Measured Activities of Al and Ni in γ -(Ni) and γ' -(Ni)₃Al in the Ni-Al-Pt System

Evan Copland NASA Glenn Research Center / Case Western Reserve University, Cleveland, Ohio 44135

Abstract

Adding Pt to Ni-Al coatings is critical to achieving the required oxidation protection of Ni-based superalloys, but the nature of the "Pt effect" remains unresolved. This research provides a fundamental part of the answer by measuring the influence of Pt on the activities of Al and Ni in γ -(Ni), γ' -(Ni)₃Al and liquid in the Ni-Al-Pt system. Measurements have been made at 25 compositions in the Ni-rich corner over the temperature range, T = 1400 - 1750 K, by the vapor pressure technique with a multiple effusion-cell mass spectrometer (*multi-cell KEMS*). These measurements clearly show adding Pt (for $X_{Pt} < 0.25$) decreases *a*(Al) while increasing *a*(Ni). This solution behavior supports the idea that Pt increases Al transport to an alloy / Al₂O₃ interface and also limits the interaction between the coating and substrate alloys in the γ -(Ni) + γ' -(Ni)₃Al region. This presentation will review the progress of this study.

measured a(AI) and a(Ni) in γ -(Ni) and γ '-(Ni)₃AI in the Ni-AI-Pt System

E. Copland

Case Western Reserve University / NASA Glenn Research Center

Cleveland, Ohio

MS&T 2007: 9/19/2007 - COBO Center Detroit, Michigan, USA

www.nasa.gov 2

motivation

S. Hayashi, S. Ford, D. Young, D. Sortelet, M. Besser, B. Gleeson, Acta Materialia, 2005, 53, 3319.

measured alloy compositions

Knudsen effusion-cell

	10.0	0.0	£0.0
	50.0	~	50.0
	76.8	23.2	~
γ'	75.0	25.0	~
	73.7	27.3	~
	73.6	24.3	2.0
	65.8	24.2	10.0
	57.9	24.0	18.1
	51.1	23.8	25.1
	70.8	27.2	2.0
	63.8	26.4	9.8
	54.9	27.0	18.1
	48.1	26.7	25.2

4

reference state	reaction (298K)	measured (kJmol ⁻¹)	IVTAN (kJmol ⁻¹)
{ Au(s,I) + C }	Au(s,I) = Au(g)	363.5±2.8 367.0±1.3*	367.0±0.9
{ Ni(s) + Al ₂ O ₃ }	Ni(s) = Ni(g)	428.3±2.6	428.0±8.0
	AI(s) = AI(g)	341.0±2.2	330.0±3.0
{	$4/3AI(s) + 1/3AI_2O_3(s) = AI_2O(g)$	414.2±3.6	409.9±55
	$2AI(s) + 3O(g) = AI_2O_3(s)$	~	-3083.2 ±5
	$2AI(g) + O(g) = AI_2O(g)$	-1075.5±9.0	-1057.8±20.0
	$4AI(g) + AI_2O_3(s) = 3AI_2O(g)$	~	~

* 3rd law measurements

- pure-Al data is wrong,... use my second law data
- Au(s,I) ref. \rightarrow T and p(i) standards, good check of experiment
- measure 2 alloys in single experiment

sensitivity of measurements?

Au(s,l) = Au(g)

xNi + yAl + zPt = γ-(NiAlPt)

R. C. Paule, J. Mandel: NBS Special Publication 260-19, 1970.

hypo- / hyper-stoichiometric γ'

$a(Ni) vs 1/T in \gamma-(Ni)$

"interaction parameter formalism"

$$a(i) = \gamma(i) X_i \big|_{X_j / X_k}$$

$$\ln \gamma_{\text{solvent}} = -\frac{1}{2} \left(\varepsilon_{\text{AlAl}} X_{\text{Al}}^2 + \varepsilon_{\text{PtPt}} X_{\text{Pt}}^2 + \varepsilon_{\text{AlPt}} X_{\text{Al}} X_{\text{Pt}} \right)$$

$$\ln \gamma_{i} / \gamma_{i}^{o} = \ln \gamma_{solvent} + \varepsilon_{iAl} X_{Al} + \varepsilon_{iPt} X_{Pt \ i=Al,P}$$

$$\varepsilon_{ij} = \left(\partial \ln \gamma_i / \partial X_j \right)_{solvent}$$

$$n \gamma_i / \gamma_i^o = \ln \gamma_{solvent} + \varepsilon_{iAl} X_{Al} + \varepsilon_{iPt} X_{Pt i=Al,Pt}$$

$$\varepsilon_{ij} = \left(\partial \ln \gamma_i / \partial X_j \right)_{solvent}$$

- computational thermo \rightarrow *GEF*(*X_i*,*T*), but are problems (Ni-Al and Al-ref) •
- use interaction parameter formalism (origin: Wagner, Lupis & Darken) •
 - Pelton & Bale modified to work at finite concentrations
 - measured a(Ni) and a(AI),... predict a(Pt)

coefficients at 1550K			
In γ _{Al} °	-9.84±0.07		
In γ _{Pt} °	-5.0		
٤ _{AIAI}	14.57±0.55		
ε _{PtPt}	7.03±0.4		
٤ _{PtAl}	-13.70±2.7		

0.1

0.00

0.0

XpT

• exclusive Al_2O_3 -layer not due to $\frac{1}{2}a(Ni)$

•

summary

- *a*(AI), *a*(Ni) measured at 25 comp. in Ni-corner of Ni-AI-Pt
 - → T = 1400 1750 K in γ -(Ni), γ' -(Ni)₃Al and L
 - \rightarrow Pt addition: *a*(AI) reduced, *a*(Ni) ~ constant
- thermodynamic measurements are easy! (2 ~ 4 alloys / week)
 - \rightarrow must closely consider state of the system (Al₂O₃)
- future work:
 - \rightarrow calculate γ-(Ni) / *L*, γ-(Ni) / γ'-(Ni)₃Al phase boundaries
 - Show activities are as good as phase equilibria
 - \rightarrow introduce Al₂O₃ and O to data analysis

acknowledgements:

Nathan Jacobson (NASA Glenn), Judy Auping (NASA Glenn), Christian Chatillon (Saint Martin d'Hères, France), Brian Gleeson (ISU), Pat Martin and Dallis Hardwick (AFRL, Wright-Patterson AFB)