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Abstract

This work presents a hierarchically structured approach at the nonintrusive
recognition of sign language from a monocular frontal view. Robustness is
achieved through sophisticated localization and tracking methods, including a
combined EM/CAMSHIFT overlap resolution procedure and the parallel pursuit
of multiple hypotheses about hands position and movement. This allows handling
of ambiguities and automatically corrects tracking errors. A biomechanical
skeleton model and dynamic motion prediction using Kalman filters represents
high level knowledge. Classification is performed by Hidden Markov Models. 152
signs from German sign language were recognized with an accuracy of 97.6%.

1. Introduction

Manual gestures are an important information carrier in everyday communication. Considerable
potential lies in the automatic recognition of gestures, especially for human-computer
interaction. As opposed to the keyboard, gestures are natural, intuitive, and do not require special
skills. Sign language recognition is a particularly challenging field in this research area. Its goal
is to do for deaf people what speech recognition has done for hearing people: Offer the most
natural way of controlling electronic devices.

In sign language, information is communicated primarily through hands and face. This work
utilizes manual parameters for the recognition of 152 signs from German sign language. Instead
of using data gloves, which in most scenarios is not an acceptable solution, manual parameters
are extracted from images acquired by a single video camera positioned in front of the signer.
Skin color and motion form the basic low-level image cues. In order to ensure a natural, i. e. non-
intrusive interaction, no other devices, such as markers or additional cameras, are employed.
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Existing non-intrusive systems only support considerably smaller vocabularies of about 40 signs
[12]. Due to the difficulty of accurately localizing the signer’s hands when they are overlapping
with each other and/or with the face, which occurs frequently in sign language, ambiguities can
easily arise. Sophisticated overlap resolution procedure and the parallel pursuit of multiple
hypotheses regarding hands position and movement, are applied to compute manual features
even in such problematic scenes. 4. priori knowledge is incorporated through a biomechanical
skeleton model and dynamic Kalman filter predictions.

The extracted features are classified using Hidden Markov Models (HMMs) to compensate for
variations in speed and allow limited variations in amplitude. On the chosen data set the
developed system achieves a recognition rate of 97.6% at a resolution of 384 X 288 pixels. This
performance has been measured for a person dependent recognition task in a controlled
environment. However, the system’s basic concepts are not geared towards this scenario. Their
suitability for “real life”, possibly mobile environments, is an important design feature.

2. Sign Vocabulary

The system’s vocabulary consists of 152 signs. Each has been recorded ten times with a
resolution of 384 X 288 pixelS and 25 frames per second. Figure 1 shows an example sign and
the recording conditions, which were identical for all signs. Since this work focuses on person-
dependent classification, only one signer has been recorded. Extending the system to person-
independent classification would not affect the tracking stage, but inter-personal variance would
require special measures in the classification stage if comparable recognition rates were to be
achieved.

Figure 1. Example sign “computer” from the test/training data set. Signer,
background, illumination, and clothing were identical in all recordings.

3. Tracking

The complexity of the object tracking task suggests a hierarchical division in two stages (see
Figure 2). First, a low level processing stage detects a set of target candidates using skin color as
an image cue. This set may include skin colored distracters. Hands and face are then found in
this set by the subsequent high level processing stage. To this end, multiple hypotheses are
evaluated per frame and over time.
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Figure 2. Functional overview.

3.1 Target Candidate Detection

Based on generic skin and non-skin color histograms presented in [7], a skin color probability is
computed for every pixel. After smoothing the result with a Gaussian kernel and application of a
threshold segmentation [13], contiguous regions (blobs) are extracted.

The computationally demanding high level stage necessitates efficient data structures for the
representation of each blob. Therefore, a blob’s boundary (which typically consists of several
hundred pixels) is not processed directly, but approximated by an elliptical representation called
“blob ellipse.” Aiming for a tradeoff between accuracy in terms of the signal to noise ration and
processing speed, a blob ellipse is described by its center coordinates x and y, radii 7« and r», and
orientation of the principal axis.

It is obvious that a threshold segmentation cannot separate two or more overlapping skin colored
objects (e. g. hand and face). To extract meaningful features, however, a separation of the
overlapping objects is required. Therefore, a distinction is introduced between the set of “raw”
blob ellipses extracted in frame ¢, called Braw;s, and a corresponding set of “overlap resolved”
blob ellipses Br. Only B/ will later be forwarded to the high level stage. This is illustrated in
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Figure 3. In the input image /51, no overlap is present. Therefore, Braw;;;1 = By1. In 11, the right
hand is overlapping with the face. In Braw,s, the two corresponding ellipses have therefore merged
into one. The low level stage resolves this overlap and computes two overlapping ellipses. This
process is described in the following section.
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Figure 3. Processing of blob ellipses by the low level stage. Grey arrows indicate
overlap resolution.

3.1.1 Overlap Detection and Resolution
For each blob ellipse in Braw,z, a number of n an element of N, corresponding blob ellipses in By1

are found by computing and evaluating predictions for both shape and position. Depending on 7,
several cases can be distinguished as shown in Table 1.

Table 1.
Different cases of blob ellipse correspondence.

n=0 | new object has entered the image

n=1 | regular tracking

n>2 | nobjects have started to overlap
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For n > 2, either the EM or the CAMSHIFT algorithm is used to resolve the overlap and
approximate features for all overlapping objects. This is described below.

3.1.2 Overlap Resolution Using the EM Algorithm

The Expectation Maximization (EM) algorithm is an iterative method for approximating a given
probability distribution by a superposition of a fixed number of two-dimensional Gaussian
distributions [2]. The latter corresponds well with the concept of blob ellipses, which allows an
easy integration of the EM algorithm in the processing chain.

Figure 4 shows a typical scenario that can be treated with the EM algorithm. The overlap here is
only partial, i. e. none of the three overlapping objects is completely enclosed in another object
(in a 2D sense). Since the threshold segmentation yields a binary mask, but the EM algorithm
computes a superposition of Gaussians, a morphological distance transformation (described in
[6]) is used to create a pseudo-multivariate distribution. This requires that non-skin colored
pixels (holes) enclosed by the overlapping objects are first removed, i. e. set to 1 in the binary

mask.
(a) (b) (©) (d)

Figure 4. Preparation of the skin color mask for the EM algorithm. (a) Original
image, (b) Threshold segmented skin color probability, (¢) Skin color mask with
holes removed, (d) Distance transformed skin color mask.

For the EM algorithm to accurately resolve an overlap of multiple blob ellipses, t is initialized
with the shape and position parameters computed for these ellipses in the previous frame. The
original algorithm has been modified so that several parameters either remain constant or change
only in a well-defined interval. This increases the stability of the approximation process. Figure 5
shows the approximation status at different iterations.

iE B

(a) by i=1 (c)i=2 (d)i=4 (e) 1 =32

Figure 5. Application of the EM algorithm. (a) Initialization, (b — e) after i
iterations.
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3.1.3 Overlap Resolution Using the CAMSHIFT Algorithm

If one object is completely enclosed in another, the EM algorithm is unsuitable for overlap
resolution because its input matrix (Figure 4d) would not provide any information about the
inner object. However, motion can be used as an additional image cue in this case. The detection
of motion is based on computing, for every pixel, the difference in color between successive
frames, and subsequent application of a fixed threshold to yield a binary “motion mask.” Using a
sliding average with linearly decreasing weights, a so called Motion History Image (MHI),
Imotion(x; ¥), 1s created as described in [3]. This is then combined with the skin color probability
distribution Iskin(x; y) according to the following equations. Figure 6 shows a visualization of this
process.

[skin(x,' y) = pskin(x,' y) (1)
Icamsh{ﬂ(x,' y) =w Iskin(x,' y) + (1 / W) Imotion(X,' y) (2)

(a) (b)
Figure 6. Computation of the CAMSHIFT input image. (a) Original image, (b)

Skin color probability image (Gauss filtered), (c) Motion History Image, (d)
Combined image according to equation 2.

(d)

On the resulting image lcamshifi, a CAMSHIFT tracker is applied for each hand. The respective
search windows are initialized with the most recent position and shape values of the overlapping
blob ellipses.

Shape and orientation remain constant while this method is used for overlap resolution. The

weight w (0 - w - 1) allows adjustment of the degree to which motion is considered by the
CAMSHIFT algorithm. Figure 7 shows an example application to a face-hand-hand overlap.

0()0 a

(a) t=13 (b) =18 (c) =23

Figure 7. Resolution of a face-hand-hand overlap by application of the
CAMSHIFT algorithm.
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3.2 Multiple Hypothesis Tracking

From the set of detected target candidates, the actual body configuration that gave rise to this
observation has to be deduced. Since every observation allows more than one interpretation,
multiple hypotheses can be formulated for every video frame. Enumerating these hypotheses and
plotting them over time results in a diagram as shown in Figure 8. In this hypothesis space, there
are N(?) hypotheses for frame ¢, thus the total number of all possible paths (i.e. tracking results) P
equals

r=1[~® )

High level knowledge about the signing process allow computing for each hypothesis a
probability pswr«(7) which is independent from the previous and the next hypothesis (static), and a
probability pawn«(i; j) which depends only on the transition between two hypotheses, but not on
the hypotheses themselves (dynamic). Searching for the path with highest total probability is
done with the Viterbi algorithm [9].
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Figure 8. Hypothesis space with static and dynamic probabilities.

3.2.1 Computation of Static and Dynamic Probabilities

The chosen approach allows exploitation of any number of image cues and high level knowledge
for the computation of the static and dynamic probabilities. In practice, the selection will depend
on the actual recognition/tracking task. For the presented system, a body model is computed that
approximates arm length and flexion of joints. From a manual segmentation of the input clips, a
hand position histogram has been created that represents knowledge of where the hands are
typically found. Together with information about the signer’s handedness, this allows to evaluate
the hypothesized configuration’s likeliness both physiologically and “linguistically,” resulting in
Pstat. payn 1s obtained from Kalman filter predictions for each blob ellipse’s position, shape, and
orientation.
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3.3 Feature Vector Composition

The feature vector composed for every frame contains the center coordinates, orientation, area,
and ratio of radii of each hand’s elliptical approximation. Furthermore, compactness and
eccentricity (as defined in [10]) are computed from the object’s border found by the threshold
segmentation. For the feature vector to be independent from the signer’s exact position in the
image and from the camera’s resolution, position and area are specified relative to the face
position and face width. Derivatives for all of these values are also added to the feature vector.

4. Evaluation

Since the tracking stage is the most complex component in this work, not only the recognition

rate, but also the tracker’s hit rate were evaluated. A manual segmentation of all input clips has
been performed which allows to define three categories that classify a tracking result based on

the center coordinates as shown in Table 2 and Figure 9.

Table 2. Categorization of tracking results.

Center coordinates (x, y) within... Category
...border of the target object hit on object
...elliptical region around target center hit near center
...neither of the above miss

X + target center

@ hit on object
O hit near center
X miss

Figure 9. Definition of tracker hit and miss.
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Experimental results are shown in Table 3. The vocabulary has been divided into five categories
that clearly show overlap to be the tracker’s main problem.

Table 3. Quantitative evaluation of tracking accuracy (H=hand, F=face).

Sign One Two No H-F H-H
Category Handed | Handed | Overlap | Overlap | Overlap | Total
Hit rate: 98.4% | 95.4% 99.0% 96.8% 93.7% 97.1%

On the complete vocabulary of 152 signs in German Sign Language, a recognition rate of 97.6%
was achieved using an HMM based classification stage. This constitutes an increase compared to
other recognition systems (intrusive and nonintrusive), such as [4], [5], [11], and [12]. Only for
considerably smaller vocabularies (approx. 40 signs) have higher rates for non-intrusive
recognition been published. This may be due to the fact that the multiple hypotheses approach
considers for every frame nearly all available information, including past and future frames,
before a decision is made, and can retrospectively correct tracking errors as soon as they become
apparent.

5. Outlook

Several improvements and extensions are conceivable to either increase recognition performance
or open up new application scenarios. A user adaptive skin color model would reduce the
number of distracters by narrowing down the target color range and thereby increasing both
reliability and processing speed of the tracking stage.

Significantly increasing the vocabulary size would require the extraction of further shape and/or
texture features, with the ultimate goal of reconstructing a 3D hand model from the 2D image
data.

Recognition of continuous signing is an obvious but complex extension of the system.
Translation systems to speech, text, or another sign language, require the automatic detection of
start and end points of individual signs, as well as the handling of co-articulation effects that can
have strong influence on the extracted features.

Integration of mimic, i. e. facial features, is currently in progress. Facial expressions are vital for

sign language recognition since many signs are identical in their manual features. A further
increase in recognition rates can be expected from this extension.

29



Acknowledgements

This work was carried out at the Chair of Technical Computer Science, RWTH Aachen
University, based on a dissertation by Suat Akyol [1]. Numerous other researchers and students
have contributed code to the developed software [8]. The project is funded by the European
Commission Directorate — General Information Society Technologies (IST) Programme (2001—
2003)

References

[1] S. Akyol. Nicht-intrusive Erkennung isolierter Gesten und Gebaerden (Non-Intrusive
Recognition of Isolated Gestures and Signs). 2003. Dissertation, Chair of Technical
Computer Science, RWTH Aachen University.

[2]J. A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to Parameter
Estimation for Gaussion Mixture and Hidden Markov Models. Technical Report TR-97-021,
International Computer Science Institute, U.C. Berkeley, April 1998.

[3]J.-W. Davis and A.-F. Bobick. The Representation and Recognition of Action Using
Temporal Templates. In Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition, pages 928-934, San Juan, Puerto Rico, 1997.

[4] K. Grobel. Videobasierte Geb“ardenspracherkennung mit Hidden-Markov- Modellen (Video-
Based Sign Language Recognition Using Hidden Markov Models). Fortschritts-Berichte VDI
10/592. VDI Verlag, D usseldorf, 1999. Dissertation, Chair of Technical Computer Science,
RWTH Aachen University.

[5] H. Hienz. Erkennung kontinuierlicher Geb ardensprache mit Ganzwortmodellen
(Recognition of Continuous Sign Language Using Whole Word Models). Shaker Verlag,
Aachen, 2000. Dissertation, Chair of Technical Computer Science, RWTH Aachen
University.

[6] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall Inc., Englewood Cliffs,
NJ, 1989.

[71 M. J. Jones and J. M. Rehg. Statistical Color Models with Application to Skin Detection.
Technical Report CRL 98/11, Compaq Cambridge Research Lab, December 1998.

[8] LTI-Lib: A C++ library for image processing and computer vision. http://Itilib.sf.net, 2003.

[9] L. Rabiner and B.-H. Juang. An Introduction to Hidden Markov Models. IEEE ASSP
Magazine, 3(1):4-16, 1986.

[10] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision.
Brooks/Cole Publishing Company, 1999.

[11] T. Starner, J. Weaver, and A. Pentland. Real-Time American Sign Language Recognition
Using Desk andWearable Computer Based Video. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(12):1371-1375, 1998.

[12] M.-H. Yang, N. Ahuja, and M. Tabb. Extraction of 2D Motion Trajectories and its
Application to Hand Gesture Recognition. /EEE Transactions on Pattern Analysis and
Machine Intelligence, 24(8):1061-1074, 2002.

[13] J. Zieren, N. Unger, and S. Akyol. Hands Tracking from Frontal View for Vision-Based
Gesture Recognition. In L. van Gool, J. Hartmanis, and J. van Leeuwen, editors, Lecture
Notes in Computer Science LNCS 2449, Z urich, Switzerland, 2002.

30



