US Plans for the JEM-EUSO

Presented by Jim Adams

- Optics Investigations
- Trigger Design
- Event Reconstruction
Issues for the US proposal

- Low Technical Risk for Optics
 - We must demonstrate the capability to make the optics
- Concerns
 - Diffractive
 - We need to find someone who can make it
 - CYTOP
 - How to diamond turn it
 - Uniformity
 - Other maturity issues?
 - Other optics manufacturing issues
 - Surface roughness
 - Throughput
 - Scattered light from outside the field of view
Optics Investigations

• Lens Manufacturing
 – Manufacture two 1 meter lenses from PMMA
 – Test lenses in the UV to determine
 • Spot size versus field angle
 • Throughput versus field angle

• CYTOP Testing
 – Diamond turning tests
 – Refractive index uniformity tests

• Diffractive Testing
Lens Manufacturing

• Manufacture two lenses from PMMA
 – Diamond turn on the Moore machine
 – Post-polish to reduce surface roughness

• Manufacture a metering structure
 – Holds the lenses to create the optic for testing

• Test the optic
 – Use the AMOR facility
 • 2 meter uniform beam
 • ~350 nm
CYTOP Testing

• Diamond Turning
 – We have a limited amount of CYTOP
 – We were not successful in our first try
 – We are looking for advice

• Uniformity Testing
 – We plan to use a Fizeau interferometer
 – Use a tank with optically flat walls
 – Immerse CYTOP in index matching fluid
Diffractive Testing

- We can test a diffractive for JEM-EUSO
 - We understand that a diffractive can be manufactured in Japan
 - We have a design for a 10 cm f/5 diffractive lens with 1 meter focal length
 - If it can be manufactured in Japan, we will test it at UAH
Optics Investigations

• Lens Manufacturing
 – Manufacture two 1 meter lenses from PMMA
 – Test lenses in the UV to determine
 • Spot size versus field angle
 • Throughput versus field angle

• CYTOP Testing
 – Diamond turning tests
 – Refractive index uniformity tests

• Diffractive Testing
Lens Manufacturing

- Manufacture two lenses from PMMA
 - Diamond turn on the Moore machine
 - Post-polish to reduce surface roughness
- Manufacture a metering structure
 - Holds the lenses to create the optic for testing
- Test the optic
 - Use the AMOR facility
 - 2 meter uniform beam
 - $\sim 350 \text{ nm}$
Diffractive test details

- Diffractive Design
 - Design wavelength: 0.357 microns
 - Maximum depth of cut: 0.695 microns
 - Total number of facets = 3500
 - Mean facet width = 14 microns
 - Maximum facet width = 845 microns
 - Minimum facet width = 7 microns
- Matching smooth plano-convex lens
 - Radius of curvature 513.58 mm
- Determine the diffractive efficiency by comparison
Trigger Design

• Space Sciences Lab (UCB) trigger
 – Designed by Crawford and Judd

• Multilayer trigger
 – 1st layer trigger (rate \sim 1 \text{ kHz})
 • Overlay frames from successive gate timing units
 • Shift successive frames to account for
 – Shifting image of non-vertical tracks
 • Look for good signal/noise
 – 2nd layer trigger (<0.1 Hz)
 • Use pattern recognition to recognize CR tracks
Event Reconstruction

• Use ESAF simulations
 – Investigate trigger threshold
 • Use ESAF simulated events
 • Determine trigger efficiency
 – Investigate event reconstruction threshold
 • Examine ESAF simulated events
 • To find the lowest energy event that can be reconstructed to find its energy and arrival direction
 – Can JEM-EUSO be done without a diffractive?
100 events simulated at 60° and 10^{20} ev
Point Spread Function

- 100 events were simulated at 60° and 10^{20} ev.
- Each photon is tagged with its’ GTU.
- For GTUs that contained more than 10 photons
 - The mean radius vector for the GTU was calculated
 - Subtracted this from the radius vector for each photon.
 - Giving the distance spread about the GTU center
 - This distance is plotted in the next figure.

Note: The event moves across the focal plane during the time of one GTU broadening the distribution. At 60° the movement is estimated to be about 2.5 mm per GTU.
Discussion Points

How can we coordinate our investigations for JEM-EUSO?

• Cytop Testing
 – Can we work with you to find out how to machine CYTOP?

• Can you manufacture a diffractive for us to test?

• How can we coordinate simulation efforts better?