HIGH TEMPERATURE METALLIC SEAL/ENERGIZER DEVELOPMENT FOR AEROPROPULSION AND GAS TURBINE APPLICATIONS

Greg More Parker Hannifin North Haven, Connecticut

Amit Datta Advanced Components & Materials East Greenwich, Rhode Island

> Ken Cornett Parker Hannifin North Haven, Connecticut

High Temperature Metallic Seal/Energizer Development For Aero Propulsion and Gas Turbine Applications

Greg More, Advanced Products Business Unit, Parker Hannifin North Haven, CT

> Dr. Amit Datta, Advanced Components & Materials East Greenwich, RI

Advanced Products Business Unit, Parker Hannifin North Haven, CT

e Static Seal nent	ry is	C Seal Beal gap is created resulting from stress Ce Seal gap is created resulting from stress AlS From the compressed condition.	a
High Temperatur Developr	 Industry Requirements – Indust requiring seals to operate at hic and higher temperatures. Greater efficiency Reduced cooling air requirements 	 Seal Problem – Traditional stati designs and materials experien stress relaxation. Over time se loose their ability to maintain co with moving flanges. 	 Solution – High temperature se

development program
Multiphase program with incremental increases in seal operating temperatures

Possible.

oy Spring	al sealing, methodology	e seal energizer					3				anything 214
Innovative Seal with Blade All	 In order to achieve next temperature range a different, non-tradition is utilized Separate seal loading and pressure barrier functions 	 A well known, high temperature cast material is used as high temperatur 	Good operating experience in Gas Turbine industry	 Thin oxidation resistant outer jacket 	 Outer jacket performs sealing function 	 Thin cold formable alloy jacket provides a continuous sealing surface 	 Inner spring provides high temperature load and elastic recovery 	 Cast blade alloy spring energizer for operation up to 1800 °F 	Haynes 214 Jacket	MARM 247 or CMX4 Spring	

Innovative Seal with Blade Alloy Spring

rength	
jh sti	
y hig	
extremely	
have	
alloys	
3lade	
Cast E	

Alloy	Temperature,° F	Yield Strength,ksi	Elongation,%
MARM 247, poly crystal	1400	130	12
CMX4, Single crystal	1600	114	18
INCO 718,poly crystal	1472	100	10
Waspaloy,poly crystal	1600	75	35

• Blade alloys also have superior creep and stress rupture strength compared to cold formable superalloys. Hence, blade alloys have higher resistance to stress relaxation.

• Manufacturing Challenge - Blade alloys are only available in the cast condition (poly or single crystal) Possible.

Spring Design Evolution

Prototype |

- Solid ring machined from a single casting
- Basic finger design, not optimized with FEA
- Opportunities for design and manufacturability enhancements

Prototype II

- Independent finger and support ring configuration
- Improved DFM and lower manufacturing cost
 - Fine tune spring load and seal load
- Adjust number of the number of fingers
 - FEA optimized finger configuration
- Significantly improved stress relaxation characteristics

Prototype III

- Build from successes of PI and PII
- Thorough FEA optimization
- DOE optimized DFM program

I

- Standard length U-Spring
- U-Spring lengths to be joined into a hoop

Relaxation And Leakage Rate Testing	 Performance testing experimental procedure: Stress relaxation Stress relaxation Seals were compressed 15% between flanges and heated to 1600 °F for specified time periods After each exposure, seals were cooled to room temperature to measure change in seal free height Change in seal free height is then used to calculate usable seal springback Leakage testing Identical to steps 1 – 3 above and seals were room temperature leakage tested as step 4
Stress	

											100	
											2	
				1				-		ŝ	٢.,	
				8	r		٦	٢	٦	ĩ		
					1		4		é	,		
2								ŝ.				
2	50	-	-	7	T			1				
					C		2					
				Г			È.			ŝ		
			2				22					
				L	20				8			
		2	1	1								S.
	1			r				1				
						2	ŝ,					
								J				
				6				Y				
								/				
			2	1			1	١				
								,				
					-		-					
				1	r		٦	۱				
					è		4	,				
				1				ł				
				1		ľ	0	۱				
			1		•	•		,				
		3	L	2		31	21					
			0	1	1		20					
					20	1	\$	ŝ				
				5	8	4	-9					
				8	00	100	20					
				8		23	25					
				8			20	Ĩ				
				2								
				8				1				
18	10	100	100	505	565	*	1	8				
				7				1				
				9		N	2	ŝ				
				-	•	1		4				8
				28	582		85					
						2	23	a i				
				2			21	2				
			_									
								1				
						3	82					
				1								
						L						
				8				4				
				8	6							
				3		I		l				
				20			1	,				
			2						£.,			
U			٢.	d	6	7		Ľ.		3	5	J
				ę	٤.	÷.,	3	ľ.		ù		3
1				2	,	3	2	4,			- 14	ŝ
2	3			8	d,		53		2	i,	2	
	ŝ		1		0	ς.	4			2		í,
				8	00	(X 1	200	22.9	8	ä		
				20	4	21	2	1	8	ĩ		
5				2	0	X.	Ż	J	2	,	9.	ł.
		1		20	51	24	1			1	.1	
	8	6	C	5		80.1	82.7	Ĩ.				
	ŝ,	ž	θ.	ð,	8	21	20	¢,				ŝ
2	é	*	2	Ĩ	÷	61	1	ĩ				100
			2	ŝ		8	35	8				8
	ŝ,			8			¢,	l				1000
8	£	N.	C	į,		b.		2		ŝ		2
						181	ΞĒ	1				
		1	-	1	200	22	22	80 C				
		1			1		2			1	1100	
				1				,	1	ŝ		3
					e	-93	1	ĥ		Ľ	2	
ľ			1	1	88	000		100	NR.	h	100	1
ñ	1	ŵ.	1		1	2		Ň	1		ø	6
1		1		é,	ſ.	1	3	ł			é	8
1		8	đ	6	7	1	2	1				

- Optimization for manufacturability has been the primary program goal for 2006
- Convert the fundamental concept into a commercially viable design with similar performance characteristics to Prototype II
 - Through FEA analysis and design DOE an improved design configuration was developed
 - Modular manufacturing approach
- Standard U-Spring configuration has been developed, produced, and tested
- J-Spring nests nicely within thin sheet metal jacket
 - Jacket serves as primary pressure barrier
 - Standard formed sheet metal jacket
- Standard U-Spring configuration allows for cost effective linear seals and hoop seals
 - By joining multiple U-Springs, any diameter seal can be cost effectively produced
 - Cast as a single crystal material
- Design will use as cast near net shape to keep manufacturing costs low
- Patent pending manufacturing and processing approach

Possible.

	gressed and	cond ole solution	ent	Load vs Deflection CMX4 Spring per Finger 18% Compression at Room Temperature
Conclusions	The Ultra High Temperature seal program has successfully proç developed a high temperature static seal solution	The third prototype has successfully combined the first and sec prototypes high performance capabilities in a commercially viat	Prototype II and Prototype III are viable solutions Prototype II offers flexible load tune ability and seating load adjustm Prototype II offers commercial viability for continuous hoop seals 	Moving forward

- Better understanding of 100 hr data L
- Develop final manufacturing process Invest in production tooling I I
- Develop a production product technical performance data sheet I

0.045 0.04

0.035 0.03

0.02 0.025 Compression (inch)

0.015

0.0 0.005

25 (101) peo1

- Future activities •
- Stress relaxation testing at 1600 °F shows good usable performance, next phase will be to perform testing at 1700 °F and 1800 °F I
 - Better characterization of longer test periods I
- Other designs for operation at higher continuous operating temperatures are currently under development I

Possible.

Questions ?

