

Jirong Yu^a, Bo C. Trieu^a, Mulugeta Petros^b, Yingxin Bai^c, Paul J. Petzar^c, Grady J. Koch^a, Upendra N. Singh^a, Michael J Kavaya^a

^aNASA Langley Research Center, MS 468, Hampton, VA 23681
 ^bScience and Technology Corporation, Hampton, VA 23666
 ^cSAIC, Hampton, VA 23666

2007 Solid State Diode Laser Technology Review

Outline

- Overview 2-micron solid state lasers
- Modeling and population inversion measurement
- Side pump oscillator
- One Joule 2-µm Laser
- Conclusion

- Tm Lasers
 - YAG, YLF, YAlO₃, YVO₄
- Ho:Tm Lasers
 - LuLF, YLF, GdLF, YAG, YVO₄

- (pump diodes 780-805nm)
- (pump diodes 780-805nm)
- Tm pumped Ho lasers
- (pump diodes 780nm)
- Tm solid state laser pumped Ho Laser
- Tm fiber laser pumped Ho Laser
- Ho Lasers

(pump diodes 1900nm)

- YAG
- Tm Fiber Lasers

Energy transfers between Ho³⁺ and Tm³⁺ ions and Pump-probe experiment

Evolution of the probe beam transmission and the corresponding population of the Ho ${}^{5}I_{7}$ manifold

Probe beam transmission and the population of the Ho $5I_7$ manifold

Ho $5I_7$ population at lasing and without lasing condition

Oscillator features

- Injection seeded
- Cavity length
- Output coupler Reflectivity
- Diode pump lasers: conductive cooled
- crystal doped material length
- undoped LuLF length
- Laser crystal cooling :
- Tube size:
- Laser rod ends

>2m Ring ~70% 36 bars 100W/bar 21mm 15 mm 15 mm H₂O 6mm OD 5mm ID AR coated for 792nm wedged 0.5° along c-axis AR coated for 2.053µm

Cavity Mode Simulation

(Ring Cavity with two curved high reflectors)

minimum spot size (y-plane) = 1166.1

Laser Output Energy

Laser beam profile

Seeding verification

Amplifier features

- Pump energy
- Diode laser
- Laser crystal
- Doped Crystal length
- Ends diffusion bonded
- Laser crystal cooling
- Flow tube size
- Rod ends
- Path configuration

7.2Joules12x6 bar arrays with 100w/bar conductive cooled 'A'Pkg Ho:Tm:LuLF 0.5% Ho 6%Tm 41mm
15 mm undoped LuLF crystals H₂O
7mm OD 6mm ID AR coated AR coated for 2.053µm flat double pass

Absorbed pump power distribution

Single and Double Pass Amplification

Amplifier Performances

Objective

- Develop a technology that enables the production of a highenergy and a high- efficiency 2 mm LIDAR transmitter capable of measuring global wind from various platforms.
- Enhance the understanding atmospheric phenomena and improve weather prediction accuracy.
- Reduce risks associated with Doppler Lidar transmitter.
- Identify lifetime sensitive components and initiate early testing.

Compact Laser Design Goal

- Pulse energy:
- Repetition rate:
- Wavelength:
- Laser material:
- Pulse length:
- Line width:
- Heterodyne frequency offset:
- Beam quality:
- Beam size:

>250mJ 10Hz 2.053 µm LuLF 0.5% Ho, 6% Tm > 100ns < 2.5 MHz 105 MHz <1.3 diffraction limit 6 mm at the amplifier output

Environment Requirements

- Platform:
- Operational Temperature
- Operating Altitude Range
- Vibration
- Coolant Temperature
- Coolant Flow
 - Laser rod
 - Diode Laser
 - Bench
- Coolant Pressure

ground-based (Airborne qualify-able) 0°C -30°C Sea level to 30,000 ft 2.0 g-rms 5 °C and 15 °C

.5 GPM 2 GPM 2 GPM 50 psi at 6 GPM

Mechanical Design Guidelines

- Laser enclosure
 - compact, sealed, and dry air purged
- Optical bench
 - populated on both sides temperature controlled
- Optical mounts

hardened- space laser inherited Optical height 1 inch

Enclosure & Optical Bench

Optical Layout Side 1

Optical Layout Side 2

June 28, 2007

- The rod is placed between two curved mirrors.
- Angles between the folding mirrors minimized.
- In the final configuration a 4m radius of curvature mirror is selected.

Seeding Verification

Oscillator Line Width

June 28, 2007

Amplifier Architecture Considerations

Option 3 selected - Minimum loss, No optical damage, and Optical distortion corrected

June 28, 2007

Amplifier rod size selection

- 4 and 5 mm diameter rods were compared
- Probe energy and size were varied

Probe E (mJ)		45			70			90	
Probe dia. (mm)	2	3	4	2	3	4	2	3	4
5mm rod E. (mJ)	89	96	82		136	134		172	180
4mm rod E. (mJ)	108	119		158	170		190	215	

Single pass gain for 4mm rod ~ 2.3 4mm rod with a 3mm probe performs better.

4.0 mm Diameter Laser Rod Absorption

Amplifier Thermal Lensing

- Amplifier thermal lensing is -1.1m in the x-axis and -1.8m in y-axis.
- To reduce this effect the c-axis of the amplifier rod is oriented orthogonal to the oscillator rod.
- Once the thermal lensing was measured, the parameter is used in an optical model and a cylindrical correction lens was chosen and implemented that circularized the beam.

Amplifier gain: double pass ~3

Conclusion

\bullet A diode-laser-side-pumped 2 μm Ho:Tm:LuLF laser oscillator and two amplifiers (MOPA) have been developed

Mas	MOPA			
Output energy	142 mJ (SP)	1.2 J(SP)		
Optical efficiency	4.3 %	6.5 %		