

Design, Fabrication, and Test of a LOX/LCH₄ RCS Igniter at NASA

Steven J. Schneider, Jeremy W. John, and Joseph G. Zoeckler Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to *help@sti.nasa.gov*
- Fax your question to the NASA STI Help Desk at 301–621–0134
- Telephone the NASA STI Help Desk at 301–621–0390
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320

Design, Fabrication, and Test of a LOX/LCH₄ RCS Igniter at NASA

Steven J. Schneider, Jeremy W. John, and Joseph G. Zoeckler Glenn Research Center, Cleveland, Ohio

Prepared for the 43rd Joint Propulsion Conference sponsored by the American Institute of Aeronautics and Astronautics Cincinnati, Ohio, July 8–11, 2007

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

Acknowledgments

The authors wish to acknowledge the dedication of the test team that supported these tests, especially Lynn Arrington, Luke Ogorzaly, Tom Vasek and Jason Wendell. Also, the mechanical design expertise of Dale Diedrick and his attention to detail in the fabrication of the test hardware is gratefully acknowledged.

This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Design, Fabrication, and Test of a LOX/LCH₄ RCS Igniter at NASA

Steven J. Schneider, Jeremy W. John, and Joseph G. Zoeckler National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Abstract

A workhorse liquid oxygen-liquid methane (LOX/LCH₄) rocket igniter was recently tested at NASA Glenn Research Center's (GRC) Research Combustion Laboratory (RCL). These tests were conducted in support of the Reaction Control Engine (RCE) development task of the Propulsion and Cryogenics Advanced Development (PCAD) project. The igniter was a GRC in-house design used to evaluate the ignition processes for LOX/LCH₄. The test matrix was developed to examine the flammability of LOX/LCH₄ over a range of oxidizer-to-fuel mixture ratios, both in the core fuel flow and total flow. In addition, testing also examined the durability of the hardware by accumulating ignition pulses. Over the course of testing, a total of 1402 individual ignition pulses were successfully demonstrated over the range of mixture ratios. Testing was halted after the failure of the ceramic in the igniter spark plug.

Introduction

The impetus for the development of liquid oxygen liquid methane (LOX/LCH₄) Reaction Control Engines (RCE) is based on several factors. First, while hypergolic propellants for spacecraft attitude control have been used since the 1960s, their use results in high operating costs for manned vehicles. With the development of Orion CEV, plans are underway to mitigate the safety concerns and operating costs that burden these propellants by using nontoxic cryogenic propellants (ref. 1). In-situ resource utilization on a future trip to Mars then creates a driver for the use of LOX/LCH₄, which also has the potential for improved performance and reduced cost over the hypergolic propellants (ref. 2). One of the key technical challenges to the use of LOX/LCH₄ in reaction control systems (RCS) on these vehicles is the demonstration of reliable ignition over the potential operating envelope of RCS thrusters. These thrusters have a minimum impulse bit, widely varying duty cycles, and high cycle life requirements. Reliable and repeatable demonstrations (ref. 3) of LOX/LCH₄ ignition with hardware designed for LOX/ethanol propellants shows that this propellant combination has some versatility. This paper describes a NASA designed igniter and the test facility in which it was tested, along with the test matrix the facility was able to provide to the igniter. Details of the test results are presented.

Igniter Design and Fabrication

The GRC Workhorse Igniter was designed around a bluff body tipped sparkplug. A sketch of the design is shown in figure 1. The exciter unit for the spark plug delivered 200 sparks per second at 20 kV and 70 to 150 mJ. Design flow rates to the igniter were in the 44 N thrust class. The igniter was fed by three separate propellant feed lines, two for fuel and one for the oxidizer. The LOX was injected with four doublets in the annulus behind the bluff body on the spark plug tip. The LOX flows past the spark plug tip and is excited by the spark arcing across the flow to the wall. One fuel line injected fuel with four doublets just downstream of the spark plug tip to provide an oxidizer rich core flow, while the second fuel line injected fuel with tangential swirl to supply film cooling flow to the chamber wall and an overall fuel rich torch. The propellant injection locations are indicated on the sketch. The core mixture ratio design point was oxidizer rich at 20, while the overall design mixture ratio was fuel rich at 2.0. Both of these mixture ratios were selected due to their flame temperatures being compatible with conventional

Figure 1.—Sketch of workhorse igniter.

materials. Propellant mass flow was controlled by cavitating venturis upstream of the thruster valves. Injector element pressure drops were low due to their design to accommodate the desired propellant mass flows as saturated vapor as well as saturated liquid.

Facility Description

The LOX/LCH₄ ignition tests were conducted in Cell 21, which is part of the NASA GRC RCL. 4 A schematic of the Cell 21 layout for this series of tests is shown in figure 2 and a photograph is shown in figure 3 with the altitude can removed. All tests were conducted at a simulated altitude of 30 km, or approximately 1.4 kPa. The cell was upgraded for this series of tests to include capability for liquefying gaseous propellants in separate tanks by using a liquid nitrogen cooling system. Separate cooling lines were added to the feed system from the propellant tanks to the igniter inlet valves in order to maintain a liquid state. In addition, another cooling line was added around the igniter body in order to accelerate the chill in temperatures of the test hardware. Control relays cycled the liquid nitrogen on and off to each circuit based on the desired tank temperature (90 K for the liquid oxygen, 112 K for the liquid methane). Each bottle held approximately 2 liters of propellant. The liquid propellants were pressurized by the regulated gaseous propellant feed system with pressures up to 2760 kPa. Tests were initiated by a Quantum Programmable Logic Controller which triggered a Unison Controller to time the valves and spark.

The propellant flow rates were controlled using cavitating venturis. These venturis were installed in each of the three propellant feed lines upstream of the injector valves. Temperature and pressure measurements taken at the inlet of the venturis were used to calculate the mass flow rates, using equation (1) (ref. 5).

$$\dot{m} = C_d \left(\frac{\pi d_t^2}{4}\right) \sqrt{2g\rho_l(p_i - p_v)}$$
(1)

The vapor pressure, p_v , and liquid density, ρ_l , were determined for each test run using physical property data as compiled by the National Institute of Standards and Technology (NIST). The discharge coefficients, C_d for each of the venturi throat diameters, d_i , were determined using a water flow test rig. The tank pressures were set to achieve the desired flow rate. The inlet pressures, p_i , were very close to the tank pressures. In order to ensure accurate flow control, i.e., for the venturis to cavitate, the pressures at the exits of the venturis had to fall within a pressure range determined by equations (2) and (3) (ref. 5). The maximum downstream pressure above which the venturi doesn't cavitate is *Pe*,max. The minimum downstream pressure below which the venturi still cavitates, but the fluid doesn't fully recover to the liquid state is *Pe*,min. These values were calculated on each propellant leg for each test conducted over the course of this investigation.

Figure 2.—Schematic of RCL-21 feed system.

Figure 3.—Picture of facility with altitude can removed.

$$p_{e,\max} = p_v + C_d^2 \left(p_i - p_v \right) \left(1 - \left(\frac{d_i}{d_e} \right)^4 \right)$$
(2)

$$p_{e,\min} = p_{v} + \frac{2C_{d}^{2}(p_{i} - p_{v})\left[\left(\frac{d_{t}}{d_{e}}\right)^{2} - \left(\frac{d_{t}}{d_{e}}\right)^{4}\right]}{\left[1 - \left(\frac{d_{t}}{d_{e}}\right)^{4}\right]}$$
(3)

Turbine flowmeters were also installed into the system as an alternate means of measuring flow. They were located at the outlet of each tank as shown in figure 2 and had very low pressure drops. However, the flowmeters were found to be unreliable as they spun up, overshot the measurement, and didn't settle down within the pulse duration. Also, the range of the core methane turbine meter was too large to respond to the small flow rate most of the time. During the course of a test day extremely sluggish operation of the methane turbine meters was also noted and may have been caused by periodically freezing the methane by the liquid nitrogen cooling.

Test Matrix/Objectives

Performance testing was addressed by the test matrix given in table 1. The tests were designed to evaluate the effect of mixture ratio variations, both in the core and overall, on the ignition process. A test ID was given for each test condition as shown in the table. The planned test matrix had the propellants condensed at ambient pressure using liquid nitrogen. Then, the nominal propellant temperatures in the tanks were 90 K for oxygen and 112 K for methane. Test condition (A) in the test ID was with a room temperature igniter body 298 K and test condition (D) was with a cold igniter body 112 K. Two different sets of cavitating venturis (I and II) were employed in an attempt to satisfy the exit pressure range requirements to ensure cavitation. Discharge coefficients (C_d) were determined as given in the table using a water flow rig with a beaker and a stopwatch. The planned variation of core mixture ratio was 15 to 31 and the planned overall mixture ratio range was 1.1 to 3.0. The planned overall flow rates were 12.18 to 17.15 g/sec.

The performance tests were conducted as single pulse tests with a 0.5 sec pulse duration in order to accommodate the slow response of the turbine meters. In these tests, the fuel valves were opened with a 0.02 sec lead over the oxidizer valves. Spark was initiated with the opening of the LOX valve and had a duration of 0.25 sec.

The test of durability of the research hardware by accumulating ignition pulses was conducted by running pulse trains of varying duration and duty cycle. The goal of this testing was to gage the expected lifetime of the igniter components and valves. In addition, the repeatability of the ignition pulses was examined. In order to put a large number of pulses on the igniter, a 0.25 sec long pulse was used. These tests also had the fuel valves opening with a 0.02 sec lead over the oxidizer valves and spark for 0.12 sec initiated with the opening of the LOX valve. During the bulk of these tests, the igniter was operated at a single propellant flow set point in multiple pulse strings at a 10 percent duty cycle.

	Fuel Fuel								
		LOX	Core	Film	MR		Mass		
Test ID	# pulses	Pres.	Pres.	Pres.	Core	MR	Flow		
		kPa	kPa	kPa			g/sec		
I-A1	7	2070	1900	1720	26	1.9	15.26		
I-A2	2	2070	1550	1720	29	1.9	15.23		
I-A4	8	1900	1900	1720	25	1.8	14.81		
I-A5	4	1900	1550	1720	27	1.8	14.77		
I-A6	2	1900	1210	1720	31	1.8	14.73		
I-A7	9	1720	1900	1720	24	1.7	14.36		
I-A8	6	1720	1550	1720	26	1.7	14.32		
I-A9	4	1720	1210	1720	30	1.7	14.27		
I-A10	4	1550	1900	1720	22	1.6	13.86		
I-A11	4	1380	1900	1720	21	1.5	13.31		
I-A12	2	1210	1900	1720	19	1.4	12.77		
I-A13	2	1040	1900	1720	18	1.3	12.18		
I-A14	2	1040	2240	1720	16	1.3	12.22		
I-A15	2	1040	2590	1720	15	1.3	12.25		
I-A16	2	1040	1210	1900	23	1.3	12.37		
I-A18	1	1040	1210	2240	23	1.2	12.87		
I-A20	1	1040	1210	2590	23	1.1	13.28		
I-A21	1	1040	2590	2590	15	1.1	13.43		
I-A22	7	2420	2420	2420	25	1.7	17.13		
I-A23	4	2420	2590	2420	24	1.7	17.15		
I-D1	1	2070	1900	1720	26	1.9	15.26		
I-D4	3	1900	1900	1720	25	1.8	14.81		
I-D5	2	1900	1550	1720	27	1.8	14.77		
I-D7	3	1720	1900	1720	24	1.7	14.36		
I-D8	4	1720	1550	1720	26	1.7	14.32		
I-D9	1	1720	1210	1720	30	1.7	14.27		
II-A1	2	2590	2240	2070	24	3	13.35		
II-A2	2	2590	2070	2070	25	3	13.34		
II-A3	2	2590	1900	2070	26	3	13.31		
II-A4	2	2420	2240	2070	23	2.9	12.99		
II-A5	2	2420	2070	2070	24	2.9	12.97		
II-A6	2	2420	1900	2070	25	2.9	12.95		
II-A7	2	2240	2240	2070	22	2.8	12.62		
II-A8	2	2240	2070	2070	23	2.8	12.61		
II-A9	2	2240	1900	2070	24	2.8	12.59		
II-A10	2	2070	1900	2070	23	2.7	12.22		
II-A22	2	2420	2420	2420	22	2.7	13.23		
II-A29	9	2070	2070	2070	22	2.7	12.25		
II-A30	3	2070	2240	2070	21	2.7	12.26		
II-A31	18	2070	2420	2070	20	2.7	12.28		
Total		2070	2727	2010	20	2.1	12.20		
pulses	140								
Notes:									
All: LOX T	emp-90 K, L	CH4 Temp-	112 K						
A: Body of	A: Body of Igniter-298 K								
D: Body of	D: Body of Igniter-112 K								
I: Cavitatin	I: Cavitating Venturis LOX-0.474 mm dia., Cd=0.839								
LCH4 Core	- 0.147mm dia	a, Cd=0.584	, LCH4 Film	n-0.419mm	dia., Cd=0.90	62			
II: Cavitati	ng Venturis L	OX-0.419 n	nm dia., Cd=	0.962					
LCH4 Core	LCH4 Core-0 417mm dia Cd=0 584 LCH4 Film-0 366mm dia Cd=0 677								

TABLE 1.—PLANNED TEST MATRIX AND NUMBER OF PULSES AT EACH CONDITION

Test Results

The igniter successfully lit over the entire range of propellant conditions in table 1 and was repeatable. The number of successful ignitions at each test condition is given in table 1. The total number of pulses put on the igniter in performance tests examining the ignition range of the propellants was 140 (approximately 10 percent of the total number of pulses). As mentioned above, single pulse, 0.5 sec burns were performed during this investigation of flammability range. A typical ignition pulse pressure trace is shown in figure 4. The data used to determine the propellant flow rates and propellant conditions were taken 0.46 sec into each pulse. This was done to allow the system to overcome the initial transients and reach a steady state condition.

Figure 4.—Typical pressure trace from ignition pulse.

As shown in the feed-system schematic of figure 2, separate controls were used for the LOX, LCH₄ flow into the core, and LCH₄ flow into the film cooling injector. These allowed for a variation of the mixture ratio at the flame core as well as at the film cooling layer. Tabular results for selected run conditions are given in table 2.

Run	Test profile	Target		Calculated		%Diff—Core	% Diff—Total
		Core MR	Total MR	Core MR	Total MR		
278	I-D9	30.0	1.7	29.29	1.68	2.36	1.28
302	I-A1	26.0	1.9	33.46	1.67	28.70	12.28
308	I-A5	27.0	1.8	26.77	1.35	0.84	25.15
311	I-A7	24.0	1.7	21.81	1.35	9.11	20.35
313	I-A8	26.0	1.7	31.92	1.40	22.78	17.74
315	I-A10	22.0	1.6	19.36	1.08	11.99	32.32
317	I-A11	21.0	1.5	20.33	1.10	3.21	26.79
363	II-A1	24.0	3.0	31.91	1.80	32.95	40.06
365	II-A2	25.0	3.0	30.75	1.85	23.00	38.23
367	II-A3	26.0	3.0	29.55	1.88	13.64	37.27
369	II-A4	23.0	2.9	28.69	1.66	24.72	42.73
371	II-A5	24.0	2.9	27.94	1.62	16.41	43.99
373	II-A6	25.0	2.9	33.06	1.80	32.23	38.08
375	II-A7	22.0	2.8	22.76	1.55	3.44	44.74
377	II-A8	23.0	2.8	26.41	1.72	14.82	38.40
379	II-A9	24.0	2.8	28.04	1.70	16.83	39.27
381	II-A10	23.0	2.7	29.19	1.69	26.90	37.55
383	II-A22	22.0	2.7	27.06	1.66	22.98	38.39
		Ave	erage % Differe	nce:		17.05	31.92

TABLE 2.—MIXTURE RATIOS OBTAINED DURING SELECTED TESTS

The amount of the fuel injected from the cooling injectors had the effect of keeping the overall mixture ratio between 1.08 and 1.88, while the core mixture ratio varied from 19.36 to 33.46 for these selected tests, as shown in table 2. The corresponding chamber pressures ranged from approximately 1040 to 1720 kPa and were set by the combustion efficiency and the mass flow through a 5.0 mm diameter throat on the igniter combustion chamber.

The calculated mixture ratios (MRs) had a significant deviation from the target values in some cases as shown in table 2. Equations (2) and (3) were used to check that the cavitating venturi exit criteria were satisfied. The results are presented in table 3.

Run		LC	DX		LCH ₄ —Core			
	Pcav_exit	Pe_max	Pe_min	Cavitating	Pcav_exit	Pe_max	Pe_min	Cavitating
	(kPa)				(kPa)			
278	1044	1293	292	Yes	329	833	442	No
302	1237	1591	526	Yes	1192	1251	1015	Yes
308	1282	1542	768	Yes	1248	735	632	No
311	1373	1405	705	Yes	1385	830	650	No
313	1170	1379	609	Yes	1175	1021	889	No
315	1238	1338	867	Yes	1358	983	804	No
317	1051	1161	665	Yes	1078	1103	828	Yes
363	1294	1471	563	Yes	1210	1297	960	Yes
365	1261	1372	382	Yes	1220	902	619	No
367	1127	1298	244	Yes	1068	552	276	No
369	1287	1331	444	Yes	1367	998	716	No
371	1167	1348	470	Yes	1167	833	537	No
373	1109	1245	285	Yes	1085	911	643	No
375	1316	1337	590	Yes	1398	726	425	No
377	1162	1130	212	No	1423	478	271	No
379	1082	1189	318	Yes	1101	633	377	No
381	992	1034	175	Yes	1038	747	463	No
383	1237	1205	204	No	1592	751	482	No

TABLE 3.—VENTURI EXIT PRESSURE CAVITATION RANGE CALCULATION FOR SELECTED TESTS

It was very difficult to satisfy these criteria for the core methane flow in the present test configuration. (Note: This situation can easily be alleviated in future tests by using smaller venturis or a larger throat at the exit of the igniter.) An investigation into the cause of the difference in the experimental MRs from the target MRs focused on the inlet conditions to the venturis given in table 4 and the mass flow calculation given by equation (1). The inlet temperature to the venturi affected mass flow in both the inlet density, ρ_{l} , and the vapor pressure, p_{v} whereas, the controlling tank pressure only affects p_{i} in equation (1). For example, the target density for the LOX was 1146 kg/m³ and for the methane, it was 424 kg/m³. The table shows that a temperature rise of 20 K results in a 10 percent change in these densities. A similar sensitivity of vapor pressure, p_{v} can also be shown. Operationally, propellants were condensed at elevated pressure in the tanks rather than at ambient pressure, accounting for part of the propellant temperature rise in the system, the remaining being due to heat leaks.

Run	LCH ₄ —Core			LCH ₄ —Film cooling			LOX		
	Pcav_inlt	Tcav_inlt	rho	Pcav_inlt	Tcav_inlt	rho	Pcav_inlt	Tcav_inlt	rho
	kPa	K	kg/m ³	kPa	K	kg/m ³	kPa	K	kg/m ³
278	1475	131	391	1829	125	401	1717	101	1085
302	1887	147	363	1707	116	415	2043	108	1044
308	1549	137	380	1740	110	422	1869	114	1012
311	1912	138	379	1731	121	407	1701	112	1020
313	1564	144	368	1746	116	415	1706	110	1032
315	1881	142	372	1740	119	411	1537	115	1000
317	1887	143	371	1747	114	417	1372	111	1024
363	2198	146	365	2047	124	402	2549	109	1038
365	2051	137	381	2059	121	407	2548	104	1067
367	1880	124	402	2053	117	414	2549	99	1095
369	2195	140	376	2094	113	419	2385	106	1056
371	2036	135	385	2108	110	422	2390	107	1052
373	1871	138	379	2053	116	416	2386	101	1086
375	2284	131	392	2050	118	411	2224	110	1034
377	2031	124	403	2065	113	419	2220	97	1103
379	1854	129	395	2056	117	414	2223	102	1079
381	1871	132	389	2062	112	420	2054	95	1113
383	2382	133	388	2404	112	420	2394	97	1105

TABLE 4.—CAVITATING VENTURI INLET CONDITIONS FOR SELECTED TESTS

Figure 5.—Propellant phase in the core LCH₄ feed system during selected tests.

The effect of propellant storage temperature variation on the phase of the propellants entering the igniter manifold was also examined as part of this investigation. The goal was to determine whether the propellants remained in liquid phase going into the igniter manifolds. Figure 5 shows the temperature versus pressure relationship of the methane in the core leg as it moved through the feed system.

Three points are displayed for each test, i.e., tank condition, inlet to the cavitating venturi, and inlet to the igniter valves. The propellant saturation line is also shown. The data shows that during an ignition pulse, the methane remained in liquid state up to the igniter valves where it then began to transition to vapor. In all cases shown in figure 5, the fuel was injected into the chamber in gaseous phase, which was the expected state for ambient temperature hardware.

Non-ignitions were also experienced during the course of these tests. Approximately 5 percent of the total pulses attempted resulted in non-ignitions. This was usually due to clogging or freezing of the core fuel leg, but ignition was also observed in some cases with fuel transport from the cooling fuel into the fuel starved core. Ignition became increasingly difficult as the igniter hardware was pre-chilled to the methane temperature (approximately 112 K). Typically when these conditions were reached, the initial pulse would ignite nominally. However, subsequent pulses would not ignite. The cause of these non-ignition events was not fully examined during the course of the investigation. Many were the result of the valve's sluggish operation or failure to open at 112 K. It was determined that additional testing at these conditions would be required in order to fully understand the non-ignition phenomena.

The durability of the igniter hardware was also examined during this investigation. A total of 1262 individual ignition pulses as described in table 5 were demonstrated in pulse trains to gage the expected lifetime of the test hardware.

Test ID	Pulses	Pulse description
1-A1	10	2 pulse trains 5 pulses each at 0.5 sec on 9.5 sec off $(5\% \text{ duty})$
1-A2	5	1 pulse trains, 5 pulses each at 0.5 sec on 9.5 sec off (5% duty)
I-A22	15	3 pulse trains, 5 pulses each at 0.5 sec on $9.5 \text{ sec off}(5\% \text{ duty})$
II-A29	25	5 pulse trains, 5 pulses each at 0.5 sec on 9.5 sec off (5% duty)
II-A29	25	5 pulse trains 5 pulses each at 0.5 sec on $4.5 \text{ sec off} (10\% \text{ duty})$
II-A29	50	5 pulse trains, 10 pulses each at 0.5 sec on 4.5 sec off (10% duty)
II-A29	10	2 pulse trains, 5 pulses each at 0.5 sec on, 2.0 sec off (20% duty)
II-A31	5	1 pulse train, 5 pulses each at 0.5 sec on 4.5 sec off (10% duty)
II-A31	10	2 pulse trains, 5 pulses each at 0.25 sec on 4.75 sec off (5% duty)
II-A31	20	2 pulse trains, 10 pulses each at 0.25 sec on, 4.75 sec off (5% duty)
II-A31	20	2 pulse trains, 10 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	240	12 pulse trains, 20 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	5	1 pulse train, 5 pulses each at 0.5 sec on, 4.5 sec off (10% duty)
II-A31	10	1 pulse train, 10 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	5	1 pulse train, 5 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	15	3 pulse trains, 5 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	80	8 pulse trains, 10 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	40	2 pulse trains, 20 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	8	1 pulse train, 8 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	27	3 pulse trains, 9 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	3	1 pulse train, 3 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	20	4 pulse trains, 5 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	20	2 pulse trains, 10 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	140	7 pulse trains, 20 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	3	1 pulse train, 3 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	13	1 pulse train, 13 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	8	1 pulse train, 8 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	15	1 pulse train, 15 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	20	4 pulse trains, 5 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	380	38 pulse trains, 10 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	2	1 pulse train, 2 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	9	1 pulse train, 9 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
II-A31	4	1 pulse train, 4 pulses each at 0.25 sec on, 2.25 sec off (10% duty)
	1262	Total Pulses

TABLE 5.—DURABILITY TEST CONDITIONS AND NUMBER OF PULSES AT EACH CONDITION

For this phase of testing, the pulse duration was set to 0.25 sec. Most tests were at 10 percent duty cycle, but a small number were at duty cycles of 5 and 20 percent. The tank pressure and temperature setting were approximately the same through the tests. Most pulse trains had 5, 10, or 20 pulses.

Figure 6 shows the feed system pressures and chamber pressure for a typical 10 pulse string. Figure 7 shows the propellant mass flow rates and chamber pressures measured at 0.23 sec into each pulse.

Figure 6.—Typical 10 pulse ignition train.

Figure 7.—Propellant flow rate and chamber pressure rise over the 10 pulse train.

Note that chamber pressure increases slightly in each subsequent pulse even though the measured mass flows are equal or slightly decreasing. This could be due to increased combustion efficiency in subsequent pulses or there could be some undetermined error in the mass flow measurement, since the downstream pressure criteria for cavitation were not being satisfied.

Table 6 shows the measured mass flow rates and calculated core and overall mixture ratios. Historical data (ref. 6) gives the lean premixed flammability limit of oxygen and methane as MR = 38. The core MR in table 1 is well beyond this oxidizer rich (fuel lean) combustion limit, while we're still successfully igniting. This implies some entrainment of the fuel film cooling into the core ignition zone.

Pulse	Core flow rate	Film cooling flow rate Oxidizer flow rate		Core MR	Total MR
i uise	core now rate		Oxidizer now rate		Total WIX
		(g/s)			
1	0.055	0.587	7.325	132.66	11.41
2	0.074	0.581	7.204	97.79	11.00
3	0.101	0.585	7.187	70.82	10.47
4	0.153	0.584	7.219	47.31	9.80
5	0.101	0.577	7.212	71.55	10.64
6	0.075	0.582	7.187	95.98	10.95
7	0.096	0.577	7.156	74.36	10.64
8	0.093	0.579	7.103	76.18	10.57
9	0.076	0.579	7.096	93.66	10.84
10	0.074	0.565	7.011	94.91	10.98

TABLE 6.—PROPELLANT FLOW RATES AND MIXTURE RATIOS IN THE 10 PULSE TRAIN

The durability test showed that the igniter was capable of producing repeatable ignition pulses in over a hundred separate pulse trains. There were slight variations from run to run due to the fluctuation of the propellant pressure regulators. These variations resulted is slight differences in the propellant flow rates. This phase of testing was halted due to the failure of the ceramic insulation surrounding the base of the spark plug tip. The spark plug with the failed ceramic is shown in figure 8. An investigation into the cause of the failure is underway with a focus on its use in a cryogenic environment.

Figure 8.—Photograph of spark plug with failed ceramic.

Conclusion

Over the course of testing, a total of 1402 individual ignition pulses were successfully demonstrated in ignitability and durability tests over the range of overall mixture ratios from 1.08 to 1.88. The corresponding chamber pressures ranged from approximately 1040 to 1720 kPa and were set by the combustion efficiency and the mass flow through a 5.0 mm diameter throat on the igniter combustion chamber. This pressure affected the accuracy of the cavitating venturi, but flow control was established as demonstrated by pulse repeatability. Approximately 10 percent of the total number of pulses was conducted to examine the ignition range for the ignitability portion of the testing. Ignition attempts with a cold-soak of the igniter were examined with mixed results. In the durability portion of the testing, 1262 pulses were accumulated mostly in trains of 10 pulses. Testing was halted after the failure of the ceramic in the igniter spark plug.

References

- 1. Judd, D.C., et al, "Development Testing of a LOX/Methane Engine for In-Space Propulsion," AIAA–2006–5079, July 2006.
- Sullivan, T.A., Linne, D. L., Bryant, L., and Kennedy, K., "In-Situ-Produced Methane and Methane/Carbon Monoxide Mixtures for Return Propulsion from Mars," *Journal of Propulsion and Power*, vol. 11, no. 5, 1995, pp. 1056–1062; also AIAA Paper 94–2846, June 1994.
- 3. Studak, J.W., Schneider, S.J., and Grimm, T., LOX/LCH₄ Ignition Results with Aerojet RCS LOX/Ethanol Igniter, JANNAF JPM, Denver, CO May 2007.
- 4. Kearns, K.A., "The Revamping of an Ignition Test Facility," AIAA-2003-7362, January 2003.
- 5. Wright, R.S., and Olicker, S.D., "Cavitating Venturi for Flow Control," *Chemical Engineering*, November 1956.
- 6. Strahle, W.C., *An Introduction to Combustion*, Gordon and Breach Science Publishers, 1993, Chap. 4.

	REPOR		Form Approved OMB No. 0704-0188						
The public reporting burd data needed, and compl burden, to Department of Respondents should be control number.	den for this collection of inform eting and reviewing the collect f Defense, Washington Headd aware that notwithstanding an	nation is estimated to a tion of information. Se quarters Services, Dire by other provision of la	average 1 hour per response, including t nd comments regarding this burden esti ctorate for Information Operations and I w, no person shall be subject to any per	he time for reviewing instruct mate or any other aspect of Reports (0704-0188), 1215 alty for failing to comply with	tions, searching existing data sources, gathering and maintaining the this collection of information, including suggestions for reducing this lefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. h a collection of information if it does not display a currently valid OMB				
PLEASE DO NOT RETU 1. REPORT DATE 01-11-2007	JRN YOUR FORM TO THE AL (DD-MM-YYYY)	BOVE ADDRESS. 2. REPORT TY Technical M	/PE emorandum		3. DATES COVERED (From - To)				
4. TITLE AND SU Design, Fabricat	BTITLE tion, and Test of a L	OX/LCH ₄ RCS	S Igniter at NASA		5a. CONTRACT NUMBER				
			5b. GRANT NUMBER						
			5c. PROGRAM ELEMENT NUMBER						
6. AUTHOR(S) Schneider, Steve	en, J.; John, Jeremy,	W.; Zoeckler,	Joseph, G.		5d. PROJECT NUMBER				
					5e. TASK NUMBER				
					5f. WORK UNIT NUMBER WBS 253225.04.01.03.03.03.01				
7. PERFORMING National Aerona John H. Glenn F Cleveland, Ohio	ORGANIZATION NAM autics and Space Ad Research Center at L 9 44135-3191	ME(S) AND ADD ministration .ewis Field	RESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER E-16215				
9 SPONSOPING									
National Aerona Washington, DC	autics and Space Ad C 20546-0001	ministration	D ADDRE33(E3)		ACRONYM(S) NASA				
					11. SPONSORING/MONITORING REPORT NUMBER NASA/TM-2007-215038				
12. DISTRIBUTIO Unclassified-Un Subject Categor Available electro This publication is a	12. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified-Unlimited Subject Category: 20 Available electronically at http://gltrs.grc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 301-621-0390								
13. SUPPLEMENTARY NOTES									
14. ABSTRACT A workhorse liquid oxygen-liquid methane (LOX/LCH ₄) rocket igniter was recently tested at NASA Glenn Research Center's (GRC) Research Combustion Laboratory (RCL). These tests were conducted in support of the Reaction Control Engine (RCE) development task of the Propulsion and Cryogenics Advanced Development (PCAD) project. The igniter was a GRC in-house design used to evaluate the ignition processes for LOX/LCH ₄ . The test matrix was developed to examine the flammability of LOX/LCH ₄ over a range of oxidizer-to-									
fuel mixture ratios, both in the core fuel flow and total flow. In addition, testing also examined the durability of the hardware by accumulating ignition pulses. Over the course of testing, a total of 1402 individual ignition pulses were successfully demonstrated over the range of mixture ratios. Testing was halted after the failure of the ceramic in the igniter spark plug.									
Chemical propu	lsion; Rocket engine	es; Low thrust	propulsion; Ignition						
16. SECURITY CL	ASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON STI Help Desk (email:help@sti.nasa.gov)				
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	UU	18	19b. TELEPHONE NUMBER (include area code) 301-621-0390				
					Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18				