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Abstract

This paper examines the use of a continuum damage model to predict strength and
size effects in notched carbon-epoxy laminates. The effects of size and the develop-
ment of a fracture process zone before final failure are identified in an experimental
program. The continuum damage model is described and the resulting predictions of
size effects are compared with alternative approaches: the point stress and the inher-
ent flaw models, the Linear-Elastic Fracture Mechanics approach, and the strength
of materials approach. The results indicate that the continuum damage model is
the most accurate technique to predict size effects in composites. Furthermore, the
continuum damage model does not require any calibration and it is applicable to
general geometries and boundary conditions.
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1 Introduction

The introduction of advanced composite materials in new applications relies on
the development of accurate analytical and computational tools that are able
to predict the thermo-mechanical response of composites under general loading
conditions and geometries. In the absence of accurate analytical models, the
design process has to rely on costly matrices of mechanical tests based on large
numbers of test specimens [1] and empirical knockdown factors [2].
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The prediction of ultimate strength remains the main challenge in the simula-
tion of the mechanical response of composite materials [3]. The simulation of
size effects on the strength of composites is of particular interest and relevance
[4]-[8]: reliable analytical and numerical models must represent the decrease
of the ultimate strength when the structural dimensions increase [9].

Size effects in laminated composites occur at different material and structural
levels. At the meso-mechanical level, it is observed that the transverse tensile
and in-plane shear strengths of a ply constrained by sub-laminates depend on
the ply thickness [10]. This size effect is normally called the ”in-situ” effect
and can be accounted for in the prediction of matrix cracking onset using the
”in-situ” strengths in appropriate failure criteria. The ”in-situ” strengths can
be calculated from analytical closed-form solutions using ply elastic properties
and fracture energies [11],[12].

Size effects also occur at the macro-mechanical level. For example, it is shown
in [13] that the strength of notched quasi-isotropic composite laminates de-
creases for increasing notch sizes when thin plies are used. This effect, usually
known as the ”hole size effect”, is caused by the development and propaga-
tion of non-critical ply-level damage mechanisms that occur in the vicinity
of the hole before the final collapse of the laminate. The exact nature of the
non-critical damage mechanisms has been reported by several authors. Using
Moiré interferometry in notched [0/+45/90/−45]s laminates, Mollenhauer et
al. [14] observed a strain redistribution as a result of matrix-fiber splitting in
the 0◦ surface ply and sub-surface ply cracking. Green et al. [4] reported fiber
splitting in the 0◦ plies, matrix cracking in the off-axis plies, and delamination
in [+45m/90m/ − 45m/0m]ns carbon-epoxy laminates with a central circular
hole.

The observed ply-level damage mechanisms can be regarded as a fracture
process zone that develops before final failure of the laminate. For very small
specimens, the fracture process zone affects the entire width of the laminate.
On the other hand, the size of the fracture process zone in large specimens
is negligible when compared with the characteristic dimensions of the speci-
men. The relative dimension of the fracture process zone with respect to the
specimen size justifies the different strengths observed in small and large spec-
imens. Therefore, to predict the hole size effect in quasi-brittle materials with
general dimensions, methods that account for the energy dissipated by the
propagation of non-critical damage mechanisms are required [15].

While the strength of notched multidirectional laminates manufactured using
thin plies generally decreases with hole diameter, Green et al. [4] reported an
opposite trend for laminates with plies with the same fiber orientation blocked
together (ply-level scaling): for a 4 mm thick [454/904/−454/04]s carbon fiber
reinforced plastic (CFRP) laminate, increasing the hole size from 3.2 mm to
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25.4 mm increased the strength by 51%. This new finding was attributed to the
formation of delaminations at the edge of the hole [4]. Ply-blocked specimens
exhibit a delamination type of failure, and for small hole diameters the size of
the delamination is relatively large and grows unstably.

Green et al. also performed tests on thickness-scaled CFRP laminates [4]. A
decrease of the ultimate strength with test specimen thickness was reported
for both ply-level and sublaminate-level scaled laminates, where the laminate
thickness is increased by increasing the number of sublaminates while keeping
the ply thickness constant. When increasing the thickness from 1 mm to 8
mm, strength reductions of 16.5% and 64.4% were measured for the sublami-
nate level and ply-level scaled specimens, respectively. The strength reduction
was attributed to the higher energy release rate at the interfaces of the ply-
level scaled specimens, which promotes delamination, and to the higher stress
concentration relief that occurs as a result of damage in the surface plies of
sublaminate-level scaled specimens.

The calculation of macro-mechanical size effects is often based on semi-empirical
methods that require calibration such as the point stress and average stress
models proposed by Whitney and Nuismer [16]. The point stress model as-
sumes that final failure occurs when the stress at a characteristic distance from
the notch reaches the unnotched strength of the laminate. In the average stress
model, it is assumed that final failure occurs when the laminate stress aver-
aged over a characteristic distance is equal to the unnotched strength of the
laminate. Modifications of the point stress and average stress models using ply
strengths have been proposed to predict the strength of laminates with open
and loaded holes [17]-[18]. The advantage of using ply properties rather than
laminate properties is that the need to measure laminate strengths for every
layup is avoided. However, the measurement of the characteristic distances is
still required for each lay-up and geometry [18].

On the other hand, models based on continuum damage mechanics do not re-
quire calibration, so they potentially provide the means for a truly predictive
methodology for the strength prediction of composite laminates. Continuum
damage models are defined in the framework of the thermodynamics of irre-
versible processes. Generally speaking, the formulation of continuum damage
models starts by the definition of a potential (e.g. the complementary free
energy) as a function of one or more damage variables that is the basis for
establishing the relation between the stress and the strain tensors. It is also re-
quired to define the damage activation functions, i.e. the conditions that lead
to the onset of inelastic response, and the damage evolution functions. Some
of the models proposed in the literature are exclusively based on thermody-
namic restrictions of the constitutive model and on some adjusting functions
for damage onset and evolution. Other models, besides satisfying the thermo-
dynamic restrictions, are based on the failure mechanisms [19], i.e. the damage
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activation functions are related to the physics of the different failure mecha-
nisms, and the damage variables are related to the orientation of the ply failure
planes experimentally observed. Mechanism-based continuum damage models
can predict damage onset and the extent and type of non-critical damage
mechanisms. Furthermore, continuum damage models that relate the damage
variables to the normal components of the stress tensor are able to simulate
the effect of crack closure under load reversal cycles. Therefore, such models
can be used to predict the strength under non-monotonic loading including
load reversals.

The objective of this paper is to investigate the use of a continuum damage
model for the prediction of size effects in notched carbon-epoxy laminates
loaded in tension. An experimental program is conducted to measure the rel-
evant material properties and to identify size effects occurring in laminates
with different hole sizes. The recently proposed continuum damage model
is described and analysis of open hole specimens subjected to tension loads
are presented. The analyses results are compared with the experimental data
and with predictions obtained using a strength of materials approach, Linear-
Elastic Fracture Mechanics, and the point stress model.

2 Experimental program

2.1 Material selection and characterization

The material selected for the present study is Hexcel’s IM7-8552 carbon epoxy
unidirectional tape with a nominal ply thickness of 0.131 mm. The material
was cured according to the manufacturer’s specifications, with temperature
stages of 110◦C for one hour, followed by 180◦C for two hours. A pressure of
7 bar was applied for the duration of the cure cycle.

The fiber volume fraction was measured using image processing techniques
resulting in an average value of 59.1%. The coefficients of thermal expan-
sion were measured using a dilatometer and the resulting values are α11 =
−5.5× 10−6 /◦C for the longitudinal direction, and α22 = 25.8× 10−6 /◦C for
the transverse direction. The elastic properties and strengths were measured
using ASTM test standards [20]-[22]. Five specimens were used for each test
performed.

The mean measured values of the ply elastic properties are shown in Table 1.
E1 and E2 are the longitudinal and transverse Young’s modulus respectively,
G12 is the shear modulus, and υ12 is the major Poisson’s ratio. Table 1 also
presents the standard used in each test, the standard deviation (STDV), and

4



the coefficient of variation (CV).

[Table 1 about here.]

The measured ply strengths are shown in Table 2. XT and Y ud
T are the lon-

gitudinal and transverse tensile strengths, respectively. XC and YC are the
longitudinal and transverse compressive strengths, respectively. Sud

L is the in-
plane shear strength.

[Table 2 about here.]

The values of the transverse tensile strength (Y ud
T ) and of the in-plane shear

strength (Sud
L ) measured in the test specimens correspond to the strengths of

unconstrained unidirectional plies. The transverse tensile and shear strengths
of constrained plies (in-situ strengths) are higher than the ones of an unidi-
rectional ply [10] and decrease when increasing the ply thickness. The in-situ
strengths are calculated using models previously proposed by the authors,
which are based on the mode I fracture toughness, G2+, and on the mode II
fracture toughness, G6 [12]. These models use the simplifying assumption that
the in-situ strengths are not a function of the elastic properties and geometry
of the neighboring layers.

To measure the components of the fracture toughness, double cantilever beam
(DCB) [23] and 4-point bending end notched flexure (4-ENF) [24] tests were
performed. The measured components of the fracture toughness are shown in
Table 3.

[Table 3 about here.]

The in-situ strengths are calculated as functions of the fracture toughness and
ply elastic properties using the models described in [12] with a shear response
factor β = 2.98× 10−8 MPa−3. The calculated in-situ strengths are shown in
Table 4.

[Table 4 about here.]

The shear strength in the transverse direction is calculated as [25],[26]:

ST = YC cos α0

(
sin α0 +

cos α0

tan 2α0

)
(1)

where α0 is the fracture angle of a ply under pure transverse compression [27].
For a fracture angle α0 = 53◦, the shear strength in the transverse direction
is calculated as ST = 75.3 MPa.

The continuum damage model also requires the fracture energies per unit
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surface for longitudinal failure, G1+ (tension) and G1- (compression). These
energies were measured using the Compact Tension (CT) and Compact Com-
pression (CC) tests in cross-ply laminates proposed by Pinho et al. [28],[29].
The measured fracture energies per unit surface are shown in Table 5.

[Table 5 about here.]

2.2 Notched laminates

Tests of notched composite laminates were performed to quantify the size effect
and to obtain empirical data to validate the numerical model. Quasi-isotropic
laminates were manufactured in Hexcel IM7-8552 CFRP with a stacking se-
quence of [90/0/± 45]3s.

The unnotched tensile strength of the laminate, XL
T , was measured using five

test specimens and the average value obtained was 845.1 MPa. The average
value of the failure strain, 12900 µε, was measured in the five test specimens
using strain gages.

The notched test specimens were machined using a procedure that prevents
delaminations in the regions close to the insertion point and the exit of the drill
bit. Sacrificial frontal and backing plates were used to clamp the specimens
during the drilling process. All test specimens were machined to class 1 hole
quality used in aerospace [30]. No damage was observed in a sample of test
specimens inspected using X-rays.

Specimens with five different hole diameters, d=2 mm, 4 mm, 6 mm, 8 mm, 10
mm and with a width-to-diameter ratio w/d equal to 6 were tested in a MTS
servo-hydraulic machine following the ASTM D-5766 standard [31] according
to the test matrix shown in Table 6. Five specimens were tested for each
geometry.

[Table 6 about here.]

The specimens labeled OHT3, OHT6 and OHT9 were instrumented with two
strain gages in the positions schematically shown in Figure 1.

[Fig. 1 about here.]

The distances ds shown in Figure 1 are respectively 10.5 mm, 13.5 mm, and
12.5 mm for the test specimens OHT3, OHT6 and OHT9. The specimens
OHT10 and OHT11 were not instrumented. Acoustic emission (AE) sensors
were used in one test specimen for each size.
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Figure 2 shows the applied load and the cumulative number of AE signals as
a function of time for one OHT3 test specimen.

[Fig. 2 about here.]

From the AE signals shown in Figure 2, it can be concluded that non-critical
damage mechanisms accumulate well before final failure of the specimen, cre-
ating a fracture process zone (FPZ). Similar results are observed in the OHT6
and OHT9 specimens, as well as in other experimental investigations [4],[14].

The remote failure stress is defined using the failure load measured in the tests
(P̄ ) and the measured values of the specimen thickness (tL) and width (w) as:
σ∞ = P̄

wtL
. The remote failure stresses obtained for the different geometries

are summarized in Table 7.

[Table 7 about here.]

The failure mode observed in all specimens is net-section tension, as shown
in Figure 3. Figure 4 shows the relation between the remote stress and the
strain measured by strain gages SG3 for one test specimen of each of the three
different geometries.

[Fig. 3 about here.]

[Fig. 4 about here.]

The experimental results presented in Table 7 clearly identify a size effect: an
increase in the hole diameter from 2 mm to 10 mm results in a 32.8% reduction
in the strength. The observed size effect is caused by the development of
the fracture process zone identified in the AE results, which re-distributes
the stresses and dissipates energy. In small specimens, the fracture process
zone extends towards the edges of the specimen and the average stress at the
fracture plane tends to the unnotched strength of the laminate.

The effect of size on the strength can be explained using a simple example
based on the cohesive crack model, which is well-suited to simulate fracture
of quasi-brittle materials [32]. Consider that the fracture process zone is rep-
resented by a cohesive crack with the simple constitutive relation shown in
Figure 5 a).

[Fig. 5 about here.]

The cohesive constitutive model relates the laminate cohesive stress, σ, to the
crack opening, w, and must satisfy the following condition:

∫∞
0 σ(w)dw = GC .

Structural collapse occurs when a point along the fracture plane reaches the
critical opening, wc, and the corresponding length of the fracture process zone
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can be estimated using the Irwin model as lFPZ ≈ EGC

π(XL
T )2

[33]-[34].

Based on the constitutive law shown in Figure 5 a), it is possible to schemat-
ically represent the stress distribution at failure along the fracture planes of
specimens with different sizes, as shown in Figure 5 b). It is observed that in
small specimens the fracture process zone extends towards the edges, whereas
in large specimens the fracture process zone is confined to the vicinity of the
hole. As a consequence, the average stress acting on the fracture plane, and
hence the strength, are larger for small specimens.

3 Simulation of the effect of size on strength

Strength prediction methods uniquely based on stress or strain failure criteria
are unable to predict the size effects observed in notched specimens. Consider
for example a calculation of the final failure of a specimen with a central
hole using the value of the longitudinal stress in the fiber direction (maximum
stress criterion). The distribution of the longitudinal stress in the critical plies,
the 0◦ plies along the fracture plane, defined by θ = 90◦ in Figure 1, can be
calculated using an approximate closed-form solution as [35]:

σ11 = σxx(0, y)(Q11a
∗
11 + Q12a

∗
12) (2)

where a∗ij are the components of the laminate compliance matrix defined as
[36]:

[a∗] = tL [A]−1 (3)

where the matrix [A] relates the in-plane forces per unit length to the mid-
plane strains. Qij are the components of the plane stress transformed reduced
stiffness matrix of the 0◦ plies [18], and tL is the thickness of the laminate.

The through-the-thickness averaged normal stress in the fracture plane for a
quasi-isotropic laminate is calculated by Tan [35] as:

σxx(0, y) =
2 + (1− d/w)3

6(1− d/w)


2 +

(
d

2y

)2

+ 3

(
d

2y

)4

 σ∞xx, y ≥ d/2 (4)

where σ∞xx is the remote tensile stress.
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From equations (2) and (4) it is clear that for the same material and stacking
sequence the stress concentration factor, and hence the maximum longitudinal
stress in the 0◦ ply, depends on the ratio between the specimen hole diameter
and width. Applying the maximum stress criterion and using equations (2)
and (4):

σ11

XT

= 1 ⇒ σ∞ =
(1− d/w)XT

[2 + (1− d/w)3](Q11a
∗
11 + Q12a

∗
12)

(5)

Equation (5) demonstrates that the application of the maximum stress crite-
rion results in the same strength prediction for different hole diameters when
the d/w ratio is held constant. The lack of size effect on the predicted strength
clearly contradicts the experimental observations.

3.1 Linear-Elastic Fracture Mechanics

There are two approaches that can be used with Linear Elastic Fracture Me-
chanics (LEFM) to calculate the effect of size on the strength of notched
composite laminates. In the first approach, it is assumed that the length a of
a pre-existing crack in the laminate is scaled in the same proportion of the
hole diameter and specimen width and that the critical value of the laminate’s
stress intensity factor, KIc, is independent of the crack length. Consider two
specimens with hole diameters d1 and d2. The stress intensity factor at failure
is:

KIc = σ∞1 F
(

w1

d1

,
a1

d1

)√
πa1 = σ∞2 F

(
w2

d2

,
a2

d2

)√
πa2 (6)

Taking into account the fact that the crack length is proportional to the hole
diameter and that the finite width correction factors, F (w/d, a/d), are equal
for scaled geometries, the failure stress of a specimen with a hole diameter d2

can be calculated from the failure stress of the specimen with a hole diameter
d1:

σ∞2 = σ∞1

√
d1

d2

(7)

The second approach to predict size effects using LEFM is the inherent flaw
model (IFM) proposed by Waddoups et al. [13]. It is considered that the non-
critical damage mechanisms occurring before ultimate failure of a composite
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laminate can be lumped into a constant ”region of intense energy”, or ”inher-
ent flaw”, of length a. The critical value of the stress intensity factor of a plate
with a hole of radius R is given by:

KIc = f (a,R) σ∞
√

πa (8)

where f (a,R) is Bowie’s solution for the calculation of the stress intensity
factor of two cracks emanating from a circular hole, given as [37]-[38]:

f (a,R) = 0.5

(
3− a

d/2 + a

) 
1 + 1.243

(
1− a

d/2 + a

)3

 (9)

Waddoups et al. [13] considered that the strength of an unnotched specimen
can be predicted by taking into account that the hole radius tends to zero, in
which case the function f (a,R) tends to one, leaving:

KIc = XL
T

√
πa (10)

where XL
T is the tensile strength of the unnotched laminate.

From (8) and (10), the equation proposed by Waddoups et al. [13] is obtained:

σ∞ = XL
T /f (a,R) (11)

The strength of the laminate containing an open-hole is predicted using two
parameters: the length of the inherent flaw, a, that needs to be calculated
from a baseline specimen, and the unnotched tensile strength of the laminate,
XL

T .

3.2 Point-stress model

The point-stress model (PSM) proposed by Whitney and Nuismer [16], con-
siders that ultimate failure occurs when the stress at a given distance from the
hole boundary, rot, reaches the unnotched strength of the laminate, XL

T . An al-
ternative version of the point stress model uses the ply stresses and strengths,
so that it is not necessary to measure the strength for every different laminate.

Using equations (2) and (4), the strength predicted using the PSM is:
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σ∞ = XT





2 + (1− d
w
)3

6(1− d
w
)


2 +

(
d

d + 2rot

)2

+ 3

(
d

d + 2rot

)4

 (Q11a

∗
11 + Q12a

∗
12)





−1

(12)

Failure is predicted using two parameters: the characteristic distance in tension
rot, and the longitudinal tensile strength of the ply, XT .

3.3 Continuum damage model

Continuum Damage Mechanics is a methodology well suited for the simula-
tion of damage evolution and ultimate failure of composites under general
loads and boundary conditions for which no analytical solution is available.
The continuum damage model used here is based on previous work by the
authors [19],[39],[40]. The main aspects of the continuum damage model are
presented in the following sections. The full details of the model can be found
in references [19],[39] and [40].

3.3.1 Constitutive model

The proposed definition for the complementary free energy density of a ply is:

G =
σ2

11

2 (1− d1) E1

+
σ2

22

2 (1− d2) E2

− ν12

E1

σ11σ22 +
σ2

12

2 (1− d6) G12

+

+ (α11σ11 + α22σ22) ∆T + (β11σ11 + β22σ22) ∆M (13)

where the damage variable d1 is associated with longitudinal (fiber) failure,
d2 is the damage variable associated with transverse matrix cracking, and
d6 is the damage variable associated with longitudinal and transverse cracks.
β11 and β22 are the coefficients of hygroscopic expansion in the longitudinal
and transverse directions, respectively. ∆T and ∆M are the differences of
temperature and moisture content with respect to the corresponding reference
values. The coefficients of thermal expansion of a ply are also affected by
the failure mechanisms. The exact dependence of the coefficients of thermal
expansion with damage can be obtained for simple laminates in the absence
of stress gradients [41]. These conditions are not met by the laminate under
investigation here and the effects of damage on the coefficients of thermal
expansion are neglected.

The strain tensor is equal to the derivative of the complementary free energy
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density with respect to the stress tensor:

ε =
∂G

∂σ
= H : σ + α∆T + β∆M (14)

The lamina compliance tensor can be represented as:

H =
∂2G

∂σ2
=




1

(1− d1) E1

−υ12

E1

0

−υ12

E1

1

(1− d2) E2

0

0 0
1

(1− d6) G12




(15)

The closure of transverse cracks under load reversal is taken into account by
defining four damage variables associated with longitudinal and transverse
damage. To distinguish between the active and the passive damage variables,
it is necessary to define the longitudinal and transverse damage modes as
follows:

d1 = d1+
〈σ11〉
|σ11| + d1−

〈−σ11〉
|σ11|

d2 = d2+
〈σ22〉
|σ22| + d2−

〈−σ22〉
|σ22|

(16)

where 〈x〉 is the McCauley operator defined as 〈x〉 := (x + |x|) /2.

3.3.2 Damage activation functions

The determination of the domain of elastic response under complex stress
states is an essential component of an accurate damage model. It is assumed
that the elastic domain is enclosed by four surfaces, each of them accounting
for one damage mechanism: longitudinal and transverse fracture under tension
and compression. Those surfaces are formulated by the damage activation
functions based on the LaRC04 failure criteria [26].

The four damage activation functions, FN , associated with damage in the lon-
gitudinal (N = 1+, 1−) and transverse (N = 2+, 2−) directions represented
in Figure 6, are defined as:
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F1+ = φ1+ − r1+ ≤ 0 ; F1− = φ1− − r1− ≤ 0

F2+ = φ2+ − r2+ ≤ 0 ; F2− = φ2− − r2− ≤ 0

(17)

where the loading functions φN (N = 1+, 1−, 2+, 2−) depend on the strain
tensor and material constants (elastic and strength properties). The elastic
domain thresholds rN (N = 1+, 1−, 2+, 2−) take an initial value of 1 when
the material is undamaged, and they increase with damage. The elastic domain
thresholds are related to the damage variables dM (M = 1+, 1−, 2+, 2−, 6)
by the damage evolution laws.

[Fig. 6 about here.]

The current values of the elastic domain thresholds rN are obtained using the
loading functions φN according to the following equations [19],[39],[40]:

r1+ = max
{
1, max

s=0,t

{
φs

1+

}
, max

s=0,t

{
φs

1−
}}

r1− = max
{
1, max

s=0,t

{
φs

1−
}}

r2+ = max
{
1, max

s=0,t

{
φs

2−
}

, max
s=0,t

{
φs

2+

}}

r2− = max
{
1, max

s=0,t

{
φs

2−
}}

(18)

Longitudinal tensile fracture

The LaRC04 criterion for fiber tension is defined as:

φ1+ =
E1

XT

ε11 =
σ̃11 − υ12σ̃22

XT

(19)

where the effective stress tensor σ̃ is computed as σ̃ = H0
−1 : ε. H0 is the

undamaged compliance tensor.

Longitudinal compressive fracture

The damage activation function used to predict damage under longitudinal
compression (σ̃11 < 0) and in-plane shear (fiber kinking) is established as a
function of the components of the stress tensor σ̃(m) in a coordinate system
(m) representing the fiber misalignment:
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φ1− =

〈
|σ̃m

12|+ ηLσ̃m
22

〉

SL

(20)

where the coefficient of longitudinal influence can be approximated as [26]:

ηL ≈ −SL cos (2α0)

YC cos2 α0

(21)

with α0 = 53◦ [27]. The components of the effective stress tensor in the coor-
dinate system associated with the rotation of the fibers are calculated as:

σ̃m
22 = σ̃11 sin2 ϕC + σ̃22 cos2 ϕC − 2 |σ̃12| sin ϕC cos ϕC

σ̃m
12 = (σ̃22 − σ̃11) sin ϕC cos ϕC + |σ̃12|

(
cos2 ϕC − sin2 ϕC

) (22)

The misalignment angle (ϕC) is determined using standard shear and longi-
tudinal compression strengths, SL and XC , respectively [26]:

ϕC = arctan




1−
√

1− 4
(

SL

XC
+ ηL

)
SL

XC

2
(

SL

XC
+ ηL

)


 (23)

Transverse fracture perpendicular to the mid-plane of the ply

Transverse matrix cracks perpendicular to the mid-plane of the ply, i.e. with
α0 = 0◦, are created by a combination of in-plane shear stresses and transverse
tensile stresses, or in-plane shear stresses and small transverse compressive
stresses. These conditions are represented by the following failure criteria:

φ2+ =





√
(1− g)

σ̃22

YT

+ g
(

σ̃22

YT

)2

+
(

σ̃12

SL

)2

if σ̃22 ≥ 0

1

SL

〈
|σ̃12|+ ηLσ̃22

〉
if σ̃22 < 0

(24)

where g is the fracture toughness ratio defined as: g = G2+

G6
.

Transverse compressive fracture

The matrix failure criterion for transverse compressive stresses consists of a
quadratic interaction between the effective shear stresses acting on the fracture
plane:
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φ2− =

√√√√
(

τ̃T
eff

ST

)2

+

(
τ̃L
eff

SL

)2

if σ̃22 < 0 (25)

where the effective stresses τ̃T
eff and τ̃L

eff are computed as [26]:

τ̃T
eff =

〈
−σ̃22 cos (α0)

(
sin (α0)− ηT cos (α0) cos (θs)

)〉

τ̃L
eff =

〈
cos (α0)

(
|σ̃12|+ ηLσ̃22 cos (α0) sin (θs)

)〉 (26)

with ηT = −1
tan(2α0)

and θs = arctan
( −|σ̃12|

σ̃22 sin(α0)

)
.

3.3.3 Damage evolution laws and numerical implementation

Strain-softening constitutive models that do not take into account the finite
element discretization produce results that are mesh-dependent, i.e. the solu-
tion is non-objective with respect to the mesh refinement and the computed
energy dissipated decreases with a reduction of the element size [42]-[43]. An
effective solution to assure objective solutions consists of using a characteris-
tic length of the finite elements (l∗) in the definition of the constitutive model
[42]. As schematically shown in Figure 7, the post-peak response of the ma-
terial is scaled as a function of the element size to keep the computed energy
dissipation independent of the size of the element, and equal to the material
fracture energy.

[Fig. 7 about here.]

The energetic regularization of the model proposed requires the fracture ener-
gies associated with the four fracture planes shown in Figure 6. These fracture
energies were measured in the experimental program and are used in the dam-
age evolution laws.

The exponential damage evolution laws proposed by the authors [19],[39],[44]
are expressed in the following general form:

dM = 1− 1

fN (rN)
exp {AM [1− fN (rN)]} f (rK) (27)

where the function fN (rN) is selected to force the softening of the constitu-
tive relation and it is taken as being independent of the material. The term
f (rK) represents the coupling factor between damage laws and elastic thresh-
old domains. The specific damage evolution laws for each damage variable are
presented in [19], [39]-[44].
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The regularization of the energy dissipated is performed by integrating the
rate of energy dissipation for each failure mode. The energy dissipated in each
failure mode must be independent of the element size, and must be equal to
the fracture energy measured in the experiments:

∫ ∞

1

∂G

∂dM

∂dM

∂rM

drM =
GM

l∗
, M = 1+, 1−, 2+, 2−, 6 (28)

Using (27) in (28), it is possible to numerically integrate the resulting equation
and calculate the parameters AM that assure a mesh-independent solution [19].

The constitutive model was implemented in the ABAQUS Finite Element
(FE) code [45] as a user-written UMAT subroutine.

3.3.4 Mesh objectivity and unidirectional notched specimen

The mesh objectivity of the model proposed is illustrated by simulating the
response of a notched [90]24 CFRP laminate loaded in tension. The specimen
simulated is 150 mm long, 12 mm wide, 3 mm thick, and contains a central
circular notch with a diameter of 6 mm. The properties used are reported in
Tables 1 to 3.

Two FE models with different mesh refinements and using the damage model
outlined in the previous sections were created. Models 1 and 2 use, respectively,
6 and 20 elements along the fracture plane. Only one-half of the specimen
width is modeled. The details of the two meshes are shown in Figure 8.

[Fig. 8 about here.]

Figure 9 shows the load-displacement relation predicted using the constitutive
model proposed. It is observed that the solution is independent of the mesh
refinement.

[Fig. 9 about here.]

In order to demonstrate the error introduced by not accounting for element
size, two analyses with different levels of mesh refinement were also conducted
with a constitutive model that is not adjusted using equations (28). Instead,
a constant softening parameter A2+ = 1.5 is used, independently of the mesh
refinement. The load-displacement relation predicted by this model is shown
in Figure 10. It is clear from this figure that the maximum load and energy
dissipation predicted are a function of the refinement of the mesh.

[Fig. 10 about here.]
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3.3.5 Quasi-isotropic open hole tension specimens

Finite element models of all OHT specimens shown in the test matrix pre-
sented in Section 2 were created using ABAQUS [45] four-node S4 shell ele-
ments. The difference between the working and reference temperatures used
to calculate the residual thermal stresses was −155◦C. An implicit dynamic
analysis was subsequently performed, and the loading rate used in the exper-
iments, 2mm/min, was also applied to the numerical models. The use of an
implicit dynamic finite element model enables the prediction of the load drop
that occurs when the specimens fail catastrophically. The material properties
used are presented in Tables 1 to 5.

Delamination is not simulated by the model. As explained by Green at al. [4],
delamination is the driving failure mechanism for ply-blocked laminates, but
not for sublaminate-level scaled laminates, such as those used in this work.
The simulation of delamination is required for ply-blocked laminates, and can
be performed using cohesive elements connecting several shell elements that
represent the layers [46].

The models simulate the fracture process from the onset of damage up to
structural collapse. Figure 11 shows the evolution of fiber fracture predicted
in the top 0◦ ply, as well the plane of localized deformation (fracture plane)
for specimen configuration OHT9.

[Fig. 11 about here.]

Figure 12 shows the relation between the applied remote stress and the lon-
gitudinal deformation measured using the strain gages and the corresponding
numerical predictions in the specimen OHT6. The numerical results corre-
spond to the averaged strain calculated in the group of elements whose po-
sition and total area correspond approximately to the area where the strain
gages were bonded to the specimen. The location of the different strain gages
is shown in Figure 1.

[Fig. 12 about here.]

The remote failure stresses measured in the experimental program and pre-
dicted by the numerical model are shown in Table 8.

[Table 8 about here.]

From the comparison between the experimental and numerical results, both
in terms of stress-strain relations and failure stresses, it can be concluded that
the model is capable of predicting with good accuracy the response of all OHT
specimens that were tested.
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3.4 Comparison of approaches

The four methods previously described, i.e. strength of materials, LEFM-
scaled, LEFM-inherent flaw model, point stress model, and continuum damage
model were applied to predict the size effect for the specimens described in
Section 2.2.

Equation (7) provides the LEFM-scaled prediction for the notched strength of
the laminate when all the in-plane dimensions are scaled. The average failure
stress measured in the specimens with a hole diameter of 6 mm was used
in the LEFM model to predict the strength of the specimens with different
geometries.

Equation (11) provides the LEFM-inherent flaw model prediction of the notched
strength. The specimen with a 6 mm hole diameter is used to calculate the
length of the inherent flaw. Using the measured mean failure stress in equation
(11), the length of the inherent flaw is calculated as a = 1.28 mm.

The point-stress prediction of the size effect is performed using equation (12).
The characteristic distance of 0.75 mm was obtained by using the measured
mean failure stress in the specimen with a 6 mm hole diameter. This value of
the characteristic distance is used to predict the strength of the other speci-
mens.

The predictions of the normalized strength as a function of the hole diameter
obtained using the different models are shown in Figure 13.

[Fig. 13 about here.]

It can be observed that both the point stress and LEFM-IFM models can
predict with reasonable accuracy the size effect law of notched composite lam-
inates. The point stress and inherent flaw models are particularly accurate
for specimens with hole diameters close to the diameter used to calculate the
characteristic distance (PSM) and the length of the inherent flaw. For speci-
mens with small hole diameters, the predictions lose accuracy. Therefore, to
accurately predict the notched strength of laminates these models require the
calculation of the characteristic distance and length of inherent flaw for differ-
ent geometries, and the definition of an extrapolation procedure to define the
values of these parameters for other geometries [18]. It should also be noted
that the basic equation used in the inherent flaw model, equation (11), is only
valid when finite width effects are negligible, which is the case of the specimens
tested. For smaller ratios between the specimen width and hole diameter, the
inherent flaw model should be modified.

The continuum damage model can predict the size effect law observed in the
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experiments, especially for specimens with hole diameters smaller than 6 mm.
Unlike the point stress and inherent flaw models, the continuum damage model
does not require any adjustment parameter and only uses material properties
that are measured at the ply level as well as the fracture energies.

Figure 13 indicates that the use of the LEFM-scaled model results in accurate
predictions for hole sizes between 6 mm and 10 mm. However, the strength
is overpredicted for small hole diameters. For small specimens, the damaged
region in the vicinity of the hole cannot be considered to be negligible when
compared with the characteristic dimensions of the specimen, and LEFM is
not applicable.

LEFM-scaled predictions are also inaccurate for large specimens because the
notched strengths of those specimens tend to a constant value [4]. Bažant [15]
relates this asymptotic structural response to the invariance of the size of the
fracture process zone when the characteristic dimensions of large specimens are
increased. It should also be noted that the LEFM predictions based on scaled
specimens always result in a line with a -1/2 slope that passes through the
baseline point (Figure 13). This means that the use of a small hole diameter
as the baseline point would result in severe underpredictions of the notched
strength of larger specimens.

The maximum stress criterion for longitudinal failure is unable to predict size
effects and always underpredicts the strength of notched laminates. For a hole
diameter of 2 mm, the application of the maximum stress criterion results
in an error of -49.1%. The error associated with the strength of materials
approach is even larger when using a failure criterion for transverse (matrix)
cracking, which occurs before fiber fracture, or failure criteria that are unable
to distinguish fiber and matrix failure modes.

4 Conclusions

The size effect in notched IM7-8552 CFRP was identified and quantified in an
experimental program. The acoustic emission results show that final fracture
is preceded by a process of accumulation of non-critical damage mechanics.

By comparing the experimental data with the different models that are com-
monly used for the strength prediction of composites, it can be concluded that
fiber-based failure criteria (strength of materials approach) cannot predict size
effects. In addition, the strength of materials approach always underpredicts
the strength of notched composites, with errors as high as -49.1% for a speci-
men with a 2 mm hole diameter.
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The Linear Elastic Fracture Mechanics approach using a hole diameter of
6 mm for calibration predicts the size effect accurately for specimens with
hole diameters between 6 mm and 10 mm. However, Linear Elastic Fracture
Mechanics should not be used for the strength prediction of specimens with
hole diameters equal to or less than 2 mm, or for larger specimens whose
failure stresses tend to a constant value.

The point stress and inherent flaw models are simple approaches that do not
require complex FE implementations yet provide reasonable predictions for
the range of hole diameters tested. However, the accuracy of these models
relies upon the measurement of the characteristic distance and length of the
inherent flaw for each lay-up and stacking sequence.

For the problems selected, the continuum damage model proposed predicts
with good accuracy hole size effects in composite laminates subjected to ten-
sion. The model requires material properties that are measured at the ply
level and fracture energies that are measured using both standard test meth-
ods and novel compact tension and compact compression test methods. The
continuum damage models provides not only the final failure load, but also
information concerning the integrity of the material during the load history.
Furthermore, the finite element-based damage model can be applied to struc-
tures and components of arbitrary configurations where analytical solutions
could not be developed.
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Fig. 2. Applied load and AE signals as a function of time for the specimen with a
6 mm diameter hole.
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Fig. 4. Relation between remote stress and longitudinal strain in SG3.
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Fig. 8. Different mesh refinements: a) mesh 1; b) mesh 2
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Fig. 9. Load-displacement relation predicted using the model proposed.
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Fig. 10. Load-displacement relation predicted using the non-adjusted model.

34



a)

b)

Fig. 11. Evolution of fiber fracture in the top 0◦ ply for the specimen OHT9.
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Fig. 12. Experimental and numerical results- specimen OHT6, strain gages SG2 and
SG3.

36



Fig. 13. Predictions of size effects in CFRP plates with w/d = 6.
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Table 1
Measured ply elastic properties for IM7-8552.

Property Standard Mean value STDV CV (%)

E1 (GPa) Ref. [20] 171.42 2.38 1.39

E2 (GPa) Ref. [20] 9.08 0.09 1.03

G12 (GPa) Ref. [22] 5.29 0.13 2.53

υ12 Ref. [20] 0.32 0.02 6.18
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Table 2
Measured ply strengths for IM7-8552.

Property Standard Mean value (MPa) STDV (MPa) CV (%)

XT Ref. [20] 2326.2 134.1 5.8

XC Ref. [21] 1200.1 145.7 12.1

Y ud
T Ref. [20] 62.3 5.3 8.5

YC Ref. [21] 199.8 20.5 10.2

Sud
L Ref. [22] 92.3 0.6 0.7
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Table 3
Measured fracture energies for transverse fracture for IM7-8552 (kJ/m2).

Property Mean value STDV CV (%)

G2+ 0.2774 0.0246 0.88

G6 0.7879 0.0803 10.19
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Table 4
Calculated in-situ strengths for IM7-8552 (MPa).

Ply configuration YT SL

Thin embedded ply 160.2 130.2

Thin outer ply 101.4 107.0

42



Table 5
Fracture energies for longitudinal fracture for IM7-8552 (kJ/m2).

Property Mean value STDV CV (%)

G1+ 81.5 6.1 7.6

G1- 106.3 2.2 2.1
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Table 6
Open hole tension test matrix.

Specimen ref. d (mm) w (mm) w/d

OHT11 2 12 6

OHT10 4 24 6

OHT3 6 36 6

OHT6 8 48 6

OHT9 10 60 6
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Table 7
Results of open-hole tensile tests.

Hole diameter (mm) σ∞(MPa) STDV (MPa) CV(%)

2 555.7 15.3 2.8

4 480.6 21.4 4.5

6 438.7 25.3 5.8

8 375.7 15.1 4.0

10 373.7 14.1 3.8
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Table 8
Comparison between experimental and numerical failure stresses (MPa).

Hole diameter (mm) σ∞, Experimental σ∞, Numerical Error (%)

2 555.7 553.6 -0.4

4 480.6 463.0 -3.7

6 438.7 430.0 -2.0

8 375.7 415.0 +10.5

10 373.7 405.6 +8.5
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