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SUMMARY

This informal report summarizes the development and the design specifications of a
recessed nomex core honeycomb panel in fulfililment of the deliverable in Task Order
13RBE, Revision 10, Subtask 17. The honeycomb panel, with 0.020-inch thick aluminum
face sheets, has 0.016-inch thick aluminum patches applied to twenty-five, 6 by 6 inch,
quarter inch thick recessed cores. A 10 dB higher transmission loss over the frequency
range 250 — 1000 Hz was predicted by a MSC/NASTRAN finite element model when
compared with the transmission loss of the base nomex core honeycomb panel. The static
displacement, due to a unit force applied at either the core or recessed core area, was of
the same order of magnitude as the static displacement of the base honeycomb panel
when exposed to the same unit force. The mass of the new honeycomb design is 5.1%
more than the base honeycomb panel. A physical model was constructed and is being
tested.
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SCOPE

The goal of this subtask was to determine optimum configurations using finite element
analysis of voided and recessed core design honeycomb laminate aircraft sidewall
structures and use the results to show that the panel has improved acoustic performance
and meets structural requirements.

TECHNICAL APPROACH

e Basic honeycomb, voided core and recessed core honeycomb finite element
models were developed using metric units specified in the International System of
Units (SI).

e Structural and acoustic performance parameters (including panel geometry,
resonances, response functions, static/dynamic loading, boundary conditions,
acoustic radiation parameters) were characterized.

e Design concepts were investigated meeting the structural/acoustic requirements
suitable for fabrication of a prototype panel.

FINITE ELEMENT MODELS

Twenty-two different finite element models were developed using the pre/post processor
MSC/PATRAN 2005 and were analyzed with different solution methods in
MSC/NASTRAN 2005. The models are listed in Table 1 and their file name notations are
explained in Table2. Sketches of the voided and recessed areas for the different panel
configurations are shown in Figures 1-6. Many of the twenty-two models were used in
additional finite element analyses with different material properties, boundary conditions,
finite element solutions and resin/adhesive applications. Modal analyses (Solution 103)
were performed to obtain the modal characteristics of the base honeycomb panel, the
honeycomb panels with voided and recessed cores and the honeycomb panel with an
aluminum plate inside the core. Frequency response functions were computed for all
twenty-two models and derived configurations for excitation by 10 sets of random
amplitude and random angle of incidence sound fields. The MSC/NASTRAN frequency
response function computations took about two hours on average to complete for one set
of random sound excitation. All bulk data files, database, journal, punch, f06, f04 and
xdb files are archived on a Government workstation and available upon request.

MATLAB COMPUTATIONS

MATLAB was used, under the Windows operating system, to compute the acoustic
pressures from the panel velocity distribution obtained by the frequency response
functions in the finite element analysis (punch files) and to propagate the resulting
pressures into the acoustic far field. The sound transmission loss was computed and
averaged for ten excitation fields. Data were converted to one-third octave bands and 5
Hz wide narrow bands to allow comparisons between experimental, analytical and finite
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element predicted results. Experimental data was obtained from NASA for transmission
loss measurement results of several aluminum and honeycomb panels in the Structural
Acoustics Loads and Transmission facility (SALT). The file names are listed in Table 1.
Analytical data were obtained using transmission loss calculations proposed by Davy,
Sharp and Beranek. Plots were generated to show the trends and differences. All mat,
workspace and figure files were archived on a Government workstation and are available
upon request.

PRELIMINARY STUDIES

Voided honeycomb core composite structural design concepts were investigated for their
transmission loss characteristics. Dispersion theories for acoustic radiation from flat and
curved panels were studied. A finite element model of a honeycomb composite panel was
developed which has voids cut into the honeycomb. Existing finite element bulk data
files, MATLAB files, and other pertinent scripts were installed on a workstation and
were analyzed. MSC/NASTRAN and MSC/PATRAN programs, documentation, and
manuals were installed on the workstation. A number of analytical methods, describing
the theoretical predictions of the effective elasticity moduli, shear moduli, and Poisson’s
ratios of honeycomb type cores, were reviewed. The mechanical properties for the
current core configuration were predicted for several aluminum and aramid fiber core
materials (Table 3). Calculations of the core mechanical properties included elasticity
modulus, shear moduli and Poisson ratios from the honeycomb core geometry and
material properties. Resulting characteristics agreed well with properties provided by the
manufacturer. In addition, new modulus values were calculated that were lacking from
the manufacturer specifications. The base, “solid”, core nomex honeycomb finite element
model was updated with the new material properties. The new model also included the
steel frame supporting the test panel. The honeycomb panel design parameters were
calculated including static flexural rigidity, material wave speeds, panel flexural wave
speed, core shearing wave speed, face sheet flexural wave speed, the critical frequencies
and the coincidence frequencies as function of angle of incidence. (Table 4). The material
properties used in the finite element analyses are listed in Table 5 for aluminum steel and
air and in Table 6 for the nomex (Nomex 1) and aluminum cores. The critical and the
fundamental resonance frequencies were calculated for a simply supported honeycomb
panel. The critical and fundamental resonance frequencies were calculated for simply
supported, 0.020-inch (AS) and 0.040-inch thick (2AS) aluminum panels. The mass-air-
mass resonances (Sharp and Davy), the critical frequency, the acoustic cavity resonance
frequency and the limiting frequency based on the panel spacing were computed for two
0.020-inch thick aluminum face sheets in a double wall configuration (Table 7). The
sound transmission loss for this arrangement was calculated as function of one-third
octave band frequency using Davy’s theory. The calculated transmission loss for the
0.020 inch thick aluminum panel (AS), the 0.040 inch thick panel (A2) and the two 0.020
inch thick panels in a double wall configuration with (DA abs) and without absorption
(DA no) is shown in Figure 7. The transmission loss was also calculated using the
approaches by Sharp (Figure 8) and Beranek for field, random and other angles of
incidence.
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MODAL ANALYSES

Modal analyses (Solution 103) were performed for the base honeycomb panel, the
honeycomb panels with voided and recessed cores and the honeycomb panel with an
aluminum plate inside the core. Modal analyses results are presented for finite element
models of the two aluminum panels (AS and 2AS), the base nomex core honeycomb
(SNC) panel and the base honeycomb panel featuring the 0.016 inch thick, 45 by 45 inch
aluminum panel (ASNC). The modal displacements are shown in Figures A1-A80 of
Appendix A. The first 20 modes of the aluminum panels are listed in Table 8. The first 18
modes of the two configurations of the base nomex core honeycomb panel are
summarized in Table 9. Table 9 indicates if the modes are predominantly panel modes
(negligible displacement of the steel frame) or frame+ modes where the combination of
panel and supporting frame are in resonance. The modal analysis showed a low modal
density (30 modes below 1000 Hz). The structural modes were well separated. The modal
analysis of the honeycomb panel with “subpanels” covering the 10 by 10 inch voids
showed a high modal density (53 modes below 120 Hz, 200 modes below 388 Hz).
Figure 9 shows examples of the subpanel modes superimposed on the global panel modes
for the voided nomex core honeycomb panel. The modes formed clusters of resonances
covering frequency regions rather than single frequencies. The first cluster of 18 (1,1)
subpanel modes, superimposed on 9 global panel modes (face sheets in-phase, then out-
of-phase), occurred between 53.3 and 56.9 Hz.

SOUND TRANSMISSION LOSS RESULTS

The analytical sound transmission loss was calculated for single and double mass
aluminum panels, and a double wall structure consisting of two single mass aluminum
panels separated by the same distance as the honeycomb face sheets. Honeycomb
experimental transmission loss data, obtained in the Structural Acoustics Loads and
Transmission facility (SALT), were received from NASA. Experimental, predicted and
calculated sound transmission loss data for the aluminum panel AS are compared in
Figure 10, while Figure 11 shows the finite element predictions and analytical calculation
results for the AS, 2AS, and AD2 configurations.

Updated values were obtained from NASA for the core and the resin/adhesive mass used
in the manufacturing of the honeycomb panels. The new mass and mass distribution were
incorporated in the finite element panel models. To strengthen the recessed core panels
models were designed having an aluminum plate covering the exposed core areas. To
save weight new models were developed having aluminum patches on the recessed
honeycomb. Plots were generated to show the trends and differences for all twenty-two
finite elements models and experimental transmission loss data. The results are presented
in Figures 12-38.
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The thickness, area, and volume parameters for the twenty-two panel configurations are
listed in Table 10 for English units and in Table 11 for metric units. The total mass of
each configuration is calculated in Table 12 and presented as the difference in percentage
from the mass of the base nomex core honeycomb panel. The models were also excited
by a static force at two different locations (nodes 769 and 433) on each panel. The nodal
locations are indicated in Figure 1. The panel displacements due to the unit static force
are listed in Table 13 for all finite element single aluminum and honeycomb panel
configurations. The aluminum panel finite element model 3AS was included as its
thickness was chosen such that its total mass was equal to the total mass of the base
nomex core honeycomb panle. A total mass comparison is included in Table 13.

Several parameters, including structural damping of the core, the face sheets and the steel
frame, and the fluid damping of the air in the voids between the face sheets, were
investigated to determine their effect on the predicted transmission loss. Lower
transmission loss was associated with lesser damping of the fluid (air). Mesh density
variation was used as a parameter for the air space of the double wall and voided
honeycomb panels to determine the effect on sound radiation. No differences were found
for the various mesh densities, even when non-matching meshes were used for the
interface between the fluid and the structure. Other parameters, including the core
elasticity modulus, the core shear moduli, panel boundary conditions, and damping
coefficients were investigated to determine their effect on the predicted transmission loss.
The three-dimensional anisotropic material properties on the MAT9 entries of the
aluminum (VAC10) and nomex core (VNC) honeycomb panels with the nine 10 by 10
inch voids, and the nomex core base panels (SNC) are tabulated in Table 14..The two
aluminum sheets in the double wall configuration were modeled to couple with the
ambient air on the outside of each panel. It was concluded that the structural-acoustic
coupling could be ignored, even at the mass-air-mass resonance frequencies, as the
results indicated no change in the sound radiation prediction. Plots were generated to
show the trends and differences of these parameters on the transmission loss data. The
results are shown in Figures 39-56.

FURTHER IMPROVEMENT OF THE SOUND TRANSMISSION LOSS

The transmission loss of the honeycomb panel with 0.016-inch thick aluminum patches
covering the recessed core is being measured by NASA in the SALT facility. A
perforated plate is being designed to replace the patch on the recessed core. Absorption
material is added to the interior air cavity to improve transmission loss at the higher
frequencies as suggested by the analytical calculations. The perforated plates will serve
as a Helmholtz cavity resonator adding low-frequency t to the design. Nomex core panels
with different numbers of voids and voids of different sizes are being modeled to
investigate the effects of these parameters on the TL.
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CONCLUSIONS

A nomex recessed core honeycomb panel was designed for high transmission loss. The
panel, with 0.020-inch thick aluminum face sheets, has 0.016-inch thick aluminum
patches applied to twenty-five, 6 by 6 inch, quarter inch thick recessed cores. A 10 dB
higher transmission loss over the frequency range 250 — 1000 Hz was predicted by a
MSC/NASTRAN finite element model when compared with the transmission loss of the
base nomex core honeycomb panel (Figure 37). The static displacement, due to a unit
force applied at either the core or recessed core area, was of the same order of magnitude
as the static displacement of the base honeycomb panel when exposed to the same unit
force. The mass of the new honeycomb design is 5.1% more than the base honeycomb
panel. A physical model was constructed and is being tested. Parameter studies did not
reveal significant advantages of changing structural or fluid damping factors.
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TABLES

Table 1. Twenty-two finite element models used in the current study

Finite element SALT transmission
analyses loss measurements

AQRNC10
ARNC10
ASNC
QRNC10
QRNC10patch
QRNC25-06
QRNC25-06patch
QRNC25-06patch_C

RNC10 TL_RNC10_exp
SNC TL_SNC_exp
VAC10 TL_VAC10_exp
VNCO06 TL_VNCO06_exp

VNCO08

VNC10 TL_VNC10_exp

VNC12

VNC14

VNC25-06

AS TL_AS exp
2AS

ADgap4 TL_AD2_gap1000

ADgap7 TL_AD2_gapl750
3AS

Table 2. File name notations

Symbol Description
A Aluminum panel at 0.25 in from one of the face sheets covering the recessed core
(if applicable); dimensions: 0.016 in by 45 in by 45 in
Q Quarter inch recessed core; 0.25 in thick
R Recessed core; 0.5 in thick
N Core material N: Nomex; A: Aluminum
Dimensions of the 9 square void or recessed areas; C10: 10 in; CO6: 6 in; C08: 8
C10 in; C12: 12 in; C14: 14 in; C25-06 indicates 25 square void or recessed areas with
dimensions of 6 in
patch Aluminum panel patches covering the recessed core
_C Clamped edge conditions
AS Aluminum panel
AD Aluminum panels in a double wall configuration
gap Airspace; gap4: 1.00 in; gap7 1.75in
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Table 3. Calculations of the core mechanical properties including elasticity modulus, shear moduli and

Poisson ratios from the honeycomb core geometry and material properties.
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Table 4. Calculations of the honeycomb panel design parameters including static flexural rigidity, material

wave speeds, panel flexural wave speed, core shearing wave speed, face sheet flexural wave speed, the

incidence.
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Table 5. Material properties used in the finite element analyses.

Aluminum

Steel Air
Elasticity modulus 7.1+10 1.95+11
Poisson ratio 0.33 .28
Density 2700 7700 1.21
Speed of sound 344

Table 6. Core material stiffness and density properties used in the finite element analyses.

Nomex 1 Nomex 2 Aluminum
Stiffness 11 55000. 13790 5000
Stiffness 22 42200. 13790 5000
Stiffness 33 7.57+07 1.379E+08 5.17E+08
Stiffness 44 9740 1378 5000
Stiffness 55 2.97+07 4.754+07 3.10E+08
Stiffness 66 2.2+07 2.487+07 1.52E+08

Density 32.0369 48.0554 49.6572

Table 7. Modal analysis predicted frequencies for base nomex core honeycomb panel and the base nomex
core honeycomb panel strengthened with a 45 inch by 45 inch by 0.016 inch aluminum panel, each
mounted in the steel frame of the transmission loss window in SALT.

Resonance Descriptor Dimension  Frequency
[m] [Hz]
Cavity length 1.1684 146.8
width 1.1684 146.8
depth 0.01905 9002.6
10" 0.254 675.2
6" 0.1524 1125.3
Limiting depth 0.01905 2865.6
Mass-air-mass Sharp 703.5
Davy 524.3
Critical AS 23490.8
2AS 11745.4
Critical/2 AS 11745.4
2AS 5872.7
Fundamental AS 1.8
2AS 3.7
frame+ SNC 84.4
frame+ ASNC 72.9
SNC 165.9
ASNC 164.5
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Table 8. Modal analysis predicted frequencies for 0.020 inch (AS) and 0.040-inch thick (2AS) aluminum
panels mounted in the steel frame of the transmission loss window in SALT.

Mode Mode Modal frequency

number number AS 2AS
m n [Hz] [Hz]
1 1 1.83 3.67
2 1 4.59 9.17
1 2 4.59 9.17
2 2 7.33 14.7
2 2 9.19 18.4
2 2 9.19 18.4
3 1
1 3
3 2 11.9 23.9
2 3 11.9 23.9
3 3 16.5 33.0
4 1 15.7 31.3
1 4 15.7 31.3
4 2 18.4 36.8
2 4 18.4 36.8
4 3 23.0 45.9
3 4 23.0 459
4 4 29.4 58.8
5 2 26.8 53.5
2 5 26.8 53.5

Table 9. Modal analysis predicted frequencies for base nomex core honeycomb panel and the base nomex
core honeycomb panel strengthened with a 45 inch by 45 inch by 0.016 inch aluminum panel, each
mounted in the steel frame of the transmission loss window in SALT.

Mode Mode Modal frequency

number number  SNC  ASNC R;?ﬁgf‘:'rgg

m n [Hz] [Hz]

1 1 84.4 72.9 frame+
2 1 136.9 130.2 frame+
1 2 137.3 131.1 frame+
2 2 151.6 153.2 frame+
1 1 165.9 164.5 panel
2 1 204.7 181.7 panel
1 2 211.2 187.0 panel
2 2 246.2 221.8 frame+
2 3 282.7 277.1 frame+
3 2 282.8 276.7 frame+
2 2 308.1 286.4 panel
3 1 337.0 285.4 panel
1 3 360.3 305.8 panel
3 3 393.9 382.1 frame+
3 2 407.4 348.7 panel
2 3 422.9 361.7 panel
4 1 477.0 397.6 panel
1 4 433.8 panel
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Table 11. Thickness, area, and volume parameters for twenty-two panel configurat
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Table 12. Calculations of the total mass for twenty-two panel configurations.
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Table 13. Displacement due to a unit [N] static force at two different node locations for several finite
element honeycomb panel configurations.

Displacement Displacement .
Panel due to unit due to unit Dllfference
Configuration force force Mass with mass
at node 769 at node 433 of SNC panel

[x 10°m] [x 10°m] [ka] [%]

AQRNC10 4 4 6.7579 23.0
ARNC10 3 2 6.9351 26.2
ASNC 3 2 7.3683 34.1
QRNC10 4 462 5.0352 -8.4
QRNC10patch 4 4 5.7790 5.1
QRNC25-06 180 175 5.0352 -8.4
QRNC25-06patch 6 4 5.7790 51
QRNC25-06patch_C 5 3 5.7790 5.1
RNC10 4 457 5.2124 -5.2
SNC 3 2 5.4962 0.0
VAC10 2 466 47753 -13.1
VNCO06 3 177 5.2280 -4.9
VNCO08 4 306 5.0195 -8.7
VNC10 4 468 47513 -13.6
VNC12 6 663 4.4236 -19.5
VNC14 5280 1550 4.0362 -26.6
VNC25-06 183 179 4.7513 -13.6
AS 14600 6670 1.8725 -65.9

2AS 1820 834 3.7449 -31.9
ADgap4 4.8684 -11.4
ADgap7 1.8725 -65.9
3AS 578 264 5.4966 0.0
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Table 14. Three-dimensional anisotropic material properties on the MAT9 entries of the aluminum

(VAC10) and nomex core (VNC) honeycomb panels with the nine 10 by 10 inch voids, and the nomex

core base panels (SNC).

Number Designation Core material properties
MAT9 3  5000. 5000.
1 VAC10_aver 5.17+8
5000. 3.1+8 1.52+8 49.6572
.05
MAT9 2  5000. 5000.
2 VAC10_G13E9_G23E9 5.17+8
5000. 3.1+9 1.52+9 49.6572
.05
MAT9 2 13790. 13790.
3 VNC10_aver 1.379+8
1378. 4.754+7 2.487+7 48.0554
.05
MAT9 2 5000. 5000.
4 VNC10_5000 1.379+8
5000. 4.754+7 2.487+7 48.0554
.05
MAT9 2 13790. 13790.
5 VNC10_E3 5.17+8
1378. 4.754+7 2.487+7 48.0554
.05
MAT9 2 13790. 13790.
6 VNC10_G13_G23 1.379+8
1378. 3.1+8 1.52+8 48.0554
.05
MAT9 2 13790. 13790.
7 VNC10_G13 1.379+8
1378. 3.1+8 2.487+7 48.0554
.05
MAT9 2 13790. 13790.
8 VNC10_G23 1.379+8
1378. 4.754+7 1.52+8 48.0554
.05
SNC_corel MAT9 2 13790. 13790.
9 and 1.379+8
SNC 1core 1378. 4.754+7 2.487+7 43.235
= .0065
MAT9 2  55000. 42200.
7.57+7
10 SNC_core 9740. 20747 2.2+7 32.0369
.00065
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Figure 1. Panel with nine 6 inch by 6 inch voids. The nodes indicate the two locations at which a static unit
force was applied. The same locations were used for all panel configurations.

Figure 2. Panel with nine 8 inch by 8 inch voids.
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Figure 3. Panel with nine 10 inch by 10 inch voids.

Figure 4. Panel with nine 12 inch by 12 inch voids.
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Figure 5. Panel with nine 14 inch by 14 inch voids.

Figure 6. Panel with twenty-five 6 inch by 6 inch voids.
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Figure 7. Calculated transmission loss for a 0.020 inch thick aluminum panel (AS), a 0.040 inch thick
panel (A2) and two 0.020 inch thick panels in a double wall configuration with (DA abs) and without
absorption (DA no) using Davy predictions.
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Figure 8. Calculated transmission loss for a 0.020 inch thick aluminum panel (AS), a 0.040 inch thick
panel (A2) and two 0.020 inch thick panels in a double wall configuration with (DA abs) and without
absorption (DA no) using Sharp and Davy predictions.
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Figure 9. Examples of subpanel modes super

honeycomb panel.

30



—4—TL_AS_exp ——AS —i— Davy AS —0— Davy AS 63

30

25

20

15 /i

TL, dB

10

0+ T T T T T T T T T T T
B3 80 100 125 160 200 250 315 400 500 530 300 1000
Frequency, Hz

Figure 10. Experimental (TL_AS_exp), predicted (AS), and calculated (Davy AS) random transmission
loss for a 0.020 inch thick aluminum panel. The calculated transmission loss curve for a sound incidence
angle of 63 degrees from the normal (Davy AS 63) is also indicated in the figure.
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Figure 11. Predicted (AS) and calculated (Davy AS) single mass (0.020-inch thick) panel sound
transmission loss, predicted (2AS) and calculated (Davy A2) double mass transmission loss and the
predicted (AD2) and calculated (Davy DA abs) transmission loss of two single mass panels in a double
wall configuration.
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Figure 12. Experimental (TL_AS_exp) and predicted (AS) transmission loss of a single 0.020 inch thick
aluminum panel.
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Figure 13. Experimental (TL_AS_exp) and predicted (AS) transmission loss of a single 0.020 inch thick
aluminum panel and the predicted (2AS) transmission loss of a 0.040 inch thick panel.
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Figure 14. Experimental (TL_SNC_exp) and predicted (SNC) transmission loss of the base honeycomb
panel.
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Figure 15. Experimental (TL_RNC10_exp) and predicted (RNC10) transmission loss of the recessed
nomex core honeycomb panel.
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Figure 16. Experimental (TL_VAC10_exp) and predicted (VAC10) transmission loss of the aluminum
core voided honeycomb panel.
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Figure 17. Experimental (TL_VNCO06_exp) and predicted (VNCO06) transmission loss of the nomex core, 6
by 6 inch, voided honeycomb panel.
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Figure 18. Experimental (TL_VNC10_exp) and predicted (VNC10) transmission loss of the nomex core
voided honeycomb panel.
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Figure 19. Experimental (TL_AD2_gap1750) and predicted (ADgap7) transmission loss of a double wall
configuration of 0.020 and 0.032 inch thick aluminum panels separated by a distance of 1.75 inches.
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Figure 20. Experimental (TL_AD2_gap1000) and predicted (ADgap4) transmission loss of a double wall
configuration of 0.020 and 0.032 inch thick aluminum panels separated by a distance of 1.0 inch.
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Figure 21. Predicted transmission loss of the aluminum core (VAC10) and nomex core (VNC10) voided
honeycomb panels.
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Figure 22. Predicted transmission loss of the base (SNC), the voided (VNC10) and the recessed (RNC10)

honeycomb panels.
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Figure 23. Predicted transmission loss of the recessed honeycomb panel with a half inch thick core
(RNC10), the recessed honeycomb panel with a quarter inch thick core (QRNC10) and the quarter inch
recessed honeycomb panel with a 0.016 inch thick aluminum patch applied to the recessed core
(QRNC10patch).
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Figure 24. Predicted transmission loss of the honeycomb panels with half inch (ARNC10) and quarter inch
(AQRNC10) thick recessed cores including a 0.016 inch thick, 45 by 45 inch aluminum panel covering the
recessed cores.
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Figure 25. Predicted transmission loss of the honeycomb panels with quarter inch thick recessed cores
without material covering the recessed core (QRNC10), with a 0.016 inch thick, 45 by 45 inch aluminum
panel covering the recessed cores (AQRNC10) and with a 0.016 inch thick aluminum patch applied to the
recessed cores (QRNC10patch).
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Figure 26. Predicted transmission loss of the half inch recessed core honeycomb panel (ARNC10) and the
quarter inch (AQRNC10) honeycomb panels, both including a 0.016 inch thick, 45 by 45 inch aluminum
panel covering the recessed cores. The panels are compared with the base honeycomb panel also featuring
the 0.016 inch thick, 45 by 45 inch aluminum panel (ASNC),
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Figure 27. Predicted transmission loss of nomex core honeycomb panels having nine 6 by 6 (VNCO06), 8 by
8 (VNCO08), 10 by 10 (VNC10), 12 by 12 (VNC12), and 14 by 14 (VNC14) inch voids.
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Figure 28. Predicted transmission loss of nomex core honeycomb panels having 8 by 8 (VNC08), 12 by 12
(VNC12), and 14 by 14 (VNC14) inch voids.
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Figure 29. Predicted transmission loss of nomex core honeycomb panels having nine 6 by 6 (VNCO06), nine
10 by 10 (VNC10), and twenty-five 6 by 6 (VNC25-06) inch voids.

50



Frame 019 | 24 Jun 2005 |

30

—_ ] ]
o o o
=TT T =TT

y
=

Transmission Loss [dB]

10
o f QRNC25-06 |
| YMNC10
0 200 400 600 800 1000
Frequency [Hz]

Figure 30. Predicted transmission loss of the honeycomb panels with nine 10 by 10 inch voids (VNC10),
nine 10 by 10, quarter-inch recessed cores (QRNC10), and twenty-five 6 by 6, quarter-inch recessed cores
(QRNC25-06).
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Figure 31. Predicted transmission loss of the quarter-inch recessed core honeycomb panels with nine 10 by
10 inch recessed cores (QRNC10), nine 10 by 10 recessed cores with 0.016 inch thick aluminum patches
(QRNC10patch), and the panel with twenty-five 6 by 6 recessed cores including the aluminum patches
(QRNC25-06patch).
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Figure 32. Predicted transmission loss of a double wall configuration of two 0.020 inch thick aluminum
panels separated by a 0.75 inch air gap (VNC14), a double wall configurations consisting of a 0.020 inch
thick and a 0.032 inch thick aluminum panel separated by 1.00 (ADgap4) and 1.75 inch (ADgap7) air

gaps.
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Figure 33. Predicted transmission loss of the honeycomb panel with twenty-five, 6 by 6 inch, quarter inch
thick recessed cores with a 0.016 inch thick aluminum patch applied to the recessed cores. A comparison
was made between the panel supported by its frame (QRNC10patch) and the panel constrained by clamped
edge conditions for both its face sheets (QRNC10patch_C).
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Figure 34. Predicted transmission loss of the honeycomb panel with twenty-five, 6 by 6 inch, quarter inch
thick recessed cores with a 0.016 inch thick aluminum patch applied to the recessed cores (QRNC25-06)
and the transmission loss of a double wall configuration consisting of 0.020 and 0.032 inch thick aluminum
panels separated by a 1.75 inch air gap (ADgap7).
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Figure 35. Experimental transmission loss of nomex core honeycomb panels with nine 6 by 6 inch
(TL_VNCO06_exp) and nine 10 by 10 inch voids (TL_VNC10_exp).
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Figure 36. Experimental transmission loss of aluminum (TL_VAC10_exp) and nomex core honeycomb
panels with nine 10 by 10 inch voids (TL_VNC10_exp).
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Figure 37. Predicted transmission loss of the honeycomb panel with twenty-five, 6 by 6 inch, quarter inch
thick recessed cores with a 0.016 inch thick aluminum patch applied to the recessed cores (QRNC25-06)
and the transmission loss of the base nomex core honeycomb panel (SNC).
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Figure 38. Predicted transmission loss of the honeycomb panel with twenty-five, 6 by 6 inch, quarter inch
thick recessed cores with a 0.016 inch thick aluminum patch applied to the recessed cores (QRNC25-06)
the transmission loss of the base nomex core honeycomb panel (SNC) and a single, 0.05871 inch thick
aluminum panel (3AS) with the same total mass as the base honeycomb panel. The mass of the QRNC25-
O6patch panel is 5.1% more than the SNC or 3AS panels.
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Figure 39. Predicted transmission loss of single 0.020 inch thick (AS), 0.040 inch thick (2AS), and 0.05871
inch thick (3AS) aluminum panels.
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Figure 40. Experimental transmission loss of aluminum (TL_VAC10_exp) and homex core honeycomb
(TL_VNC10_exp) panels with nine 10 by 10 inch voids compared with predicted transmission loss for of
aluminum (VAC10_aver) and nomex core honeycomb (VNC10_aver) panels with nine 10 by 10 inch
voids.
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Figure 41. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for aluminum
cores with MAT9 material properties listed in Table 1, showing the effect of different G13 and G23 shear
moduli. The predicted transmission loss of the honeycomb panel VAC10_G13E9 G23E9 was for one set
of random incident sound input parameters, while the transmission loss of VAC10_aver was averaged over
the predictions for ten sets of random incident sound input parameters.
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Figure 42. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with MAT9 material properties listed in Table 1, showing the effect of different core properties. The
predicted transmission loss of the honeycomb panel VNC_5000 was for one set of random incident sound
input parameters, while the transmission loss of VAC10_aver was averaged over the predictions for ten
sets of random incident sound input parameters.
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Figure 43. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with MAT9 material properties listed in Table 1, showing the effect of different E3 elasticity moduli.
The predicted transmission loss of the honeycomb panel VNC10_E3 was for one set of random incident
sound input parameters, while the transmission loss of VNC10_aver was averaged over the predictions for
ten sets of random incident sound input parameters.
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Figure 44. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with MAT9 material properties listed in Table 1, showing the effect of different G13 and G23 shear
moduli. The predicted transmission loss of the honeycomb panel VNC10_G13 G23 was for one set of
random incident sound input parameters, while the transmission loss of VNC10_aver was averaged over
the predictions for ten sets of random incident sound input parameters.
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Figure 45. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with MAT9 material properties listed in Table 1, showing the effect of different G13 shear moduli.
The predicted transmission loss of the honeycomb panel VNC10_G13 was for one set of random incident
sound input parameters, while the transmission loss of VNC10_aver was averaged over the predictions for
ten sets of random incident sound input parameters.
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Figure 46. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with MAT9 material properties listed in Table 1, showing the effect of different G23 shear moduli.
The predicted transmission loss of the honeycomb panel VNC10_G23 was for one set of random incident
sound input parameters, while the transmission loss of VNC10_aver was averaged over the predictions for
ten sets of random incident sound input parameters.
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Figure 47. Transmission loss of nomex core honeycomb panels for core damping coefficients of 0.065,
0.075, 0.090, 0.105 and 0.115. The core material properties are listed in Table 1. Each transmission loss
curve was predicted for one set of random sound incident input parameters.
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Figure 48. Transmission loss of a double wall configuration with 0.020 inch and 0.032 inch thick
aluminum panels separated by an air gap of 1.75 inches having air damping coefficients of 0.0001, 0.001,
0.01, 0.05 and 0.1. The damping factor of the aluminum panels was 0.01 except for the air damping
coefficient of 0.0001 for which case the aluminum panel damping coefficient equaled 0.1 Each
transmission loss curve was predicted for one set of random sound incident input parameters.
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Figure 49. Transmission loss of a double wall configuration with 0.020 inch and 0.032 inch thick
aluminum panels separated by an air gap of 1.75 inches having aluminum damping coefficients of 0.01 and
0.1. The air damping coefficient was 0.1. Each transmission loss curve was predicted for one set of random
sound incident input parameters.
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Figure 50. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with damping coefficients of 0.0065, 0.015 and 0.05. The core material properties are listed in Table
1. Each transmission loss curve was predicted for one set of random sound incident input parameters.
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Figure 51. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with damping coefficients of 0.01, and 0.05. The air damping coefficient equaled 0.03. Each
transmission loss curve was predicted for one set of random sound incident input parameters.
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Figure 52. Transmission loss of honeycomb panels with nine 10 by 10 inch voids predicted for nomex
cores with the same damping coefficient of 0.05 but different air damping coefficients of 0.03, 0.01 and
0.3. Each transmission loss curve was predicted for one set of random sound incident input parameters.
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Figure 53. Transmission loss of nomex core honeycomb panels for core damping coefficients of 0.065,
0.065, and 0.65. The core material properties are listed in Table 1. Each transmission loss curve was
predicted for one set of random sound incident input parameters.
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Figure 54. Transmission loss of a double wall configuration with 0.020 inch and 0.032 inch thick
aluminum panels separated by an air gap of 1.00 inch for in-vacuo conditions on either side of the double
panel and for layers of one meter thick air. Each transmission loss curve was predicted for one set of
random sound incident input parameters.
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Figure 55. Transmission loss of a double wall configuration with 0.020 inch and 0.032 inch thick
aluminum panels separated by an air gap of 1.00 inch for boundary conditions imposed by the steel frame
compared to fixed boundary conditions imposed on both panels. Each transmission loss curve was
predicted for one set of random sound incident input parameters.
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Figure 56. Transmission loss of a double wall configuration with 0.020 inch and 0.032 inch thick
aluminum panels separated by an air gap of 1.00 inch for fixed boundary conditions imposed on both
panels and aluminum damping coefficients of 0.1 and 0.01. Each transmission loss curve was predicted for
one set of random sound incident input parameters.
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Figure Al. Modal analysis of a single aluminum panel
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Figure A2. Modal analysis of a single aluminum panel
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Figure A3. Modal analysis of a single aluminum panel
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Figure A4. Modal analysis of a single aluminum panel
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Figure A5. Modal analysis of a single aluminum panel
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Figure A6. Modal analysis of a single aluminum panel
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Figure A7. Modal analysis of a single aluminum panel
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Figure A8. Modal analysis of a single aluminum panel
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Figure A9. Modal analysis of a single aluminum panel
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Figure A10. Modal analysis of a single aluminum panel
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Figure Al1. Modal analysis of a single aluminum panel

88



=
=
=
E
el
o
5
8
2
o
=l
-
7}
=
)
pe
=
g
=%

W AS_050207_modal.db - default_view

Mode 12.

Figure A12. Modal analysis of a single aluminum panel
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Figure A13. Modal analysis of a single aluminum panel
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Figure Al4. Modal analysis of a single aluminum panel
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Figure A15. Modal analysis of a single aluminum panel
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Figure A16. Modal analysis of a single aluminum panel
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Figure A17. Modal analysis of a single aluminum panel
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Figure A18. Modal analysis of a single aluminum panel

95



=
=
=
E
el
o
5
8
2
o
=l
-
7}
=
)
pe
=
g
=%

W AS_050207_modal.db - default_view

Mode 19.

Figure A19. Modal analysis of a single aluminum panel
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Figure A20. Modal analysis of a single aluminum panel
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Figure A21. Modal analysis of a single aluminum panel with twice the mass, Mode 1.
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Figure A22. Modal analysis of a single aluminum panel with twice the mass, Mode 2.
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Figure A23. Modal analysis of a single aluminum panel with twice the mass, Mode 3.
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Figure A24. Modal analysis of a single aluminum panel with twice the mass, Mode 4.
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Figure A25. Modal analysis of a single aluminum panel with twice the mass, Mode 5.
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Figure A26. Modal analysis of a single aluminum panel with twice the mass, Mode 6.
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Figure A27. Modal analysis of a single aluminum panel with twice the mass, Mode 7.
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Figure A28. Modal analysis of a single aluminum panel with twice the mass, Mode 8.

105



Bl 2AS_050311_modal.db - default_viewport - default_group - Entity

Figure A29. Modal analysis of a single aluminum panel with twice the mass, Mode 9.
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Figure A30. Modal analysis of a single aluminum panel with twice the mass, Mode 10.
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Figure A31. Modal analysis of a single aluminum panel with twice the mass, Mode 11.
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Figure A32. Modal analysis of a single aluminum panel with twice the mass, Mode 12.
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Figure A33. Modal analysis of a single aluminum panel with twice the mass, Mode 13.
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Figure A34. Modal analysis of a single aluminum panel with twice the mass, Mode 14.
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Figure A35. Modal analysis of a single aluminum panel with twice the mass, Mode 15.
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Figure A36. Modal analysis of a single aluminum panel with twice the mass, Mode 16.

113



Bl 2AS_050311_modal.db - default_viewport - default_group - Entity

Figure A37. Modal analysis of a single aluminum panel with twice the mass, Mode 17.
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Figure A38. Modal analysis of a single aluminum panel with twice the mass, Mode 18.
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Figure A39. Modal analysis of a single aluminum panel with twice the mass, Mode 19.

116



Bl 2AS_050311_modal.db - default_viewport - default_group - Entity

Figure A40. Modal analysis of a single aluminum panel with twice the mass, Mode 20.
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Figure A41. Modal analysis of a nomex core honeycomb panel, Mode 1.
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Figure A42. Modal analysis of a nomex core honeycomb panel, Mode 2.
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Figure A43. Modal analysis of a nomex core honeycomb panel, Mode 3.
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Figure A44. Modal analysis of a nomex core honeycomb panel, Mode 4.
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Figure A45. Modal analysis of a nomex core honeycomb panel, Mode 5.
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Figure A46. Modal analysis of a nomex core honeycomb panel, Mode 6.
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Figure A47. Modal analysis of a nomex core honeycomb panel, Mode 7.
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Figure A48. Modal analysis of a nomex core honeycomb panel, Mode 8.
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Figure A49. Modal analysis of a nomex core honeycomb panel, Mode 9.
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Figure A50. Modal analysis of a nomex core honeycomb panel, Mode 10.

127



Bl SNC_050203_modal.db - default_wviewport - default_group - Entity

Figure A51. Modal analysis of a nomex core honeycomb panel, Mode 11.

128



Bl SNC_050203_modal.db - default_wviewport - default_group - Entity

Figure A52. Modal analysis of a nomex core honeycomb panel, Mode 12.
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Figure A53. Modal analysis of a nomex core honeycomb panel, Mode 13.

130



Bl SNC_050203_modal.db - default_wviewport - default_group - Entity

Figure A54. Modal analysis of a nomex core honeycomb panel, Mode 14.
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Figure A55. Modal analysis of a nomex core honeycomb panel, Mode 15.
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Figure A56. Modal analysis of a nomex core honeycomb panel, Mode 16.
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Figure A57. Modal analysis of a nomex core honeycomb panel, Mode 17.
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Figure A58. Modal analysis of a nomex core honeycomb panel, Mode 18.
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Figure A59. Modal analysis of a nomex core honeycomb panel, Mode 19.
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Figure A60. Modal analysis of a nomex core honeycomb panel, Mode 20.
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Figure A 61. Modal analysis of an aluminum core honeycomb panel, Mode 1.

138



M SNCalum_050317_modal.db - default_viewport - default_group - Entity

Figure A62. Modal analysis of an aluminum core honeycomb panel, Mode 2.
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Figure A63. Modal analysis of an aluminum core honeycomb panel, Mode 3.
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Figure A64. Modal analysis of an aluminum core honeycomb panel, Mode 4.
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Figure A65. Modal analysis of an aluminum core honeycomb panel, Mode 5.
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Figure A66. Modal analysis of an aluminum core honeycomb panel, Mode 6.
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Figure A67. Modal analysis of an aluminum core honeycomb panel, Mode 7.
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Figure A68. Modal analysis of an aluminum core honeycomb panel, Mode 8.
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Figure A69. Modal analysis of an aluminum core honeycomb panel, Mode 9.
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Figure A70. Modal analysis of an aluminum core honeycomb panel, Mode 10.
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Figure A71. Modal analysis of an aluminum core honeycomb panel, Mode 11.
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Figure A72. Modal analysis of an aluminum core honeycomb panel, Mode 12.
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Figure A73. Modal analysis of an aluminum core honeycomb panel, Mode 13.
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Figure A74. Modal analysis of an aluminum core honeycomb panel, Mode 14.
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Figure A75. Modal analysis of an aluminum core honeycomb panel, Mode 15.
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Figure A76. Modal analysis of an aluminum core honeycomb panel, Mode 16.
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Figure A77. Modal analysis of an aluminum core honeycomb panel, Mode 17.
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Figure A78. Modal analysis of an aluminum core honeycomb panel, Mode 18.
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Figure A79. Modal analysis of an aluminum core honeycomb panel, Mode 19.
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Figure A80. Modal analysis of an aluminum core honeycomb panel, Mode 20.
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