Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings

Dongming Zhu * † and Robert A. Miller *

* Durability and Protective Coatings Branch
 Structures and Materials Division

NASA John H. Glenn Research Center
Cleveland, OH 44135, USA

† U.S. Army Research Laboratory, Vehicle Technology Directorate, NASA Glenn Research Center

This work was supported by NASA Fundamental Aeronautics Program

ECI-Thermal and Environmental Barrier Coatings
Irsee, Germany, 15 August 2007
Acknowledgments

NASA Glenn Research Center
Leslie Greenbauer-Seng
Dennis S. Fox
James Smialek
Maria A. Kuczmarski
Rick Rogers
Mike Cuy

Collaborators

GE Aircraft Engines
Pratt and Whitney
Howmet Coatings
Honeywell Engines

University of California
Santa Barbara
SUNY Stony Brook
Mesoscribe Technologies
Penn State University
Motivation

— Thermal barrier coating (TBC) system development goals
- Emphasize high heat-flux cyclic durability
- Improve turbine airfoil thermal barrier coatings up to 3x erosion resistance

Temperature Capability

- **2500°F (1316°C)** Turbine TBCs
- **2850°F** combustor TBCs

Step increase in temperature capability

- **2000°F (1093°C)** Turbine TBCs
- **2400°F (1316°C)** Single Crystal Superalloy
- **2700°F (1482°C)** Increase in ΔT across T/EBC
- **3000°F+ (1650°C+)** (T/EBC) surface
- **3100°F SiC/SiC Turbine CMC coatings**

Gen I

- **2700°F SiC/SiC CMC**
- **2850°F:** Combustor

Increase in ΔT across T/EBC

Gen II – Current commercial

- **2000°F (1093°C)** Turbine TBCs

Gen III

- **2400°F (1316°C)** Single Crystal Superalloy

Gen IV

- **2700°F SiC/SiC CMC** and **Si₃N₄ coatings**
Outline

— High-heat-flux erosion test capability
— Low conductivity thermal barrier coating updates
— Advanced erosion resistant low conductivity coating development
— Erosion and impact damage observations
— Summary
High-Heat-Flux Tests Critical to Turbine TBC Development

- High-heat-flux laser test approach for thermal barrier coating cyclic durability
 - Temperature gradient requirements: up to 200 °C/100 microns
 - Heat flux requirements 200-300 W/cm²
 - Cooling also an issue in laboratory tests

Current capability up to 315 W/cm²
In-Situ Thermal Conductivity Measurements by a Steady-State Laser High-Heat-Flux Approach

\[k_{\text{ceramic}}(t) = \frac{q_{\text{thru}} \cdot l_{\text{ceramic}}}{\Delta T_{\text{ceramic}}(t)} \]

\[q_{\text{thru}} = q_{\text{delivered}} - q_{\text{reflected}} - q_{\text{radiated}} \]

\[\Delta T_{\text{ceramic}}(t) = T_{\text{ceramic-surface}} - T_{\text{metal-back}} - \int_0^{l_{\text{bond}}} \frac{q_{\text{thru}} \cdot dl}{k_{\text{bond}}(T)} - \int_0^{l_{\text{substrate}}} \frac{q_{\text{thru}} \cdot dl}{k_{\text{substrate}}(T)} \]

Where

8 μm pyrometer for \(T_{\text{ceramic-surface}} \)

Optional miniature thermocouple for additional heat-flux calibration

Two-color and 8 μm pyrometers for \(T_{\text{substrate-back}} \)
Laser High-Heat-Flux Erosion Test Rig

Test cycles of erosion-heat-flux test

- $T_{\text{surface}} = 1360^\circ\text{C}$
- $T_{\text{interface}} = 1125^\circ\text{C}$

Temperature, $^\circ\text{C}$

Thermal conductivity, W/m-K

Time, hours

Erosion jet direction
Mach 0.3-1.0 High Velocity Burner Erosion Test Rig

- High precision particle feeder system
- Burner exhaust nozzle
- Specimens under testing
Low Conductivity Thermal Barrier Coating Design Requirements

— Low conductivity ("1/2" of the baseline) retained under thermal gradient at 2400°F
— Improved sintering resistance and phase stability (up to 3000°F)
— Excellent durability and mechanical properties
 • Cyclic life
 • Toughness
 • Erosion/impact resistance
 • CMAS and corrosion resistance
 • Compatibility with the substrate/TGO
— Processing capability using existing infrastructure and alternative systems
— Other design considerations
 • Favorable optical properties
 • Potentially suitable for various metal and ceramic components
Low Conductivity Thermal Barrier Coating
Design Approaches

- Emphasize ZrO$_2$- or HfO$_2$-based alloy systems – defect cluster approach, for toughness considerations

- Advantages of defect cluster approach

 • **Advanced design approach**: design of the defect clustering

 • **Better thermal stability**: point defects and clustering are thermodynamically stable

 • **Improved sintering resistance**: effective defect concentration reduced and activation energies increased by clustering

 • **Easy to fabricate**: plasma-sprayed or EB-PVD processes
Thermal Conductivity of Dense Monolithic Low Conductivity Oxides

- Hot-pressed, fully dense (density ~6.0 g/cm³) low conductivity oxide specimens prepared by Pratt & Whitney
- 15% lower conductivity observed for the specimens with 3mol% higher RE cluster dopants

N1 Composition: ZrO₂-5.5mol%Y₂O₃-2.25mol%Gd₂O₃-2.25mol%Yb₂O₃
N2 Composition: ZrO₂-8.5mol%Y₂O₃-0.75mol%Gd₂O₃-0.75mol%Yb₂O₃

Baseline ZrO₂-4.5mol%Y₂O₃
Advanced Low Conductivity Coatings for Combustor Applications

7YSZ: Tsurface 2700°F/Tinterface 2030°F
30 min cyclic after 20 hr steady-state sintering test

Low k 256: Tsurface 2800°F/Tinterface 2030°F
200, 30 min cyclic after 20 hr steady-state sintering test
Coated engine components (CFM TAPS, IHPTET, JSF, Propulsion 21 engine flame tubes, combustor liners, adapters and dome plates etc) tested under simulated engine sector rig environments

- Low conductivity TBC flame tube and combustor deflector demos in Advanced Subsonic Combustion Rig (ASCR)
- Low conductivity TBC combustor liner demonstration in GE Trapped Vortec Combustor rig
- Low conductivity TBC Propulsion 21 flame tube and deflector demonstrations
Development of Advanced Defect Cluster Low Conductivity Thermal Barrier Coatings for Turbine Airfoil Applications

Multi-component oxide defect clustering approach (Zhu and Miller, US Patents No. 6,812,176, No.7,001,859, and 7,186,466; US Patent Application 11/510,574)

ZrO$_2$-Y_2O_3-Nd_2O_3(Gd_2O_3,Sm_2O_3)-Yb_2O_3(Sc_2O_3) – TT(TiO_2+Ta_2O_5) systems

- Primary stabilizer
- Oxide cluster dopants with distinctive ionic sizes
- Toughening dopants

Defect clustering associated with dopant segregation

Plasma-sprayed ZrO$_2$-$13.5\text{mol}\%$(Y, Nd,Yb)$_2$O$_3$

EB-PVD ZrO$_2$-$12\text{mol}\%$(Y, Nd,Yb)$_2$O$_3$

EELS elemental maps of EB-PVD ZrO$_2$-$14\text{mol}\%$(Y, Gd,Yb)$_2$O$_3$
Defect Clusters in a Plasma-Sprayed Y_2O_3, Nd$_2$O$_3$ and Yb$_2$O$_3$ Co-Doped ZrO$_2$-Thermal Barrier Coating

— Yb, Nd rich regions consisting of small clusters with size of 5 to 20 nm

Nd and Yb rich region clusters

Yb and Nd rich region EDS

Overall EDS
The low conductivity turbine airfoil thermal barrier coatings successfully tested under simulated engine thermal gradient cyclic conditions.

Advanced Low Conductivity Coatings Showed Excellent High Temperature Cyclic Durability

- T_{surface} = 2480°F (1360°C)
- T_{interface} = 2020°F (1104°C)

6 min heating, 2 min cooling cycles

Thermal conductivity, W/m-K vs. Time, hours

Cycle number
Furnace Cyclic Behavior of ZrO$_2$-(Y,Gd,Yb)$_2$O$_3$
Thermal Barrier Coatings

— The cubic-phase ZrO$_2$-based low conductivity TBC durability improved by a thin 8YSZ or low k t'-phase interlayer
— The t'-phase based low conductivity TBCs had excellent furnace cyclic life
Effect of temperature on coating cyclic life

- 2075°F (1135°C), 1 hr cycles
- 2125°F (1163°C), 1 hr cycles

Coating Type

ZrO$_2$-7wt%Y$_2$O$_3$ baseline
ZrO$_2$-(Y,Gd,Yb,TT)
Furnace Cyclic Behavior of ZrO$_2$-(Y,Gd,Yb)$_2$O$_3$ Codoped with TiO$_2$ and Ta$_2$O$_5$

- ZrO$_2$-Y$_2$O$_3$-Gd$_2$O$_3$-Yb$_2$O$_3$ and ZrO$_2$-Y$_2$O$_3$-Gd$_2$O$_3$-Yb$_2$O$_3$-TT coatings designed for improved cyclic and erosion resistance
- Focusing on t' and t'-nano clustering (cubic) phase systems

Furnace cyclic life of EB-PVD erosion coatings

Furnace cyclic life at 2125°F
Thermal conductivity of EB-PVD erosion TBCs

Normalized conductivity

baseline

2500ºF

ZrYGdYb t' and Cubic multilayer
YSZ + TT

ZrYGdYb t' and Cubic multilayer

2500ºF

ZrYGdYb t' and Cubic multilayer

ZrYGdYb t' and Cubic multilayer
Improved impact/erosion resistance observed for advanced low conductivity six-component coatings
Improved erosion resistance demonstrated for advanced low conductivity thermal barrier coatings

![Erosion resistance graph](image-url)
Tetragonality of Multi-Component ZrO$_2$ being Evaluated and Correlated to Coating Performance

Area detector x-ray diffractometer used for EB-PVD coatings
— Toughened structures observed for advanced multi-component coatings

ZrO₂-7wt%Y₂O₃ Advanced coating
Impact Failure of Advanced Multi-Component Low Conductivity Thermal Barrier Coatings

- Surface sintering and impact densification zones observed, with subsequent spallation under the erodent further impacts
- Toughened structures observed

SEM micrographs of advanced thermal barrier coating after impact/erosion damage

Secondary electron image Backscattered electron image
Impact Failure of Advanced Multi-Component Low Conductivity Thermal Barrier Coatings

- Multi-level delaminations under combined impact loading and thermal gradients
High Heat Flux Testing for Studying CMAS Effect

— Durability of advanced coatings with CMAS testing
Summary

- High temperature erosion testing developed
- An interlayer coating significantly improved the furnace cyclic life of four-component “cubic” phase low conductivity TBCs
- Six-component with Ta, Ti coating systems improved the coating durability – advanced phase development possible
- Improved erosion/impact resistance observed for the multi-component coating systems
- Other interactions such as CMAS considered for coating composition designs
- Coatings being optimized for cyclic life, thermal conductivity and erosion/impact and CMAS resistance