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Motivation and the Problem
Helicopter rotor noise prediction 

Kirchhoff formula for a moving surface gives p' in
the  exterior region from surface data.
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Derivation of Kirchhoff Formula
for a Moving Surface

Classical Analysis
| 4D Green's Theorem required
| Some ambiguities working with 4D integrals
| Extremely involved algebraic manipulations
| Difficulties with physical meaning of some terms

References:

Classical analysis: W. R. Morgans: The Kirchhoff formula extended to a mov-
ing surface, Philosophical Magazine, 9, 1930, 141-161 

Modern analysis using generalized functions: F. Farassat and M. K. Myers: 
Extension of Kirchhoff's formula to radiation from moving sources, Journal
of Sound and Vibration, 123 (3), 1988, 451-460
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The Imbedding Method- The Idea
| When the Green's function  G (x, y) of a differential equation   u =
f  is known in the a domain S, then that Green's function can be uti-
lized  in  solving  the  same  differential  equation  in  a  smaller
domain S' Õ S. 
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The Imbedding Method- The Idea
| When the Green's function  G (x, y) of a differential equation   u =
f  is known in the a domain S, then that Green's function can be uti-
lized  in  solving  the  same  differential  equation  in  a  smaller
domain S' Õ S. 

| The problem in the domain S' is imbedded in the larger domain
S  by  giving  a  known  value  to  the  unknown  function  in  the
region S \ S' which satisfies the boundary conditions of the prob-
lem in S. 
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The Imbedding Method- The Idea
| When the Green's function  G (x, y) of a differential equation   u =
f  is known in the a domain S, then that Green's function can be uti-
lized  in  solving  the  same  differential  equation  in  a  smaller
domain S' Õ S. 

| The problem in the domain S' is imbedded in the larger domain
S  by  giving  a  known  value  to  the  unknown  function  in  the
region S \ S' which satisfies the boundary conditions of the prob-
lem in S. 

| The imbedded problem, in general, has a discontinuous solu-
tion at the boundary surface ∂S' of the domain S'. This means that
the best tool to solve the imbedded problem is the generalized
function (GF) theory. 
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The Imbedding Method (cont'd)
| The Green's function method is applicable in find-
ing the discontinuous solution of differential equa-
tion as long as all  the derivatives are  viewed as
generalized derivatives.

References:

F.  Farassat,  Introduction  to  Generalized  Functions  With  Applications  in
Aerodynamics and Acoustics, NASA Technical Paper 3428, 1994

F. Farassat: The Kirchhoff Formulas for Moving Surfaces in Aeroacoustics -
The Subsonic and Supersonic Cases, NASA Technical Memorandum 110285,
September 1996

F. Farassat, et. al: Working With the Wave Equation in Aeroacoustics- The
Pleasures of Generalized Functions, AIAA-2007-3562, 2007 
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An Example of the Imbedding Method
Consider   l uHxL = u″  on  [0,  1],   BCs:  u H0L - 2 u¢H0L = 0     &
u H1L + u¢H1L = 0. The Green's function is

Use  above  Green's  function  to  solve  the  same  ODE

 on [a, b] Ã [0, 1] by the imbedding
method. Let unknown function take value 0 on [0, 1] \ [a, b].

Then use  generalized function (GF) theory  to  find  new
ODE.

 7 |14 

FF & JWP-ASA New Orleans 2007-Final Slides.nb 9



Generalized Differentiation Rules

Generalized derivative (GD) of a differ-
entiable function with a single jump discontinuity
at x0 is 

GD of a function k (x) in multidimensions
with  a  discontinuity  Dk  across  a  surface  f  =  0,
—f = n,  is 
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An Example of the Imbedding Method (cont'd)

New ODE of example imbedded problem
is:

with the following definitions: 
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Classical Kirchhoff Formula

Imbed  this  problem  in  unbounded  3D  space  by
assuming that the unknown function is 0 inside the
surface f = 0 (ı f = n ). Let
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Classical Kirchhoff Formula 
(cont'd)

New  PDE  to  derive  the classical  Kirch-
hoff formula is:

Next use the Green's function of the wave equation
in the unbounded space to get the result. 

The  rest  is  simple  algebraic
manipulations!
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Kirchhoff Formula for a Moving 
Surface

To solve in the exterior of the
moving  surface  f  =  0,  imbed  this  problem  in
unbounded 3D space taking the value 0 inside the
moving surface. Let: 
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Kirchhoff Formula for a Moving Surface (cont'd)

New PDE to derive Kirchhoff formula for
a moving surface is:

Use the Green's function of the wave equation in
the unbounded space to get the result.

The rest is again simple algebraic
manipulations!
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Concluding Remarks
The  imbedding  method  increases  the  utility  of  a
known Green's function in solving new BV and IV
problems of acoustics and other applied fields.  
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