Eqs. (2) and (10) in Eq. (5), the jth element of the estimated parameter vector  is given by 

TP P
â

 ( ) ( )T T
j j j jâ = p z p p  (11) 

Using Eqs. (2), (10), and (11) in Eq. (4), 

 ( ) ( )2

1

1
2

n
T T T

j j
j

Ĵ
=

j

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

∑z z p z p p  (12) 

Eq. (12) shows that when the modeling functions are orthogonal, the reduction in the estimated cost resulting 
from including the term  in the model depends only on the response variable data z and the added orthogonal 

modeling function .  This decouples the least squares modeling problem, and makes it possible to evaluate each 
orthogonal modeling function in terms of its ability to reduce the least squares model fit to the data, regardless of 
which other orthogonal modeling functions are already selected for the model.  When the modeling functions  
are instead polynomials in the explanatory variables (or any other non-orthogonal function set), the least squares 
problem is not decoupled, and iterative analysis is required to find the subset of modeling functions for an adequate 
model structure.   

j ja p

jp

jp

The orthogonal modeling functions to be included in the model are chosen to minimize predicted squared error, 
PSE, defined by4 

 
( ) ( ) 2

T

max
ˆ ˆ nPSE

N N
σ

− −
= +

z Pa z Pa
 (13) 

or 

 22
max

Ĵ nPSE
N N

σ= +  (14) 

The constant  is the a priori upper-bound estimate of the squared error between future data and the model, 
i.e., the upper bound mean squared error for prediction cases.  The upper bound is used in the model over-fit penalty 
term to account for the fact that PSE is calculated when the model structure is not correct, i.e., during the model 
structure determination stage.  Using the upper bound is conservative in the sense that model complexity will be 

2
maxσ
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minimized as a result of using an upper bound for this constant in the penalty term.  Because of this, the value of 
PSE computed from Eq. (14) for a particular model structure tends to overestimate actual prediction errors on new 
data.  Therefore, the PSE metric conservatively estimates the squared error for prediction cases.   

A simple estimate of  that is independent of the model structure can be obtained by considering  to be 
the residual variance estimate for a constant model equal to the mean of the measured response values, 

2
maxσ 2

maxσ

 [ ]22

1

1 N

max i
i

z z
N

σ
=

= −∑  (15) 

where 

 
1

1 N

i
i

z
N =

= z∑  (16) 

The PSE in Eq. (14) depends on the mean squared fit error 2 Ĵ N , and a term proportional to the number of 
terms in the model, .  The latter term prevents over-fitting the data with too many model terms, which is 
detrimental to model prediction accuracy1,4.  Note that while the mean squared fit error 

n
2 Ĵ N  must decrease with 

the addition of each orthogonal modeling function to the model (by Eq. (12)), the over-fit penalty term 2
max n Nσ  

increases with each added model term (n increases).  
Introducing the orthogonal modeling functions into 
the model in order of most effective to least effective 
in reducing the mean squared fit error (quantified by 

( ) ( )2T T
j jp z p p j  for the jth orthogonal modeling 

function) means that the PSE metric will always have 
a single global minimum.  Figure 1 depicts this 
graphically, using actual modeling results from 
Ref. [5].  The figure shows that after the first 6 
modeling functions, the added model complexity 
associated with an additional orthogonal modeling 
function is not justified by the associated reduction in 
mean squared fit error.  This point is marked by a 
minimum PSE, which defines an adequate model 
structure with good predictive capability.  Ref. [4] 
contains further statistical arguments and analysis for the form of PSE given in Eq. (14), including justification for 
its use in modeling problems.   

 
Figure 1.  Model structure determination using 

orthogonal functions and PSE 

Using orthogonal functions to model the response variable makes it possible to evaluate the merit of including 
each modeling function individually, using the predicted squared error PSE.  The goal is to select a model structure 
with minimum PSE, and the PSE always has a single global minimum for orthogonal modeling functions.  This 
makes the model structure determination a well-defined and straightforward process that can be (and was) 
automated.   

B. Generating Orthogonal Modeling Functions 
Ref. [2] describes a procedure for using data for the explanatory variables to generate multivariate orthogonal 

modeling functions 0 1 2j , j , , , ,=p … n

1 2

, with the following important orthogonality property: 

  (17) 0T
i j i j i, j , , ..., n= ≠ =p p

It is also possible to generate multivariate orthogonal functions by first generating ordinary multivariate 
functions in the explanatory variables, then orthogonalizing these functions using a Gram-Schmidt orthogonalization 
procedure.  This approach is described in Refs. [1] and [3], which are the basis for the material presented here.   
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The process begins by choosing one of the ordinary multivariate functions as the first orthogonal function.  
Typically, a vector of ones (associated with the bias term in the model) is chosen as the first orthogonal function, 

 1 =p 1  (18) 

In general, any function of the explanatory variables can be chosen as the first orthogonal function, without any 
change in the procedure.  To generate the next orthogonal function, an ordinary multivariate polynomial function is 
made orthogonal to the preceding orthogonal function(s).  Define the jth orthogonal function  as jp

  (19) 
1

1
2 3

j

j j k j k
k

j , ,..., nγ
−

=

= − =∑p ξ p

where  is the jth ordinary multivariate function vector.  Typically, each  would be some ordinary polynomial 

function of the explanatory variables.  The 
jξ jξ

k jγ  for 1 2 1k , , ..., j= −  are scalars determined by multiplying both sides 

of Eq. (19) by , invoking the mutual orthogonality of the T
kp 1 2k , k , , ..., j=p , and solving for k jγ  

 1 2 1
T
k j

k j T
k k

k , ,..., jγ = =
p ξ

p p
−  (20) 

The same process can be implemented in sequence for each ordinary multivariate function 2 3j , j , , ,=ξ … n .  
The total number of ordinary multivariate functions used as raw material for generating the multivariate orthogonal 
functions, including the bias term, is .  It can be seen from Eqs. (18)-(20) that each orthogonal function can be 
expressed exactly in terms of a linear expansion of the original multivariate functions.  The orthogonal functions are 
generated sequentially by orthogonalizing the original multivariate functions with respect to the orthogonal 
functions already computed, so that each orthogonal function can be considered an orthogonalized version of an 
original multivariate function.   

n

The orthogonalization process described above can be used to generate orthogonal functions derived from 
multivariate polynomials of arbitrary order in the explanatory variables, subject only to limitations related to the 
information contained in the data.  For example, it is not possible to generate an orthogonal function corresponding 
to 2α  if there are only two distinct values of angle of attack in the data.  This is analogous to the requirement that at 
least three data points are needed to identify a quadratic model, which has three parameters.  The same limit also 
applies to the orthogonal function corresponding to any cross term, such as 2

sα δ  for this example.   
If the  vectors and the  vectors are arranged as columns of matrices P and , respectively, and the jp jξ X k jγ  

are elements in the  row and  column of an upper triangular matrix G with ones on the diagonal, thk thj

 

12 13 1

23 2

3

1

0 1

0 0 1

0 0 0 1

n

n

n

γ γ γ

γ γ

γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

"
"
"

"
# # # # #

 (21) 

Then 

 =X P G  (22) 

which leads to 
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 1−=P X G  (23) 

The columns of  contain the coefficients for expansion of each column of P (i.e., each multivariate 
orthogonal function) in terms of an exact linear expansion in the original multivariate functions in the columns of 

.  The manner in which the orthogonal functions are generated allows them to be decomposed without ambiguity 
into an expansion of the original multivariate functions, which have physical meaning.   

1−G

X

The method described here is simple, and works regardless of the spacing for the explanatory data; i.e., the data 
do not have to be collected with uniform spacing of the explanatory variables on a rectangular grid.   

C. Conversion to physically-meaningful multivariate models 
After the model structure is determined using multivariate orthogonal modeling functions for minimum PSE, the 

identified model output is 

 ˆ=y Pa  (24) 

where the  matrix now includes only the orthogonal functions selected in the model structure determination.  
Then, each retained orthogonal modeling function can be decomposed without error into an expansion of the 
original multivariate functions in the explanatory variables, using the columns of 

P

1−G  in Eq. (23) corresponding to 
the retained orthogonal functions.  Common terms are combined using double precision arithmetic to arrive finally 
at a model using only original multivariate functions in the explanatory variables.  Terms that contribute less than 
0.1 percent of the final model root-mean-square magnitude are dropped.  Assuming the original multivariate 
functions are polynomials in the explanatory variables, combining like terms in this final step puts the final model in 
the form of selected terms from a multivariate Taylor series expansion.   

Although there are other methods available to do the response modeling described here, this multivariate 
orthogonal function method has been found to work well for modeling aerodynamic data tables for aircraft6,7, and 
can produce a final model comprised of ordinary multivariate polynomial terms.  This model form is compatible 
with standard parameter estimation methods used for flight data analysis and modeling.   

D. Flight data analysis and modeling 
Once the response surface model has been identified, the result is a multivariate ordinary polynomial model, 

which can be considered a multivariate Taylor series for the response variable (i.e., a non-dimensional force or 
moment coefficient) in terms of the explanatory variables (e.g., angle of attack, non-dimensional pitch rate, control 
surface deflections, etc.).  The model includes only the terms necessary to model the variation embodied in the 
aerodynamic data tables over the local subspace defined by the range of explanatory variables observed in the flight 
maneuver.  Each parameter in the model has an estimated value and uncertainty bound, because the model was 
identified from data extracted from the aerodynamic data tables using a statistically-based least squares method, 
described earlier.   

Now the flight data is introduced into the modeling problem.  The identified local response surface model 
provides the a priori model structure and model parameter values for the flight data analysis.  This is an important 
point, because generally the values that the explanatory variables take during a flight maneuver do not completely or 
systematically cover the local subspace of explanatory variables.  More commonly, during a flight maneuver, the 
explanatory variables take a narrow trajectory through the local subspace of explanatory variables.  Consequently, 
the flight data are ill-suited for determining the model structure needed to properly characterize the local topology of 
the underlying functional dependence.  The aerodynamic data tables, however, can be interrogated to obtain good 
data, usually on a rectangular hyper-grid, which allows very accurate local response surface modeling.  This is 
possible because wind tunnel testing typically includes comprehensive and independent variations of the explanatory 
variables.  The flight data analysis treats the local response surface model based on the aerodynamic data tables as 
the a priori model, and proceeds with the modeling using standard least squares with a priori information.   

The least squares cost function for analyzing flight data can include information from an a priori model using a 
Bayesian formulation, as follows1 

 ( ) ( ) ( ) ( ) (1
2

1 1
22

TT
p p pJ

σ
−= − − + − −θ z Xθ z Xθ θ θ Σ θ θ )  (25) 
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where  is the parameter vector estimate for the a priori model, and  is the associated covariance matrix.  

These quantities are computed using Eqs. (5)-(8), with  replacing  in the notation.  The parameter estimation 
results in this case are obtained from1,8 

pθ pΣ

pθ â

 ( ) ( )12 1 2 1T T
p

ˆ σ σ
−−⎡ ⎤ ⎡= + +⎣ ⎦ ⎣θ X X Σ X z Σ θp p

− ⎤
⎦  (26) 

where the fit error variance σ 2  for the flight data can be estimated from  

 
( ) ( ) ( )1 Tˆ ˆˆ
N n

σ ⎡ ⎤′ ′− −⎢ ⎥− ⎣ ⎦
z Xθ z Xθ2 =  (27) 

and  is computed based on the flight data alone, ˆ ′θ

 ( ) ( )1Tˆ −
′ =θ X X X zT  (28) 

The estimated parameter covariance matrix is1,8 

 ( ) ( ) 12 1T
p

ˆ ˆCov σ
−−⎡ ⎤= +⎣ ⎦θ X X Σ  (29) 

The expression for the flight-updated parameter estimate in Eq. (26) shows how the information content from the 
a priori model, quantified by the inverse covariance matrix 1

p
−Σ , is balanced with the information content in the 

flight data, represented by ( ) 2T σX X .  For example, if the a priori estimate of a particular parameter is highly 

accurate (small value of the corresponding diagonal element of ), then there will have to be significant 
information related to that parameter in the flight data to move the estimate of that parameter from the a priori 
value.  Similarly, any significant information in the quantity 

pΣ

( ) 2T σX X  related to a particular parameter will 

overwhelm a priori information for that parameter, moving the parameter estimate toward the value that would have 
been computed based on the flight data alone.  In a limiting case where, for example, there is no movement at all in 
a particular explanatory variable in the flight data, such as a trailing-edge flap, then the algorithm will retain the 
parameter estimate for the trailing-edge flap effectiveness that was identified for the a priori model based on the 
aerodynamic data tables.  To ensure that the model updates are done properly, the reference values of the 
explanatory variables for the data collected from the aerodynamic database should be chosen the same as for the 
flight data.  Typically, these reference values are obtained from flight data initial conditions or mean values.   

Using this method, the balance between information derived from the a priori model based on the aerodynamic 
data tables and the information embodied in the flight data is done automatically for multiple parameters at once, 
based on statistical principles.   

E. Blending the flight updates 
After the local response surface model has been modified using flight data, the resulting hyper-surface may 

introduce discontinuities in magnitude and/or slope at the subspace boundaries.  This is the result of the flight update 
being done on a subspace of the explanatory variables associated with a specific flight maneuver or set of flight 
maneuvers.  To blend the updated response surface model with the surrounding aerodynamic database, a Gaussian 
blending function is introduced at the subspace boundaries.  The purpose of this blending is to maintain continuity in 
magnitudes and slopes at the subspace boundaries.  The Gaussian blending function is defined by 
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 ( ) ( ){ }2
         for upper bound blendingu xb x exp x x σ+

⎡ ⎤= − −⎣ ⎦  (30a) 

 ( ) ( ){ }2
         for lower bound blendingl xb x exp x x σ−

⎡ ⎤= − −⎣ ⎦  (30b) 

where ux  and lx  are the upper and lower limit values for explanatory variable x , and 

 ( ) ( )
0

uu
u

u

x xx x
x x

x x+

>⎧ −
− ≡ ⎨ ≤⎩

 (31a) 

 ( ) ( )
0

ll
l

l

x xx x
x x

x x−

<⎧ −
− ≡ ⎨ ≥⎩

 (31b) 

The Gaussian blending functions shown above multiply the updated response surface to fade it out, and the 
surrounding aerodynamic database to fade it in, as each explanatory variable takes values from the interior of the 
updated subspace toward the surrounding aerodynamic database.  The blending functions are applied at each 
boundary of the subspace.  The values of ux  and lx  for each explanatory variable are the subspace boundary values, 
determined from the flight maneuver(s).   

The value of xσ  was selected as 

 10x u lx xσ = −  (32) 

This choice for xσ  was found to give reasonably smooth transitions.  Larger values of xσ  initiate the blending 
farther from the subspace boundaries, and therefore result in a more gradual transition.  Smaller values of xσ  
restrict the range of influence of the blending to areas nearer the boundaries, but produce a more abrupt transition.  
Using the Gaussian blending functions ensures that there are no discontinuities in magnitude or slope at the subspace 
boundaries when using the updated response surface model.   

III. Demonstration using Flight Data 
For flight data analysis and modeling, the non-dimensional force and moment coefficients are computed by 

substituting measured and known quantities on the right sides of the following equations1 

 
( )x

X A
ma T

C C
q S

−
≡ − =  y

Y
ma

C
q S

=  z
Z N

maC C
q S

= − =  (33a) 

 D X ZC C cos C sinα α= − −  L Z XC C cos C sinα α= − +  (33b) 

 ( )
( )z yx xz

l
x x

I II I
C p pq r q

qSb I I
r

⎡ ⎤−
⎢ ⎥= − + +
⎢ ⎥⎣ ⎦
� �  (34) 

 ( ) ( 2 2y x z xz
m

y y

I I I IC q pr p r
qSc I I )⎡ ⎤−

= + + −⎢ ⎥
⎢ ⎥⎣ ⎦
�  (35) 

 ( )
( )y xxzz

n
z z

I IIIC r p qr p
qSb I I

q
⎡ ⎤−
⎢ ⎥= − − +
⎢ ⎥⎣ ⎦
� �  (36) 
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This produces N values of the non-dimensional force and moment coefficients, where N is the number of data 
points.  These values are often called measured force and moment coefficients, even though they not measured 
directly, but rather computed from other measurements and known quantities.  Explanatory variables such as angle 
of attack, Mach number, pitch rate, and control surface 
deflections, are measured directly.   

The flight test aircraft used for this demonstration 
was the NASA F-18 High Alpha Research Vehicle 
(HARV), shown in Figure 2.  Table 1 contains 
geometry and mass properties for the F-18 HARV.  
Further information about this aircraft can be found in 
Ref. [9].   

Figure 3 shows data from a longitudinal flight test 
maneuver flown on the F-18 HARV.  The maximum 
and minimum values of the explanatory variables 
shown in Figure 3 defined the boundaries of the 
subspace to be interrogated in the aerodynamic data 
tables.  The aerodynamic data tables come from wind 
tunnel data for the F/A-18 configuration, which differs 
somewhat from the F-18 HARV.  The aerodynamic 
data tables are a simplified subset of the aerodynamic 
database used for the simulation documented in Ref. [10].  The idea is to use flight data from the F-18 HARV to 
update the simplified aerodynamic database for the F/A-18 so that the updated model characterizes the 
aerodynamics of the F-18 HARV.   

Data points for the initial response surface modeling were chosen from the wind tunnel aerodynamic database to 
encompass the range of explanatory variables observed in the flight data.  The explanatory variables were angle of 
attack (6 values), Mach number (2 values), non-dimensional pitch rate (3 values), stabilator deflection (3 values), 
leading-edge flap deflection (2 values), and trailing-edge flap deflection (2 values).  The aerodynamic data tables 
were interrogated at all possible combinations of the explanatory variable values, for a total of  or 
432 data points.  All of the data collected were actual data points (not interpolated values) from the aerodynamic 
data tables.   

6 2 3 3 2 2× × × × ×

 
Figure 2.  F-18 High Alpha Research Vehicle (HARV) 

Based on the data collected from the aerodynamic database, response surface models were identified for drag 
coefficient, lift coefficient, and pitching moment coefficient using the multivariate orthogonal function method 
described earlier.  The identified model structure, parameter values, and standard errors for the pitching moment 
coefficient response surface model are given in the first two columns of Table 2.  Estimated parameter values are 
listed, with their standard errors given in parentheses below.   

Using the response surface modeling results as a priori information, the flight data were analyzed as described 
previously.  The resulting parameter estimates and standard errors are shown in the third column of Table 2.  The 
fourth column contains the model parameter estimates obtained based on the flight data alone, i.e., using the same 
model structure, but without any a priori information.   

The upper plot in Figure 4 shows the fit of the response surface model to the data collected from the 
aerodynamic database.  The saw tooth appearance of the data and model fit is the result of sequentially plotting data 
from a rectangular hyper-grid.  The lower plot shows the residual, which is the difference between the pitching 
moment coefficient from the aerodynamic data tables and the response surface model.  The model captures most of 
the functional dependence, which is indicated by the nearly random character of the residual plot.   

Figure 5a shows the result of predicting the F-18 HARV flight values of pitching moment coefficient using the 
model identified from the aerodynamic data tables for the F/A-18, exhibiting a significant mismatch.  The 
flight-updated model was applied in the same way, with the result shown in Figure 5b.  The match to the flight data 
is greatly improved, with the residuals more closely approximating a random sequence.   

Finally, the flight-updated model was tested in a prediction case, on a different maneuver that was not used in the 
modeling.  The explanatory variable ranges covered by the prediction maneuver exceeded the subspace boundaries 
for the original flight update.  This was done purposely, to test the Gaussian blending at the subspace boundaries.  
Figure 6 shows the data for explanatory variables during the prediction maneuver.  Using this data and the 
flight-updated model from before, the pitching moment coefficient was computed for the prediction maneuver.  
Figure 7 indicates that the flight-updated model predicts the pitching moment with approximately the same fidelity 
as was seen for the modeling data in Figure 5.  Figures 8 and 9 show another prediction case, with similar results.   
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IV. Discussion of Results 
The results shown in Table 2 and in Figures 5 through 9 indicate that the automated procedure described here 

was very effective for updating an aerodynamic database to incorporate information from flight data.  Similar results 
were observed for the lift and drag coefficients.  Results in Table 2 showed that the updating procedure worked as 
intended.  For example, the estimate of 

MmC  from the aerodynamic database was much more accurate than the 
value from flight data alone, so the flight-updated model kept a value close to the estimate from the aerodynamic 
database model.  The flight-updated estimate of  was closer to the estimate from flight data alone, because the 

estimate from the aerodynamic database was less accurate.  Similarly, the flight-updated estimate of  was 

adjusted relative to the estimate from the a priori model based on the aerodynamic database, because both the 
a priori model and the flight data alone produced estimates of this parameter with comparable accuracy.  Note that 
the model structure shown in Table 2 was not appropriate for the information content in the flight data; however, 
that model structure was still used for the modeling based on flight data alone, so that comparisons could be made to 
the model identified from the aerodynamic data tables and the flight-updated model.  This fact causes a few unusual 
changes in the model parameters, because of shifting dependencies among model terms that should not be present 
for the modeling based on flight data alone.  The good prediction capability demonstrated in Figures 7 and 9 support 
the idea that the flight-updated model properly characterizes the aerodynamic functional dependencies for the F-18 
HARV aircraft.   

omC

qmC

The final step in the updating procedure is to incorporate the flight-updates into the aerodynamic database.  This 
can be done by implementing increments to the original aerodynamic database.  The increments only apply when the 
explanatory variables are within the subspace used for the flight update.  Since the same model structure was 
retained throughout the analysis, the flight-update increment can be determined easily as a response surface model 
with parameter values equal to the difference between the parameter values for the a priori model identified from 
the aerodynamic database and the flight-updated model.  In Table 2, this would be a model with the terms indicated 
in the first column,  

 
2

2

2o M M qs f sm m m s m m m m m m f m
o

qcC C C C C M C M C C C C
Vδ α α δ αδα

sδ α α α δ= + + + + + + + + αδ  (37) 

with parameter values equal to the difference between the flight-updated values in column 3 and the a priori model 
values in column 2.  In this case, the nonlinearities that were identified automatically using the orthogonal function 
modeling approach would have been difficult to guess or to determine in another way.  Of course, this parametric 
flight-update increment model could be interrogated for various values of the explanatory variables on the right side 
of Eq. (37) to produce tabular data for the update, if that was desired.   

V. Conclusion 
This work describes and demonstrates a method for rapidly and automatically modifying an aerodynamic 

database (which can be approximate) based on flight data, in order to accurately characterize aerodynamic 
functional dependencies and thereby achieve good aerodynamic prediction capability.  The technique works by 
automatically combining the best information from both ground-based aerodynamic data and flight data, using 
statistical weighting determined from the data.  A local response surface model is identified first, based on data 
collected from a subspace of the aerodynamic database, and using least-squares modeling with orthogonal modeling 
functions generated from the data.  This identifies an adequate model structure with estimated model parameters and 
uncertainty bounds, and represents the a priori model for flight data analysis.  A Bayesian approach to the least 
squares modeling provides an automatic and statistically-based mechanism for determining how much the a priori 
parameter values identified from aerodynamic database should be modified according to information in the flight 
data.   

The method implements a common-sense approach of updating the aerodynamic model based on flight data 
when there is sufficient information to do so, but otherwise keeping the information embodied in the aerodynamic 
database.  The decisions on balancing the contributions from each information source are made automatically, based 
on statistical principles.  Finally, the identified flight updates are blended smoothly with the surrounding database 
using Gaussian blending functions.  The capability demonstrated in this work can have significant impact on 
simulation fidelity improvement, flight test efficiency, and ground-based testing requirements.   
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Table 1  Geometry and mass properties  
for the F-18 HARV aircraft 
length c , ft 11.52 

wing span , ft b 37.42 
wing area , ft2 S 400 

refx , ft 458.56 

refy , ft 0.00 

refz , ft 100.00 

cgx , in 459.86 

cgy , in –0.06 

cgz , in 102.78 
m , slugs 1,006.8 

xI , slugs-ft2 21,977 
, slugs-ft2 172,718 yI
, slugs-ft2 zI 187,030 
, slugs-ft2 xzI –2,111 
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Table 2  Pitching moment coefficient models 
F/A-18 

aerodynamic 
database 

Updated using 
F-18 HARV 
flight data 

F-18 HARV 
flight data 

alone 
Model 
Term 

( )
ˆ
s
θ

( )
ˆ
s
θ

( )
ˆ
s
θ   

–3.245e–02 –1.681e–02 –1.502e–02  
omC

(6.778e–04) (1.324e–04) (2.830e–04) 
–1.632e–02 –1.644e–02 –1.722e–02 

smC
δ

 
(8.747e–05) (5.440e–05) (1.377e–04) 
–2.531e–03 –5.657e–03 –5.198e–03  mC

α (1.805e–04) (9.446e–05) (3.957e–04) 
–8.358–02 –8.340e–02 1.796e–01  

MmC
(2.142e–03) (2.132e–03) (3.291e–02) 
–1.139e–02 –1.130e–02 6.182e–02  

MmC
α (5.808–04) (5.802e–04) (2.334e–02) 

–4.537e+00 –7.306e+00 –1.688e+01 
qmC  

(2.430–01) (1.694e–01) (8.913e–01) 
6.851e–04 4.720e–04 –1.140e–03  

2mC
α (3.977e–05) (3.100e–05) (1.059e–04) 

1.616e–03 9.579e–04 5.499e–03  
fmC

δ (1.323e–04) (9.332e–05) (4.562e–04) 
2.688e–04 9.244e–05 3.073e–04 

smC
αδ

 
(2.371e–05) (1.902e–05) (5.633e–05) 
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Figure 3.  F-18 HARV flight data for a longitudinal maneuver 
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Figure 4.  F/A-18 aerodynamic database response surface model fit 
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Figure 5.  Model fit to F-18 HARV flight data using: a) F/A-18 wind-tunnel aerodynamic database and 

b) flight-updated response surface model 
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Figure 6.  F-18 HARV flight data for a longitudinal prediction maneuver 
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Figure 7.  Prediction of F-18 HARV flight data using: a) F/A-18 wind-tunnel aerodynamic database and 
b) flight-updated response surface model using a flight-updated response surface model 
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Figure 8.  F-18 HARV flight data for a longitudinal prediction maneuver 
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Figure 9.  Prediction of F-18 HARV flight data using: a) F/A-18 wind-tunnel aerodynamic database and 

b) flight-updated response surface model 
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