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The Heliostorm (also referred to as Geostorm) mission has been regarded as the

best choice for the first application of solar sail technology. The objective of
Heliostorm is to obtain data from an orbit station slightly displaced from the ecliptic

at or nearer to the Sun than 0.98 AU, which places it twice as dose to the sun as

Earth's natural L1 point at 0.993 AU. The maintenance of such an orbit location
would require prohibitive amounts of propellants using chemical or electric

propulsion systems; however, a solar saileraft is ideally suited for this purpose
because it relies solely on the propulsive force from photons for orbit maintenance.
Heliostorm has been the subject of several mission studies over the past decade, with

the most complete study conducted in 1999 in conjunction with a proposed New

Millennium Program (NMP) Space Technology 5 (ST-5) flight opportunity.
Recently, over a two and one-half year period dating from 2003 through 2005,

NASA's In-Space Propulsion Technology Program (ISTP) matured solar sail
technology from laboratory components to full systems, demonstrated in as relevant

a space environment as could feasibly be simulated on the ground. Work under this
program has yielded promising results for enhanced Heliostorm mission

performance. This enhanced performance is achievable principally through
reductions in the sail areal density. These reductions are realized through the use of
lower linear mass density booms, a thinner sail membrane, and increased sail area.

Advancements in sailcraft vehicle system design also offer potential mass reductions

and hence improved performance. This paper will present the preliminary results
of an updated Heliostorm mission design study including the enhancements

incorporated during the design, development, analysis and testing of the system

ground demonstrator.

I. INTRODUCTION

Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons _om a
large, mirror-like sail made of a lightweight, reflective material. Because the Sun supplies the necessary
propulsive energy, solar saris also require no onboard propellant, thus reducing payload mass. The NASA
Science Mission Directorate (SMD) Earth-Sun Systems Division's Heliophysics Roadmap 1has identified a

number of missions that can be enhanced by solar sails. For example, the continuous photonic pressure

provides propellantless thrust to hover indefinitely at points in space (e.g. Heliostorm/L1) or conduct
orbital maneuver plane changes (e.g. Solar Polar Imager) much more efficiently than conventional

chemical propulsion. Eventually, a solar sail might propel a space vehicle to tremendous speeds--
theoretically much faster than any present-day propulsion system - to reach interstellar space and explore

the heliopanse (e.g. Inter Stellar Probe).

II. Heliostorm Mission Concept

The space between the sun and the planets is filled with particles and fields that are constantly

changing. Driven by solar events and modulated by planetary magnetic fields, this changing "space
weather" affects humans and our technological systems. Solar events such as flares and coronal mass

ejections (CME) accelerate atomic particles to energies as high as 1 geV, enough to penetrate any practical
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shielding that astronauts or spacecraft could carry. CMEs throw billions of tons of matter and entangled

magnetic fields into interplanetary space at speeds up to 10 million km/h. When a CME hits the Earth, it
interacts with the magnetosphere and induces ground currents that can overwhelm electric power

distribution systems, causing blackouts and induce currents in exposed oil pipelines, leading to higher
maintenance costs. Space storms also heat and inflate the atmosphere, thus altering spacecraft orbits;

change the properties of the ionosphere disrupting communication links and causing errors in GPS
navigation; interrupt spacecraft operations by causing latch-ups in electronics; pose life-threatening

radiation hazards to astronauts working outside the magnetosphere; and boost radiation in aircraft flying
over the poles. Better engineering can mitigate many of these effects, but accurate forecasts of impending

storms is still required to avoid costly downtime and life-threatening radiation hazards.
The Heliostorm mission will measure the solar wind and heliosphere state "upstream" of the Earth and

Moon. Through the use of breakthrough solar sail technology, it would fly 50% further from the Earth
(farther upstream) than the current Advance Composition Explorer (ACE) measurement at the Earth-Sun

L1. A set of in-situ measurements then would provide 50% greater warning time (compared to ACE) of

CMEs and shock-accelerated energetic particles. In conjunction with other assets outside the Earth's
magnetosphere, the mission would determine the structure of the solar wind on spatial and temporal scales
that are relevant for driving magnetospheric processes. Heliostorm will support the Vision for Space

Exploration by providing an input that is absolutely vital to the prediction of space weather in cislunar
space. Astronauts on the lunar surface will benefit greatly as the enhanced warning time will permit

reaction to actual upstream conditions measured by Heliostorm. The solar wind input to the Earth is
required by all models of the Earth's magnetosphere, and would be provided by Heliostorm or a

conventional L1 monitor. Heliostorm (or a conventional L1 monitor) must be flown in time to replace the
current ACE/Wind configuration. This suggests a launch in the 2016-2020 time frame.

The Heliophysics Roadmap identified Heliostorm as the most likely first mission that could utilize a
solar sail. The concept for the Heliostorm mission originated in the summer of 1996 after NOAA asked the

Jet Propulsion Laboratory (JPL) whether an improvement in the warning time available from a satellite
positioned at L1 could be achieved through the application of emerging new technologies in solar sails,

inflatable structures, and microspacecraft. NOAA's principal motivation was to find an inexpensive,
reliable way to continue the delivery of storm warning data to its commercial and DoD customers after the

expected end-of-life of the Advanced Composition Explorer (ACE) spacecraft in 2000-2002:
The results of the ensuing 1996 JPL study 2,3 showed a viable mission/satellite system concept to

provide the desired improvement in storm waning time. The satellite could utilize small satellite
technology merged with a space-inflatable solar sail to take advantage of solar photon pressure to permit
the satellite to maintain an unnatural station near the Earth-Sun line at -0.98 AU, well inside the L1 point at

-0,993 AU. So positioned, the satellite could provide a factor of 3 increase in warning time over the 30

minutes to 1 hour available at L1. The satellite could be based on conventional technology, and the sail
could utilize a space-inflated, rigidizable structure. Subsequent updates to the work 4,5, carried the original

1996 work several important steps further, adding detail to the design of both the sailcraft bus and sail and
refining the sailcraft performance estimates to a more achievable factor of 2 increase in warning time while

at the same time validating the original Geostorm system concept and its estimated costs. This latter work
was sponsored by NASA's New Millennium Program (NMP) in the context of a competition for NASA's

FY '00 Space Technology 5 (ST-5) technology flight validation opportunity, leading to a formal project
proposal presented to NASA Headquarters by JPL in the summer of 1999 for a project known as the Sub-

L1 Sail Project. That mission, as then envisioned, offered a logical follow-on inflatable structure flight
demonstration to the NASA Inflatable Antenna Experiment (IAE) completed in May 1996, taking that

demonstration several critical steps further in demonstrating both the deployment of a substantially larger
structure than demonstrated on IAE and in-flight structural rigidization. At the same time, the mission

would have served an important national need in providing solar storm warning alerts to commercial, DoD,
and NASA customers.

Unfortunately, the ST-5 Solar Sail proposal was not selected, however key concepts from the ST-5

proposal were incorporated by L'Garde into a winning proposal to the In-Space Propulsion Technology
(ISPT) Program's Research Opporttmities in Space Science (ROSS) NASA Research Announcements

(NRA) announcement in 2002.
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ill. 20 meter Ground System Demonstrators
The ISPT goal is the advancement of key transportation technologies that will enable or enhance future

robotic science and deep space exploration missions. At the program's inception, a set of technology
investment priorities were established using a NASA-wide prioritization process and, for the most part,
these priorities have changed little-thus allowing a consistent framework in which to fund and manage
technology development. Technologies in the portfolio include aerocapture, advanced chemical
propulsion, solar electric propulsion, and solar sail propulsion (SSP).

The first of two SSP research elements in the ISTP Cycle 1 was called the Ground System
Demonstration (GSD), which developed a prototype solar sail system for ground testing that would be used
to validate design concepts for: sail manufacturing, packaging, launch to space and deployment; attitude
control subsystem function; and to characterize the structural mechanics and dynamics of the deployed sail
in a simulated space environment. The solicitation called for a square sail configuration consisting of a
reflective sail membrane, a deployable sail support structure, an attitude control subsystem, and all
hardware needed to stow the sail for launch. In addition this system was required to meet the
characteristics given in Table 1, colunins I and 2. A sub-Ll solar monitoring mission concept was also
provided as a reference mission for guidance in design and scalability issues, and is summarized in Table 2.

SSP awarded ground demonstration contracts to two companies that had proposed two distinct
technologies in order to achieve the project objectives. ABLE Engineering Company's (now ATK Space
Systems) proposed work based on their prior NMP ST-7 proposal, incorporating a rigid coilable boom, an
articulating boom attitude control system (ACS) subsystem and partner SRS, Inc. 's CPI sail membrane.
L'Garde, Inc. proposed work based on the experience they gained on their NMP ST 5 proposal and as the
sail provider for a commercial venture, Team Encounter, incorporating an inflatable and sub-Tg rigidizable
boom, a control vane based ACS and commercial mylar for the sail membrane. The parallel testing and
development of these two system level demonstrations using varied technologies in the three major
subsystems removed the risk to this technology development if one provider encountered an unrecoverable
failure. The system level ground demonstration work was divided into three phases. A six month concept
refinement phase was completed in May, 2003. During this phase, the two teams provided analysis of their
system's performance when scaled to the Design Reference Mission and a preliminary test plan for the
following two twelve-month phases. The twelve-month hardware development phase began in June, 2003.
In this phase both teams built and tested components and subsystems, with ATK concentrating on a single
10-meter quadrant and L'Garde developing a 10-meter square sail. The most comprehensive of these tests
occurred in the middle of2004 when the respective teams deployed their integrated subsystem in the LaRC
14-meter vacuum facility (ATK) and the 30-meter vacuum chamber at Glenn Research Center's Plum
Brook Space Power Facility (L'Garde). Following a successful second phase the teams culminated their
work in a twelve-month system verification phase. In this phase both teams built and tested fully integrated
20-meter sail systems that included a launch packaging container, and operational ACS subsystems. In the
middle of 2005, the respective teams tested their system in the NASA Glenn Research Center's Space
Power Facility at Plum Brook under a high vacuum and appropriate thermal environment, as well as
subjecting their systems to launch vibration and ascent vent tests. Figures I and 2 show the 20-meter
deployed systems at Plum Brook, while columns 3 and 4 of Table I summarize the final program metrics

Figure 1: ATK System Deployed Figure 2: L'Garde System Deployed
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achieved by L'Garde and ATK. Since these sails represent the largest ground systems that will be

deployed and tested in the world's largest vacuum chamber, a significant effort was made to collect static
and dynamic data on the sails and booms with approximately 400 Gb of data collected, primarily raw
photogrammetry data. Technical descriptions of work being performed by AEC a, 7,g,9 and L'Garde 10,v, 12

on the 20-meter GSD can be found in the respective team's papers.

Table 1.: Ground System Demonstration Metrics
METRIC

Dimensions:

Sail Subsystem

Areal Density

Stowed
Volume

RFP

20 meters x 20
meters or

greater

< 20 g/m 2

(scalability to
12 g/m 2 for

104 m2 )

< 0.5 m3
(scalability to
1.5 m 3 for 104

m z )

ATK

• 20-m system with flight like
central structure

• 4 sails scaled from 80m

• Truncated 80m masts

• Central structure scaled from

40-m

• 112 g/m 2 includes

spacecraft bus structure,

ACS, power, instrument
boom

• scaled to 11.3 g/m2 for 100m
design and no payload

• 0.9 m 3 scaled tol.5 m3 for

100m design

• L'GARDE

• 19.5 m due to Plumbrook

• 1 subscale TVCAD vane

• Non-flight central strucmr(

scaled for 100m system
• Sails and mast mmcate,

100m system

• 30 g/m 2- includes ACS (4

vanes calculated), centra

structure dropped

• scaled to 14.i g/m/with 50k_

payload and 41.4kg bus

• 2.14 m 3 scaled to 1.04 m3 fol

100m design

Thrust Vector > 1.5°/hr • > 35 ° maneuver in 2 hrs • 63°/hour (.0175°/sec)
Turning Rate
about roll axis:

Effective Sail > 0.75 * 92% over solar spectrum • 85.9
Reflectance

> 0.30 • 0.30 for 3 micron film • 0.40Anti-sunward

Emissivity
Membrane

Characteristics

System
Flatness

• -2 micron CP1 with 1000 A

of aluminum on front, bare
CP1 on back of sail. All

materials have space flight
heritage.

3-point quadrant support
with shear compliant
border to insure a flat sail,

with a proper stress level to
obtain local flatness

Sliding trim control mass on
truss and tip bars to

pinwheel quadrants for roll.
Micro PPT backup

space-durable,
tear-resistant,

designed for 1
year in the
near-GEO
environment

Effective for

Propulsion

3-axis,
minimize

propellant

usage

ACS

• 2 micron Mylar with 1000 A
of aluminum on front an,

200A blackened chromitm

on back

• Stripped net loss - 2 %

• Totally propellantless usin8

four tip vanes
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Table2. Design Reference Mission

Launch

Mass (kg)

250

Payload

Mass (kg)

50

Payload

Power (W)

100

Total

Power

(w)

750

TM TM
TM

Dish Rate
Band

(in) (Kb/s)

1.5 X 100

S/C Launch

Dia (m) Vehicle

Delta
<2.3

2425-9.5

IV. MISSION PERFORMANCE COMPARISON: OLD 1999 NMP ST-5 SUB-L1 SAIL

A. Sailcraft Performance

The 1999 NMP ST-5 Sub-L1 Sail Project proposal Geostorm sailcraff could enable a factor of 2
increase in warning time compared to a conventional satellite stationed at the LI point 5. This increase in

warning time, which required artificially displacing the L1 equilibrium point from 0.993 AU to 0.984 AU,

was achieved with a sail concept developed by L'Garde, Inc. of Tustin, CA which utilized an inflatable
UV-rigidized boom and a sailcraft and sailcraft bus concept developed by Ball Aerospace Corp., Boulder,

CO, in conjunction with JPL. Figure 3 shows, respectively, the overall sailcraft configuration, the sailcraft
bus, and the sailcraft bus hardware layout. The paragraphs that follow describe the design's key features,
and Reference 5 documents the design in detail. The overall sailcraft system could achieve beginning-of-

life and end-of-life sailcraft loadings of 42.1 and 36.3 grams/m 2, respectively, sufficient to achieve an
operational station location between 0.984 and 0.983 AU.

B. Sail Design
The 1999 NMP ST-5 Geostorm sail design utilized UV-rigidized, Kevlar, 4.5-mil-wall-thickness,

inflatable struts, a 0.33-mil (8-micron) thick Kapton sail membrane, and ajettisonable stowage canister and
inflation system. The total launch mass of the sail, or Sail Propulsion Subsystem (SPS), was 78.7 kg,

including 7 kg ofjettisonable elements, making the flight or operational mass of the SPS 71.7 kg. The
jettisonable element mass included 5 kg for the stowage canister and 2 kg for the inflation system. The

boom linear mass density for the tapered 8 cm-diameter boom at the base and 2.5-cm diameter boom at the
tip was 41.1 g/m.

C. Sailcraft Design

The sailcraft is comprised of the sailcraft bus, solar sail, sail stowage canister, and a three-instrument

payload. The sailcraft employs spin stabilization for attitude control, utilizes conventional monopropellant
hydrazine propulsion to control sailcraft orientation and perform trajectory correction maneuvers (TCM),

and has a jettisonable sail used if the sail fails to deploy properly. Spin stabilization was selected for
attitude control after studies of other options such as 1) conventional 3-axis control showed that option to

require a prohibitively large amount of propellant to counter the perturbing effects of solar torque, the
dominant external perturbation to the sailcraft, and 2) a moving-mass 3-axis concept, which would enable

active mulling of the sailcraft center-of-mass/center-of-'pressure offset through control of the location of the
sailcraft center-of-mass, showed that option to be more complex and costly. 13. The selection of

conventional propulsion for sailcraft attitude orientation control was a natural given it was already required
to perform TCMs during the ballistic transfer to L1 and that its selection would minimize the risk to

sailcraft development that would be imposed by trying to use other alternatives to orientation control like

vanes. Also, the use of conventional propulsion offered, together with the capability for sail jettison, the
advantage of permitting the sailcraft to operate - and hence perform a conventional L1 Geostorm mission -

without the sail were the sail not to deploy properly and have to be jettisoned. Ill addition to the reason just

noted, this capability was also considered critical to lay the foundation for other sail missions expected to
employ the sail as a propulsion stage to be jettisoned upon arrival at a target of interest to permit, for

example, high-precision pointing that could be compromised by having a large, difficult-to-maneuver,
permanently-attached sail in tow.
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D. Sail Deployment
Deployment proceeds in positive and negative directions along one axis and then along the orthogonal

axis. A blowdown inflation system with a regulated pressure is used for simplicity and lightweight. A
latching valve for each axis allows axis sequencing as well as deployment halt in case of an anomaly.
Contacts at each ring (-l-m intervals) on each boom allow monitoring of all boom/sail positions during
deployment. The inflation system is jettisoned after deployment and rigidization to lower sailcraft areal
density. The operator will be able to bypass regulated pressure in the unlikely event of a tube hang up.

The sail is attached to the booms via rings at -I-meter intervals. Therefore, the boom deployment
control also controls sail deployment; no mechanisms are added. The sail is pulled out from points all
along its length rather than just from the tip. If the first axis fails to deploy completely, the second axis of
the sail can still be pulled fully out. Also, since the inboard section of sail is deployed first, sail tensioning
can still be accomplished in the event of incomplete boom deployment.

E. Mission Design
This phase of mission starts with a transfer from a 200-km Earth parking orbit to a Halo orbit similar to

the one used for GENESIS4. The assumed departure from LEO is October 10, 2008 and the Halo orbit
injection occurs on January 25,2009. The total transfer time is 107.6 days. After arriving at Ll-halo and
confirming that the sail deployment is successful, solar sailing will be initiated to go to Sub-Ll point with
the departure time arbitrarily set to 60 days after the Ll-Halo orbit injection. As shown in Figure 4, the
characteristic acceleration, required for a 0.98-AU Sub-Ll station is 0.31 mm/s2

•
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Figure 4:ST-5 Mission Design

The design of the Halo to Sub-L1 orbit transfer is based on 1) a perfect sail model and 2) the minimum-
time steering law. Current sail technology predicts uncertain performance when the sail is tilted more than

45 degrees away from Sun. So, two types of trajectories were generated, namely without and with the 45 °
cone angle constraint. The resulting orbits are shown in Figure 4, which contains: 1) the ballistic orbit from
LEO to L1-Halo orbit, 2) the Halo Orbit, 3) the orbit from Halo to Sub-L1 without cone angle constraint, 4)

the orbit from Halo to Sub-L1 with 45 degree cone angle constraint, 5) the runaway path from Sub-L1 if
cone angle were fixed at 0 degree, and 6) a 180-day closed loop about Sub-L1 representing a mode of

station keeping. Note that the Sub-L1 point as shown is biased offthe Earth-Sun line (i.e. Ys = -40 RE) in
order to satisfy communication's requirement to avoid pointing directly at the Sun.

V. Updated Geostorm Saileraft Performance and Design

Missions that might benefit from the use of very large structures in space place a high value on mass-
efficient structures and, for sail missions, on space-suitable thin-film membranes. The reason for this is

obvious: for missions requiring large space structures most of the mass is in the structure and therefore
most of the potential mass savings lies in the structure. Also important to note, specifically for sail
missions, is the desire to reduce not only launch mass but also to eliminate mass post launch. Sail missions

can continue to benefit from the staging principle after completion of the ballistic portion of the launch.

This makes vehicle system design approaches that provide for jettison of the hardware necessary to deploy
a sail in space highly valuable. It also places a premium on vehicle system design engineering that takes
into account the most mass efficient way to perform all required post-launch spacecraft functions,

particularly those that involve propulsive events and attitude control and stabilization: Although sail
technology may offer the possibility of propellantless propulsion and attitude control, many potential

sailcraft mission scenarios may benefit from, or even require, jettison of the sail at some point in the
mission, requiring the spacecraft to carry a conventional capability for attitude control and propulsive
events after sail jettison. Adding the extra mass required to implement a propellantless method for attitude
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control, such as vanes or a gimbaled-mass-on-a-boom system, during the sail-attached portion of the
mission saves propulsion subsystem mass for the overall vehicle use after sail jettison.

L'Garde and the team of JPL and Ball Aerospace used the concepts discussed above to improve the
performance of their sallcraft from the ST-5 proposal through the 20 meter GSD program. A preliminary

assessment of the benefits provided by implementing the above concepts and their enhancements to the
Heliostorm mission are provided in Reference 14. Much of the mass savings came as a result of selecting a
thinner material (2 micron Mylar). Additional mass savings were brought about by moving to a completely

propellantless attitude control system using a set of tip vanes to provide roll, pitch and yaw control of the

sailcraft. The vane design includes all component required for stowage in the canister, rotation of the vane
into the plane of the sail for deployment, and finally to provide the cant angle to provide passive stability
during operation. The boom were lightened by implementing a striped net design that allows the solar loads

to be more efficiently spread along the length of the boom, with the sail laid loosely on the supporting
stripped net with little stress. Sail wrinkles in the radial direction formed by a small amount of extra sail

material are designed to absorb any lateral deformations in the film due to thermal effects. Lateral
deformations are absorbed by the additional material, and the deformation from net element to net element

is absorbed by slight changes in the billow between net elements. In this way, the net elements and not the
sail material dictate the overall shape of the sail effectively decoupling the global sail shape from the

membrane material properties. Since the booms are not sized to withstand the bending generated by the
solar flux alone, a tensioned truss or spreader system is used to allow the boom to absorb the bending. The
spreader system consists of lightweight composite spreader bars mounted to rigid tings integrated into the

boom and Kevlar truss lines connecting the spreader bars together.

A. Sail Design.
Figure 5 shows top and side views of the deployed sailcraft as it would appear on orbit. Key features

illustrated include the sail membrane, which dominates the plan view, and four beams, which deploy the

membrane and support it against solar radiation pressure loads. The beams are tapered from a base
diameter of 9.8 cm to the tip diameter of 3.5 cm. The booms are 4.5 mils thick and manufactured with

embedded resin coated Kevlar lines that rigidized when exposed to the cold of space. The design also
includes four control vanes, which are articulated to provide 3-axis attitude control for the sailcraft and
spacecraft elements in the center of the sail inside the circular aperture at the conjunction of the four sail

support beams. The four solar array panels and the HGA and its boom are shown in their deployed
configurations. The four solar array panels, which are sized to provide a positive power balance for all sail

orientations without articulation. The High Gain Antenna (HGA) is spaced away from the S/C element and
placed in the plane of the sail by an extendable boom. It is articulated in 2-axes to allow communication
with the earth in any sail orientation. _'he 50 Kg science payload has been sized assuming a 1 g/cc density.

It mounts between the S/C element and the plane of the sail membrane to provide it with a direct view of

the sun. No portion of the S/C elements are more than 750 mm from the plane of the sail.

B. Carrier Design

Figure 5, bottom image, shows the cartier design that would be jettisoned following deployment of the
sail propulsion system. The most critical design requirement is for the carrier to support the relatively low
density stowed solar sail, plus the spacecraft elements and the science payload against the launch loads

such as shock, sustained g-loads, and vibration. The carrier also provides electrical energy for sail
deployment as the sailcraft arrays are stowed until after the sail is deployed. It does this using a
combination of carrier solar arrays and a large battery. Because the solar sail's control vanes are stowed

and ineffective until the sail is completely deployed, the carrier must provide attitude control between

separation from the LV until the conclusion of sail deployment. The carrier uses a cold-gas RCS to provide
control. The sailcraft star cameras aided by a carder mounted a strap-down laser IRU determines the

carrier attitude. Two low gain antennas provide close to spherical coverage for receipt of the command
uplink and to support near-earth and contingency telemetry downlinks. Finally, to minimize the sailcraft
separated mass, the carder provides all the pressurant needed for deployment of the sail itself and its

control vanes. The pressurant is stored in a carder mounted tank, which also supplies the gas for the carrier
RCS. Primary carrier elements include the thrust tube, which interfaces to the LV at its aft end, and the
strut-braced sail support shelf which, with the four spreader bar supports, carries the stowed sail during

launch and ascent. The four carrier array panels mount to the aft side of the sail support shelf
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Figure 5: Updated Heliostorm Mission Concept

Two LGA's on opposite sides of the shelf provide for communications when the sailcraft antennas are
stowed or covered by the carrier.

C. Sail Deployment
Once the sailcraft has successfully separated from the upper stage deployment can be initiated. Vane

deployment is initiated by rotating the vane booms from their stowed position into proper position for
deployment. The vane booms are deployed which pull the vane membranes into their deployed
configuration. Next, the spreader system, which has been pulled together for stowage, is released in
preparation for deployment. The main boom deployment is initiated by introducing inflation pressure into
the stowed booms. The booms simultaneously deploy the sails and the spreader system drawing the Kevlar
tension cables into position by deploying the rigid rings in a sequence. An inflation control system
carefully monitors the deployment length of each boom and modulates the amount of inflation gas
introduced to each boom to ensure the deployment progresses symmetrically. After the sail has been fully
deployed, the tip vanes are canted back to provide passive attitude stability. Once equilibrium temperature
is achieved and the structure is fully rigidized, the carrier is released. The sailcraft is now in its final
configuration and providing thrust.

D. Mission Design
It is important to note that this mission concept, and the associated mass allocations, does not include

the option for a halo orbit around the L1 point. This is a riskier approach compared to the ST-5 concept
where a ballistic trajectory is flown to a halo orbit around L1 and then the sail is deployed to fly to the sub
Ll point. Under the GSD program, L'Garde has perfected an enhanced boom packing concept, allowing
the diagonal dimension of a stowed 100 meter sail to decrease from 213 cm to 140 cm. By reducing this
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dimension and taking the risk of not having a operating spacecraft at L1 if the sail fails to deploy, the entire

spacecraft can now be launched on a Taurus class vehicle, compared to a Delta II launched required for the

ST-5 sailcraft, saving approximately $40 million in launcher costs.

VI. Comparison of 1999 ST-5 and New-Technology Heliostorm Sailerafl Designs

Table 3 summarizes the key aspects of the ST-5 Geostorm sailcraft and new-technology-based

Heliostorm sailcraft designs, as just described. Table 4 breaks down the mass of the sail propulsion system.

The column labeled "Post Goddard Boom test" reflects the modifications to the boom that were the result

of boom only thermal vacuum testing at Goddard Space Flight Center in December of 2003. Table 5

details the mass breakout for the entire sailcraft and carrier for both designs. The key point here is that with

the use of thinner sails and a clever design of the jettisonable carrier, the science payload that the sail can

carry has increased from 5 kg to 50 kg, which accounts for the majority of the difference between columns

3 and 4 of Table 3. Figure 6 graphically shows the advancement in warning time based on the

characteristic acceleration of the sailcraft. The L1 point is .993 astronomical units (AU) from the sun, so it

is located at the right side of the graph. The ST-5 design had a goal of maneuvering to .983 AU, however

Table 3:ST-5 and Updated Heliostorm Mission Comparison

Sailcraft Comparison

Item
1999 NMP ST-5

Proposal

Start of GSD

Program

End of GSD

Program

System Characteristic Performance Metric

- Sailcraft Characteristic Acceleration

- Operational Station Location

0.182 mm/s2

0.983 AU

0.356 mm/ s2

0.974 AU

0.522 mm/ s2

0.967 AU

14.82 g/m 2- Sailcraft Areal Density (dry) 42.6 g/m 2 9.48 g/m z

- Sail Propulsion Subsystem Areal Density 18.62 g/m 2 5.11 g/m z 5.68 g/m 2

!Sailcraft System

- Mass(dry) 222.1 kg 94.8 kg 148.3 kg

- Power (On-Station) 193.3 W No change same

- Attitude Stabilization Spin 3-axis using vanes same

- Attitude Control/Propulsion Conventional !Hz system used
monopropellant I-Iz during deployment same

Sail Propulsion Subsystem (SPS)

!Inflatable UV- Inflatable sub-Tg- Inflatable sub-Tg-

-Booms/Structure rigidized Kevlar. rigidized Kevlar. rigidized Kevlar.
Linear mass Linear mass Linear mass density:

density: 41.1 g/m z density: 30.5 g/m 2 31.5 g/m 2

8-micron-thick 2-micron-thick

- Membrane Kapton mylar same

- Vanes Not used Used Used

Inflation system,

- Jettisonable Elements sail stowage Carrier module Cartier module
canister

50 kg science
Payload/InStnnnentation 4.5 kg total No change package
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Figure 5: Heliocentric Distance vs. Warning Times
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the best achievable was .986 AU. The Heliostorm design based new technologies demonstrated under the

ISPT GSD program can achieve a position at .969 AU with a corresponding increase in the amount of

warning time for CIVIEs.

VII. CONCLUSION

Described herein is a concept for a new-technology-based Heliostorm Warning Mission sailcraft design.

The sailcraft is capable of operating at a station location inside the Earth's L1 point near 0.969 AU.

Positioned here, the sailcraft offers an improvement in solar storm warning time equivalent to a factor of

nearly 2 compared to the 1999 ST-5 Geostorm proposal sailcraft, with that sailcraft positioned at 0.984 AU.

The new sailcraft design makes maximal use of new developments in sail design sponsored by NASA's

ISPT Program which make viable the scaling up of inflatable-based rigidizable sail designs.
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