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Abstract 
 
This work presents a hierarchically structured approach at the nonintrusive 
recognition of sign language from a monocular frontal view. Robustness is 
achieved through sophisticated localization and tracking methods, including a 
combined EM/CAMSHIFT overlap resolution procedure and the parallel pursuit 
of multiple hypotheses about hands position and movement. This allows handling 
of ambiguities and automatically corrects tracking errors. A biomechanical 
skeleton model and dynamic motion prediction using Kalman filters represents 
high level knowledge. Classification is performed by Hidden Markov Models. 152 
signs from German sign language were recognized with an accuracy of 97.6%.  

 
 
 
1. Introduction 

 
Manual gestures are an important information carrier in everyday communication. Considerable 
potential lies in the automatic recognition of gestures, especially for human-computer 
interaction. As opposed to the keyboard, gestures are natural, intuitive, and do not require special 
skills. Sign language recognition is a particularly challenging field in this research area. Its goal 
is to do for deaf people what speech recognition has done for hearing people: Offer the most 
natural way of controlling electronic devices.  
 
In sign language, information is communicated primarily through hands and face. This work 
utilizes manual parameters for the recognition of 152 signs from German sign language. Instead 
of using data gloves, which in most scenarios is not an acceptable solution, manual parameters 
are extracted from images acquired by a single video camera positioned in front of the signer. 
Skin color and motion form the basic low-level image cues. In order to ensure a natural, i. e. non-
intrusive interaction, no other devices, such as markers or additional cameras, are employed.  
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Existing non-intrusive systems only support considerably smaller vocabularies of about 40 signs 
[12]. Due to the difficulty of accurately localizing the signer’s hands when they are overlapping 
with each other and/or with the face, which occurs frequently in sign language, ambiguities can 
easily arise. Sophisticated overlap resolution procedure and the parallel pursuit of multiple 
hypotheses regarding hands position and movement, are applied to compute manual features 
even in such problematic scenes. A. priori knowledge is incorporated through a biomechanical 
skeleton model and dynamic Kalman filter predictions. 
 
The extracted features are classified using Hidden Markov Models (HMMs) to compensate for 
variations in speed and allow limited variations in amplitude. On the chosen data set the 
developed system achieves a recognition rate of 97.6% at a resolution of 384 X 288 pixels. This 
performance has been measured for a person dependent recognition task in a controlled 
environment. However, the system’s basic concepts are not geared towards this scenario. Their 
suitability for “real life”, possibly mobile environments, is an important design feature.  
 
 
2. Sign Vocabulary 

 
The system’s vocabulary consists of 152 signs. Each has been recorded ten times with a 
resolution of 384 X 288 pixelS and 25 frames per second. Figure 1 shows an example sign and 
the recording conditions, which were identical for all signs. Since this work focuses on person-
dependent classification, only one signer has been recorded. Extending the system to person-
independent classification would not affect the tracking stage, but inter-personal variance would 
require special measures in the classification stage if comparable recognition rates were to be 
achieved. 
 

 
Figure 1. Example sign “computer” from the test/training data set. Signer, 
background, illumination, and clothing were identical in all recordings. 

 
 
3. Tracking 
 
The complexity of the object tracking task suggests a hierarchical division in two stages (see 
Figure 2). First, a low level processing stage detects a set of target candidates using skin color as 
an image cue. This set may include skin colored distracters. Hands and face are then found in 
this set by the subsequent high level processing stage. To this end, multiple hypotheses are 
evaluated per frame and over time. 
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Figure 2. Functional overview. 
 
 
3.1 Target Candidate Detection 
 
Based on generic skin and non-skin color histograms presented in [7], a skin color probability is 
computed for every pixel. After smoothing the result with a Gaussian kernel and application of a 
threshold segmentation [13], contiguous regions (blobs) are extracted.  
 
The computationally demanding high level stage necessitates efficient data structures for the 
representation of each blob. Therefore, a blob’s boundary (which typically consists of several 
hundred pixels) is not processed directly, but approximated by an elliptical representation called 
“blob ellipse.” Aiming for a tradeoff between accuracy in terms of the signal to noise ration and 
processing speed, a blob ellipse is described by its center coordinates x and y, radii ra and rb, and 
orientation of the principal axis. 
 
It is obvious that a threshold segmentation cannot separate two or more overlapping skin colored 
objects (e. g. hand and face). To extract meaningful features, however, a separation of the 
overlapping objects is required. Therefore, a distinction is introduced between the set of “raw” 
blob ellipses extracted in frame t, called Braw;t, and a corresponding set of “overlap resolved” 
blob ellipses Bt. Only Bt will later be forwarded to the high level stage. This is illustrated in  
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Figure 3. In the input image It¡1, no overlap is present. Therefore, Braw;t¡1 = Bt¡1. In It, the right 
hand is overlapping with the face. In Braw;t, the two corresponding ellipses have therefore merged 
into one. The low level stage resolves this overlap and computes two overlapping ellipses. This 
process is described in the following section. 
 

 
Figure 3. Processing of blob ellipses by the low level stage. Grey arrows indicate 
overlap resolution. 

 
 
3.1.1 Overlap Detection and Resolution 
 
For each blob ellipse in Braw;t, a number of n an element of N0 corresponding blob ellipses in Bt¡1 

are found by computing and evaluating predictions for both shape and position. Depending on n, 
several cases can be distinguished as shown in Table 1. 
 

 

Table 1.  
Different cases of blob ellipse correspondence. 

n = 0 new object has entered the image 

n = 1 regular tracking 

n ≥ 2 n objects have started to overlap 

 



 25

For n ≥ 2, either the EM or the CAMSHIFT algorithm is used to resolve the overlap and 
approximate features for all overlapping objects. This is described below. 
 
3.1.2  Overlap Resolution Using the EM Algorithm  
 
The Expectation Maximization (EM) algorithm is an iterative method for approximating a given 
probability distribution by a superposition of a fixed number of two-dimensional Gaussian 
distributions [2]. The latter corresponds well with the concept of blob ellipses, which allows an 
easy integration of the EM algorithm in the processing chain.  
 
Figure 4 shows a typical scenario that can be treated with the EM algorithm. The overlap here is 
only partial, i. e. none of the three overlapping objects is completely enclosed in another object 
(in a 2D sense). Since the threshold segmentation yields a binary mask, but the EM algorithm 
computes a superposition of Gaussians, a morphological distance transformation (described in 
[6]) is used to create a pseudo-multivariate distribution. This requires that non-skin colored 
pixels (holes) enclosed by the overlapping objects are first removed, i. e. set to 1 in the binary 
mask. 

 
Figure 4. Preparation of the skin color mask for the EM algorithm. (a) Original 
image, (b) Threshold segmented skin color probability, (c) Skin color mask with 
holes removed, (d) Distance transformed skin color mask. 

 
 
For the EM algorithm to accurately resolve an overlap of multiple blob ellipses, t is initialized 
with the shape and position parameters computed for these ellipses in the previous frame. The 
original algorithm has been modified so that several parameters either remain constant or change 
only in a well-defined interval. This increases the stability of the approximation process. Figure 5 
shows the approximation status at different iterations. 
 

 
Figure 5. Application of the EM algorithm. (a) Initialization, (b – e) after i 
iterations. 
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3.1.3 Overlap Resolution Using the CAMSHIFT Algorithm 
 
If one object is completely enclosed in another, the EM algorithm is unsuitable for overlap 
resolution because its input matrix (Figure 4d) would not provide any information about the 
inner object. However, motion can be used as an additional image cue in this case. The detection 
of motion is based on computing, for every pixel, the difference in color between successive 
frames, and subsequent application of a fixed threshold to yield a binary “motion mask.” Using a 
sliding average with linearly decreasing weights, a so called Motion History Image (MHI), 
Imotion(x; y), is created as described in [3]. This is then combined with the skin color probability 
distribution Iskin(x; y) according to the following equations. Figure 6 shows a visualization of this 
process. 
 

Iskin(x; y) = pskin(x; y)  (1) 
Icamshift(x; y) = w Iskin(x; y) + (1 ¡ w) Imotion(x; y)  (2) 

 

 
Figure 6. Computation of the CAMSHIFT input image. (a) Original image, (b) 
Skin color probability image (Gauss filtered), (c) Motion History Image, (d) 
Combined image according to equation 2. 

 
 
On the resulting image Icamshift, a CAMSHIFT tracker is applied for each hand. The respective 
search windows are initialized with the most recent position and shape values of the overlapping 
blob ellipses.  
 
Shape and orientation remain constant while this method is used for overlap resolution. The 
weight w (0 · w · 1) allows adjustment of the degree to which motion is considered by the 
CAMSHIFT algorithm. Figure 7 shows an example application to a face-hand-hand overlap.  
 

 
Figure 7. Resolution of a face-hand-hand overlap by application of the 
CAMSHIFT algorithm. 
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3.2 Multiple Hypothesis Tracking 
 
From the set of detected target candidates, the actual body configuration that gave rise to this 
observation has to be deduced. Since every observation allows more than one interpretation, 
multiple hypotheses can be formulated for every video frame. Enumerating these hypotheses and 
plotting them over time results in a diagram as shown in Figure 8. In this hypothesis space, there 
are N(t) hypotheses for frame t, thus the total number of all possible paths (i.e. tracking results) P 
equals  

 (3) 
 
 
High level knowledge about the signing process allow computing for each hypothesis a 
probability pstat;t(i) which is independent from the previous and the next hypothesis (static), and a 
probability pdyn;t(i; j) which depends only on the transition between two hypotheses, but not on 
the hypotheses themselves (dynamic). Searching for the path with highest total probability is 
done with the Viterbi algorithm [9]. 

 
Figure 8. Hypothesis space with static and dynamic probabilities. 

 
 
3.2.1 Computation of Static and Dynamic Probabilities 
 
The chosen approach allows exploitation of any number of image cues and high level knowledge 
for the computation of the static and dynamic probabilities. In practice, the selection will depend 
on the actual recognition/tracking task. For the presented system, a body model is computed that 
approximates arm length and flexion of joints. From a manual segmentation of the input clips, a 
hand position histogram has been created that represents knowledge of where the hands are 
typically found. Together with information about the signer’s handedness, this allows to evaluate 
the hypothesized configuration’s likeliness both physiologically and “linguistically,” resulting in 
pstat. pdyn is obtained from Kalman filter predictions for each blob ellipse’s position, shape, and 
orientation. 
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3.3 Feature Vector Composition 
 
The feature vector composed for every frame contains the center coordinates, orientation, area, 
and ratio of radii of each hand’s elliptical approximation. Furthermore, compactness and 
eccentricity (as defined in [10]) are computed from the object’s border found by the threshold 
segmentation. For the feature vector to be independent from the signer’s exact position in the 
image and from the camera’s resolution, position and area are specified relative to the face 
position and face width. Derivatives for all of these values are also added to the feature vector. 
 
 
4. Evaluation 
 
Since the tracking stage is the most complex component in this work, not only the recognition 
rate, but also the tracker’s hit rate were evaluated. A manual segmentation of all input clips has 
been performed which allows to define three categories that classify a tracking result based on 
the center coordinates as shown in Table 2 and Figure 9. 
 
 

Table 2. Categorization of tracking results. 

Center coordinates (x, y) within... Category 

...border of the target object hit on object 

...elliptical region around target center hit near center 

...neither of the above miss 

 
 
 
 

 
 

Figure 9. Definition of tracker hit and miss. 
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Experimental results are shown in Table 3. The vocabulary has been divided into five categories 
that clearly show overlap to be the tracker’s main problem. 
 
 

Table 3. Quantitative evaluation of tracking accuracy (H=hand, F=face). 

Sign 
Category 

One 
Handed 

Two 
Handed 

No 
Overlap 

H-F 
Overlap 

H-H 
Overlap 

 
Total 

Hit rate: 98.4% 95.4% 99.0% 96.8% 93.7% 97.1% 

 
 
On the complete vocabulary of 152 signs in German Sign Language, a recognition rate of 97.6% 
was achieved using an HMM based classification stage. This constitutes an increase compared to 
other recognition systems (intrusive and nonintrusive), such as [4], [5], [11], and [12]. Only for 
considerably smaller vocabularies (approx. 40 signs) have higher rates for non-intrusive 
recognition been published. This may be due to the fact that the multiple hypotheses approach 
considers for every frame nearly all available information, including past and future frames, 
before a decision is made, and can retrospectively correct tracking errors as soon as they become 
apparent. 
 
 
5. Outlook 
 
Several improvements and extensions are conceivable to either increase recognition performance 
or open up new application scenarios. A user adaptive skin color model would reduce the 
number of distracters by narrowing down the target color range and thereby increasing both 
reliability and processing speed of the tracking stage. 
 
Significantly increasing the vocabulary size would require the extraction of further shape and/or 
texture features, with the ultimate goal of reconstructing a 3D hand model from the 2D image 
data. 
 
Recognition of continuous signing is an obvious but complex extension of the system. 
Translation systems to speech, text, or another sign language, require the automatic detection of 
start and end points of individual signs, as well as the handling of co-articulation effects that can 
have strong influence on the extracted features. 
 
Integration of mimic, i. e. facial features, is currently in progress. Facial expressions are vital for 
sign language recognition since many signs are identical in their manual features. A further 
increase in recognition rates can be expected from this extension. 
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