ANALYSIS AND DESIGN OF A DOUBLE-DIVERT SPIRAL GROOVE SEAL

Xiaoqing Zheng and Gerald Berard Eaton Aerospace Warwick, Rhode Island

F^T•N

NASA Seal/Secondary Air Delivery Workshop November 14-15, 2006 Ohio Aerospace Institute (OAI)

Analysis and Design of a Double-Divert Spiral Groove Seal

Dr. Xiaoqing Zheng and Mr. Gerald Berard

Eaton Aerospace Warwick, Rhode Island

•	Non-Contacting seal faces during static and dynamic
	 Operation High temperature permanent magnets to prevent contact at startup/static conditions
	 Outwardly pumping spirals allow for self-correcting dynamic axial seal face tracking during seal face coning/dynamic conditions
•	Insert segmentation with low leakage joints to accommodate larger sizes and enhance axial tracking and compliance
•	Center feeding restrictive orifices allow insert segments to be adaptive to local waviness and coning

Double Spiral Operational Feature	 Low Leakage – Approximately 10 times less a new brush seal 	 Seal is always non-contacting therefore no w and long life 	 Low heat generation 	 High speed capabilities 	
ğ	a L	ິ ທີ່ ເ	•	•	

Insert Segment Joints

Machined interlocking joints to minimize leakage and provide adaptability to larger diameters as well as provide axial compliance to rotor waviness

Design Features

Completed Prototype Parts Rotor Assembly

Titanium Rotor/ Shaft Adapter

Titanium/ Samarium Cobalt Magnet Housing

Stainless Steel Mating Ring

Seal Assembly Completed Prototype Parts

Stainless Steel Seal Ring Shell Assembly

Stainless Steel/ Samarium Cobalt Magnet Housing

Aluminum Seal Ring

~
3

Restrictive Orifice Design

- 1. Purposes:
- Control leakage
- Extend the range of high film stiffness
- Improve film stiffness
- 2. Calculation of effectiveness
 - Empirical formula
- Detailed CFD simulation
- Integrated into double-spiral groove seal design code

 $\eta = 0.02756 \ \phi + 0.1637 \ \phi^2 + 0.8978 \ \phi^3 - 0.4184 \ \phi^4$

Restrictive Orifice

1000000000000000000000000000000000000	Si S	Magnetic Analysis was conducted using various high temperature rare earth Samarium Cobalt with a maximum operating temperature of 550°C (1022°F)	
Binent Mag	gnet Analys	1.010e+000 : >1.063e+000 9.5688e-001 : 1.010e+000 9.037e-001 : 9.5688e-001 8.505e-001 : 9.037e-001 7.974e-001 : 8.505e-001 7.442e-001 : 7.442e-001 6.379e-001 : 5.376e-001 5.316e-001 : 5.316e-001 5.316e-001 : 5.316e-001 3.721e-001 : 5.316e-001 3.721e-001 : 3.189e-001 3.721e-001 : 3.189e-001 1.565e-001 : 3.721e-001 1.565e-001 : 3.721e-001 1.565e-001 : 3.721e-001 1.565e-001 : 3.721e-001 1.595e-001 : 3.721e-001 1.595e-001 : 3.721e-001 1.595e-001 : 3.721e-001 1.595e-001 : 3.721e-001 2.1126e-001 : 5.316e-001 1.0653e-001 : 1.5656e-001 1.063e-001 : 1.5656e-001 5.316e-002 : 1.0653e-001 5.316e-002 : 1.0653e-001 5.316e-002 : 1.0653e-001 5.316e-002 : 1.0653e-001 5.316e-002 : 1.0653e-001 5.316e-002 : 1.0653e-001	
	anent Maç		

Test Re Test 1-Up Test 1 Down Test 2 Up Test 3 Down Test 3 Up Test 3 Up Test 1 down Test 3 Up Test 1 down Test 2 Up Test 2 Up	Decision of the set of	on Force v
Compariso Test 1-Up Test 1 Down Test 2 Up Test 2 Down Test 3 Up Test 3	Comparison and the set of the se	
Test 2 Down - Test 3 Down - Test 3 Up - Test 3 Up - Test 3 Up - Test 3 Up - Test 3 Up	2 0.3 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
	2 0.3 0.4 0.5	
	2 0.3 0.4 0.5	

N•174

Spin Testing

Testing and Validation

Testing and validation will be accomplished on the Warwick Aerospace Test Rig which has a 24,000 RPM, 1,000°F, 120 PSI capability

