Carter

BIOLOGICALLY ACTIVE PROTEIN FRAGMENTS CONTAINING SPECIFIC BINDING REGIONS OF SERUM ALBUMIN OR RELATED PROTEINS
[75] Inventor: Daniel C. Carter, Huntsville, Ala.
[73] Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, D.C.
[21] Appl. No.: 448,196
[22] Filed:
May 23, 1995
Related U.S. Application Data
[63] Continuation of Ser. No. 24,547, Mar. 1, 1993, abandoned.
Int. Cl. ${ }^{6}$ \qquad C07K 14/76
U.S. CI. 530/363; 530/350; 435/69.1; 435/252.3; 435/320.1
[58] Field of Search \qquad 435/69.1. 252.3.
435/320.1; 530/350. 363

References Cited

 PUBLICATIONSHe et al "Atomic Structure and Chemistry . . ." Nature 358 pp. 209-215. Jul. 16. 1992.
Carter et al "Three Dimensional Structure . . ." Science 244 pp. 1195-1198. Jun. 9. 1989.
Hirayama et al. "Rapid Confirmation and Revision . . . " Biochem Biophys. Res. Comm. vol. 173, No. 2 pp. 639-646 Dec. 14. 1990.

Hamilton et al. (1991) Locations of the Three Primary Binding Sites for Long-Chain Fatty Acids on Bovine Serum Albumin. Proc. Natl. Acad. Sci. USA. vol.88, pp. 2051-2054.
Johanson et al. (1981) Refolding of Bovine Serum Albumin and Its Proteolytic Fragments. J. Biol. Chem. vol. 256. No. 1. pp. 445-450.

Carter et al.. "Structure of human serum albumin". Science. vol. 249. pp. 302-303, Jul. 20. 1990.
NASA. Tech Briefs. Mar. 1992. p. 94. Author: Daniel C. Carter. Sequences of Amino Acids for Human Serum Albumin.
Primary Examiner-Robert A. Wax
Assistant Examiner-Enrique D. Longton
Attorney, Agent, or Firm-Robert L. Broad. Jr.
ABSTRACT
In accordance with the present invention. biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

11 Claims, 4 Drawing Sheets

FIG. 1

FIG. 2-1

241	251	61			
VHTECCHGDL	LECADDRADL A	AKYICENQDS	ISS KLKECCE	E KPLLE	AEV
HKECCHGDL	LECADDRADL A	AKYICDNQDT	ISS KLKECCD	KPLL	
VHKECCHGDL	LECADDRADL A	AKYICEHQDS	ISG KLKACCD	KPLLQKSHC	DLP
VHKECCHGDL	LECADDRADL A	AKYICDHQDA	LSS KLKECCD	D KPVLEKSHC	EvDKDAVPE
INKECCHGDL	LECADDRAEL A	AKYMCENQAT	ISS KLQACCD		
	FECMTERLEL S	SEHTCQHKDE	IST KLEKCON		
TVAPCCSGDM	VTCMKERKTL	VDEVCADESV	LS	K EDAVHRGS	EAMKPDPKPD
		321	331	341	351
DLPSLAADF	ESKDVCKNY	EAKDVELG	LYEYARRHP	YSWLILRLA	KTYETTLEKC
PPLTADEA	EDKDVCKNYQ	EAKDAFLGS	LYEYSRRHP	YAVSVLLRL	EEC
IPALAADFA	EDKEICKHY	DAKDVFLGT	LYEYSRRHPD	YSVSLLLRIA	C
NLPPLTADFA	EDKEVCKNYQ	EAKDVFLGSF	LYEYSRRHPE	YAVSVLLELA	KEYEATJEDC
DLPSIAADFV	EDKEVCKNYA	EAKDVFLGT	LYEYSRRHPD	YSVSLLLRLA	KYYEATLEKC
ELSKPITE	EDPHVCEKYA	ENKS*F	SPWQS		EYESLINKC
GLSEHYDIHA	DIAAVC	KTPDVA	VYEISVI	SSQQVILRFA	KEAEQALIQC
CAAHDPHEC	AKVFD	VEEP	NCELFKQLGE	YKP	I
CAKDDPHACY	STVFD KLKHL	VDEPQNLIKC	NCDQFEKLGE	YGFQNALIVR	YTRKVPQUST
CAEADPPACY	RTVFD QETPL	, VEEPKSLVKK	NCDLFEEVG	YDFQNALIVR	YTKKAPQVST
CAREDPHACY	ATVFD KLKHL	VDEPQNLIKK	NCELFEKHG	YGFQNALIVR	YTRKAPQVST
CAEGDPPACY	GTVLA EFQPL	VEEPKNLVKT	NCELYEKLG	YGEQNAVLVR	YTOKAPOVST
CFSDNPPECY	KDGAD RFMNE	AKERFAYLKQ	NCDILHEHGE	YLFENELLIR	YTKKMPQVSD
CDMEDHAECV	KTALAGSDIDK	I TDETD*YYKR	MCAAEAAVSD	DSFEKSMMY	
			-h4 (III)		
	431	41	451	1	
PTLVEVSRNL	GKVGSKCCKH	PEAKRMPCAE	DYLSWUNQL	CVLHEKTPVS	DRVTKCCTE
PTLVEVSRSL	GKVGTRCCTK	PESERMPCTE	DYLSLILNRL	CVLHEKTPVS	EKVTKCCTE
PTLVEIGRTL	GKVGSRCCKL	PESERLPCSE	NHLALALNR	CVLHEKTPVS	EKITKCCD
PTLVEISRSL	GKVGTKCCAK	PESERMPCTE	DYLSLILNRL	CVLHEKTPVS	EKVI
PTLVEAARNL	GRVGTKCCTL	PEAQRLPCVE	DYLSAILNRL	CVLHEKTPVS	EKVTKCCSCS
ETLIGIAHOM	ADIGEHCCAV	PENQRMPCAE	GDLTILIGKM	CERQKKTFIN	NHVAHCCTD
DQLHMUSETV	HDVLHACCKD	EQGHFVLPCAE	EKLTDAIDAT	CDDYDPSSIN	PHI

FIG. 2-2

6(III)			rh7(III)	III)	
481	491	501	511 \|	521	531
LVNRRPCFSA	LEVDETYVPK	EFNAETFTFH	ADICTLSEKE	RQIKKQTALV	ELVKHKPKAT
LNRRRPCFSA	LTPDETYVPK	AFDEKLFTFH	ADICTLPDTE	KQIKKQTALV	ELLKHKPKAT
LAERRPCFSA	LELDEGYVR	EFKAETFTFH	ADICTLPEDE	KQIKKQSALA	ELVKHKPKAT
LVRRRPCFSD	LTLDETYVPK	PFDEKFFTFH	ADICTLPDTE	KQIKKQTALV	ELLKHKPRKT
LVERRPCFSA	LTVDETYVPK	EFKAETFTFH	SDICTLPDKE	KQIKKQTALA	ELVKHKPKAT
YSGMRSCFTA	LGPDEDYVPP	PVTDDTFHFD	DKICTANDKE	KQHIKQKFLV	KLIKVSPKLE
YSMRRHCILA	IQPDTEFTPP	ELDASSFHMG	PELCTKDSKD	LLLSGKKLLY	GWRHKTTIT
541-h9 (III)	551	561	h10(III)	581	
KEOLKAMMD	FAAFVEKCCK	ADDKETCFAE	EGKXLVAASO	AAL	
EEQLKTVMEN	FVAFVDKCCA	ADDKEACFAV	EGPKLWSTQ	TALA*	
KEQLKTVLGN	FSAFVAKCCG	REDKEACFAE	EGPKLVASSO	LALA *	
DEQLKTVMEN	FVAFVDKCCA	ADDKEGCFVL	EGPKLVASTQ	AALA*	
EDQLKTVMGD	FAQFVDKCCK	AADKDNCFAT	EGPNLVARSK	EALA*	
KNHIDEWLLE	FLKMVQKCCT	ADEHQPCFDT	EKPVLIEHCQ	KLHP*	
EDHLKTISTK	YHTMKEKCCA	AEDQAACFTE	EAPKLVSESA	ELVKV	

FIG. 2-3

BIOLOGICALLY ACTIVE PROTEIN FRAGMENTS CONTAINING SPECIFIC binding regions of serum albumin OR RELATED PROTEINS

This application is a continuation of application Ser. No. 08/024.547, filed Mar. 1, 1993, now abandoned.

FIELD OF THE INVENTION

The invention relates to the specific binding regions of serum albumin and related proteins and to biologically active protein fragments containing these specific binding regions that can be safely and economically produced using conventional recombinant DNA techniques.

BACKGROUND OF THE INVENTION

The serum albumins belong to a multigene family of proteins that includes alpha-fetoprotein (AFP) and human group-specific component (Gc) or vitamin D-binding protein. The members of this multigene family are typically comprised of relatively large multi-domain proteins, and the serum albumins are major soluble protein constituents of the circulatory system which have many physiological functions. The albumins and their related proteins contribute significantly to colloid osmotic blood pressure and aid in the transport. distribution and metabolism of many endogenous and exogenous ligands. These ligands represent a spectrum of chemically diverse molecules, including fatty acids. amino acids (notably tryptophan and cysteine), steroids. metals such as calcium, copper and zinc, and numerous pharmaceuticals. They are thought to facilitate transfer of many ligands across organ-circulatory interfaces such as the liver, intestine, kidney and brain, and evidence suggests the existence of an albumin cell surface receptor (see Schnitzer et al., PNAS 85:6773 (1988)).
In addition. serum albumins are also found in tissues and secreted fluids throughout the body. For example. it is estimated that albumin in evascular protein comprises 60% of the body's total albumin. In humans, human serum albumin, or HSA. is a protein of about 65.000 daltons in molecular weight and contains 585 amino acids. Its amino acid sequence contains a total of 17 disulphide bridges, one free thiol (Cys 34), and a single tryptophan (Trp 214). The disulphides are positioned in a repeating series of nine loop-link-loop structures centered around eight sequential Cys-Cys pairs.
Studies of serum albumins have been made on a variety of animal species, and it has been determined that approximately 61% of the amino acid sequences are conserved among the known sequences of bovine, rat and human serum albumins. More recently, additional sequences for the albumins have been determined with regard to a wide ranging group of vertebrates including sheep, frog, salmon, mouse, pig and even sea lampreys. Most of these proteins share high sequence homology and all of them share the characteristic repeating series of disulphide bridges. All members of the albumin multigene family for which sequences have been determined have internal sequence homology (from two- to seven-fold). suggesting that the proteins evolved from a common ancestral protein of possibly about 190 amino acids. Other studies have confirmed this homology (see, e.g., Carter et al., Science 244:1195 (1989)).
Currently, there are literally thousands of applications for serum albumin protein and its related proteins, Gc and AFP. and most often these applications have used the native serum albumin family of proteins obtained from bovine or human
sources. Unfortunately, at present, the numerous concerns with regard to the safety of albumin-containing plasma isolated from natural sources have greatly restricted the availability of albumin proteins for many of these applica-
5 tions. Included among these concerns is the heightened possibility that the plasma from which the albumins are obtained will be infected with various viral contaminants including HIV or other AIDS-related viruses, Hepatitis-B, herpes. and a number of other potentially pathogenic microorganisms.

Because of these concerns, there have been many attempts to prepare recombinant DNA sequences coding for serum albumins which can be used in the artificial production of this important molecule. However, unfortunately, these 5 attempts have also been generally unsuccessful because of the fact that like most large proteins, serum albumins denature quite readily and are practically impossible to produce in usable quantities by genetic engineering. It thus has remained a problem to develop artificial serum solutions which are stable and which can maintain the biologically activity of natural serum albumins.

Clearly, the utility of the serum albumin molecules is based in large part in their ability to bind and thus transport a wide variety of important macromolecules so as to regulate a number of physiological functions in humans and animals. However, although the binding properties of serum albumin have been well-established, the precise nature and location of those binding regions have not. Thus, although certain amino acid sites. such as Lys 199 and Tyr 411 have been identified as involved in acetylation (see Hagag et al.. Biochemistry 22:2420 (1983)) and esterification (see Sollene et al., Molec. Pharmac. 14:754 (1979)). very little has been previously been known about the binding sites of the serum albumins.

There has thus been a long-felt and unfulfilled need in the art to identify specific binding sites in the serum albumin family of proteins so as to allow the large-scale production of protein fragments having the same binding properties and biological activity as whole serum albumins. Since such smaller genetically engineered polypeptides are much more easily expressed and produced in large quantities than the full albumins, the identification of these specific binding sites would make commercial isolation and production of artificial polypeptides having all of the same binding properties of natural albumins much more economically and technically feasible.

SUMMARY OF THE INVENTION

In accordance with the present invention, it has now been discovered that specific portions of the serum albumin multigene family of proteins, specifically those portions known as subdomains IIA and ПI. are primarily responsible for the binding properties of serum albumin and its 5 related proteins, and that biologically active artificial serums prepared from protein fragments containing at least one of these binding regions can be produced much more easily than serums containing the whole protein. In particular, the sequence for binding subdomain IIA appears to be from about amino acids 190 through 300 on the albumin molecules, and subdomain IIIA appears to be located on the polypeptide at roughly from amino acid 380 to about amino acid 495.

Further. it also appears that a fusion product. which 65 includes not only the above binding subdomains IIA and IIIA but an additional region IIB, is also useful in binding. and this fusion product is coded on the polypeptide at about
amino acid 190 through 495. The discovery that the binding of the albumin family of proteins is based primarily on these specific binding regions will thus allow for the production of protein fragments containing one or more of these binding regions which are capable of exhibiting the same biological activity as the whole albumin protein.

It is thus an object of the present invention to provide protein fragments containing at least one of the binding sites from the serum albumin family of proteins so as to allow the production of biologically active serum which does not contain albumin family proteins obtained from natural sources.

It is further an object of the present invention to provide novel artificial polypeptides which can be constructed using conventional recombinant DNA techniques and which can be more safely. economically and effectively used in a variety of applications which call for serum albumins or other related proteins.
It is even further an object of the present invention to construct biologically active protein fragments that are useful for a wide variety of physiological. chromatographic and crystallographic functions which can be produced in large quantities and which can effectively be used instead of whole serum albumins obtained from natural or artificial sources.

These and objects of the present invention are set forth in. or will become obvious from. the description of the preferred embodiments provided hereinbelow.

BRIEF DESCRIPTION OF THE DRAWING FIGURES:

FIG. 1 is a stereo view illustrating the overall topology of human serum albumin.

FIG. 2 is a representation of the sequence homology of the amino acid sequences of a variety of the serum albumins including from top to bottom, human serum albumin (SEQ ID NO:3), bovine serum albumin (SEQ ID NO:4), equine serum albumin (SEQ ID NO:5), ovine serum albumin (SEQ ID NO:6). rat serum albumin (SEQ ID NO:7). frog serum albumin (SEQ ID NO:8), and salmon serum albumin (SEQ ID NO:9).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS:

In accordance with the present invention, the characteristic binding locations of the serum albumin family of proteins were determined crystallographically at 3.1 Angstroms using a wild-type human serum albumin (HSA) and at 2.8 Angstroms for a recombinant form of HSA expressed in yeast (rHSA). A complete description of the structural determination of a serum albumin protein through crystallographic means is set forth in Nature, Vol. 358:209 (July 1992). incorporated herein by reference. These crystallographic studies confirmed that the topology of serum albumins such as human serum albumin is created by a repeating series of six helical subdomains. known as IA. IB. IIA. IB. IIIA and IIIB. These six subdomains assemble to form a heart-shaped molecule, as had previously been determined in the stereo view illustration as observed in FIG. 1. However, the previous determinations of the serum albumin structure gave little insight into its binding locations, and it was previously thought that a number of the helical subdomains were involved in albumin binding.

The detailed crystallography studies indicated that contrary to the prior albumin models, the principal binding equal distributions between binding sites ПІ and IIA, while the composition known as Warfarin appears to occupy a single site in IA. Further, the amino acid residues that have previously been thought to be involved in the binding process. Trp 214, Lys 199 and Tyr 411, are all located strategically in the IIA or IIA regions.

TABLE I

20		Ligard binding locations to HSA			Observed location
	Ligand	D	N	$\mathbf{R}_{\mathbf{E}}$	
	Aspirin	4.0	7362	0.11	IIA IIIA
	Warfarin	5.0	2555	0.167	IIA
25	Diazepam	6.8	2075	0.118	IIIA
	Digitoxin	5.0	3751	0.137	IIIA
	Clofibrate	6.0	2175	0.138	IIIA
	Ibuprofen	6.0	2402	0.215	IIIA
	AZT	4.0	7548	0.124	IIIA
	IS	4.0	6334	0.19	IIA IIIA
30	DIS	4.0	4734	0.20	ILA IIA
30	TIB	4.0	5431	0.12	IIA IIA

Ligand-HSA complexes and X-ray diffraction data were obtained in a mamer as previously described in Table 1. The observed locations refer to the primary binding sites.
D, Resolution or d -spacing in \AA.
N, Number of paired unique reflections with $\mathrm{F}>50$.
$\mathbf{R}_{\mathrm{f}} \boldsymbol{\Sigma} \mathbb{F}_{\mathrm{PH}}-\mathrm{F}_{\mathrm{P}} \boldsymbol{V I F _ { P }}$.
AZT, 3'-Azido-3'-deoxythymidine.
IS, 5 -iodosaiicylic acid.
DIS, 3,5-Diiodosalicylic acid.
TIB, 2,3,5-Triiodobenzoic acid.
The structural determination of the binding regions of the serum albumin family of proteins shows that the amino acid sequences appear to be homologous along the various serum albumins, which is evidenced in FIG. 2 wherein the amino acid sequences of human, bovine, equine, ovine, rat, frog and salmon albumins are compared The crystallographic studies conducted in order to locate and identify the albumin protein binding sites appear to show that the IA subdomain is one of the key binding sites of the albumin protein, and this region corresponds to an amino acid sequence beginning at approximately amino acid number 190 of the albumin protein and extending to about amino acid number 300 . In one specific embodiment. the sequence for the binding region IIA as determined in bovine serum albumin is set forth at in SEQ ID NO:1, and this sequence runs from amino acid number 190 through amino acid number 298 on bovine serum albumin.

The crystallographic studies carried out by the inventor also revealed that the IIIA subdomain was another key binding site on the albumin family of proteins, and this binding subdomain corresponds to a sequence of amino acids which starts at about amino acid number 375 and extends to about amino acid number 495. In another specific embodiment. binding region IIIA has an amino acid sequence as set forth in SEQ ID NO:2, and this sequence appears to run from amino acid 378 through 494. In accordance with the present invention, a protein fragment con-
taining at least one of the binding regions IIA or IIIA discussed above can be prepared which will have the same or similar biological activity as a whole natural serum albumin.
In addition to the specific binding regions IIA or IIIA discussed above, there also appears to be an additional fusion product of subdomains IIA and IIIA that also acts to give serum albumin some of its binding properties. This fusion product appears to be a fragment that includes not only binding regions IIA and IIIA. but subdomain IIB as well. A protein fragment in accordance with the present invention can thus also be constructed which contains the region including IIA. IIB and IIIA. and this region corresponds roughly to an amino acid sequence extending from about amino acid 190 to about amino acid 495 on a serum albumin family protein. Further, it is possible that such a fragment would be even more biologically active and more likely to preserve all of the original binding peculiarities associated with the albumin family of proteins since there are sometimes measurable allosteric effects between the subdomains.
The isolation of any of the specific albumin family binding regions discussed above is advantageous in that not only can biologically active serums be produced from isolates of these binding fragments from the natural albumins. but recombinant methods can be used as well to construct protein fragments containing only these specific binding regions. In fact. the present invention is particularly advantageous because the protein fragments of the invention can be prepared artificially using conventional recombinant DNA techniques. and these fragments will be safer, more stable and more effective than the natural serums in a variety of applications, including column chromatography. biosensors, crystallographic or solution drug binding experimentation, and a wide range of medical and biochemical procedures and experimentation. Thus, although isolates of the albumin proteins can be produced according to the present invention with one or more of the actual binding regions obtained from natural sources, it is preferred that conventional recombinant techniques be used to manufacture the protein fragments containing or corresponding to at least one of the binding regions discussed above, and these artificial fragments can be recovered and/or purified so as to useful in all applications where natural serum albumin would be used.

In another aspect of the present invention, it has also been discovered that key invariant residues that are involved in the ligand binding subdomains and which are conserved in most or all the known albumins, and these key residues would thus appear to be primarily responsible for the binding properties attributed to these regions. Based on an examination of the sequence homology as observed in FIG. 2. and based on other studies involving the crystallographic patterns of the albumin proteins, it appears that there are certain key residues that are conserved between all of the determined albumin sequences and that fit precisely in the binding regions IIA and IIIA discussed above. In particular. these key invariant or conserved residues appear to be at amino acid residues 257 and 260 of the IIA region. and at
amino acid residues $390,391,410.411,423,437,450.453$ and 485 of the IIIA region. It is thus contemplated that any protein fragment that is constructed to contain at least the key residues of either or both of the subdomains IIA and IIIA as set forth above will also exhibit binding properties equivalent or similar to that of the whole albumin molecules.

In summary, the present invention allows for the production of protein fragments containing specific binding sites of the albumin proteins which can be generated by conventional recombinant DNA techniques and which have the same or similar binding properties as the natural serum albumins. It is thus contemplated that these protein fragments can be prepared efficiently and economically in large quantities so as to substituted for the natural form of the albumins in a variety of applications without any loss of binding strength. As set forth herein. the term "protein fragment" is well understood the those skilled in the art and generally refers to those polypeptides comprising an amino acid sequence that only constitutes a portion of a whole protein molecule.

These protein fragments, when constructed artificially using state-of-the-art recombinant means, will not only have the same or similar biological activity of the natural whole albumin proteins, but will also be safer that the natural form of the albumins since they will not carry many of the other viral or other pathogenic contaminants that are found in the natural products. As set forth herein, the term "biological activity" is well understood to one skilled in the art and is used generally to refer to the ability of a particular molecule. such as a whole protein or a particularly active fragment from a whole protein, to successfully carry out any of a number of biological or biochemical functions.

When preparing fragments containing the specific binding regions of the present invention. it will be well understood by those skilled in the art that a number of alternate sequences can be prepared which will differ in some slight manner from the binding regions as discussed above, yet which are considered within the scope of the invention. For example, these alternate embodiments include those fragments or sequences which have slight variations as to specific amino acids, such as those which include an addition or deletion of a particular amino acid, possibly at the leading or trailing end of the fragment, which maintain the binding properties of the albumin family of proteins in the manner set forth above. Additionally, those sequences which contain certain changes in specific amino acids which may enhance or decrease the binding affinity of various compounds, or reduce the likelihood of producing an antigenic response, will also be within the scope of the invention as would be obvious to one of ordinary skill in the art. Finally, as set forth above, it is contemplated that because the subdomain regions of the multigene family of albumin proteins appear to be the same or similar. the biologically active protein fragments of the present invention can be constructed from specific binding regions of any of the proteins of the serum albumin family, such as the Gc and AFP proteins discussed above. All of these embodiments are deemed to be covered within the scope of the present invention which is set forth in the claims appended hereto.

SEQUENCE LISTING

(1) GENERAL INFORMATION:
(i i i) NUMBER OF SEQUENCES: 9
(2) INFORMATION FOR SEQ ID NO:1:

```
(i ) SEQUENCE CHARACTERISTICS:
    (A ) LENGTH: 109 amino acids
    (B ) TYPE: amino acid
    (C ) STRANDEDNESS: siagle
    (D ) TOPOLOGY: linear
```

(i i) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:1:

$\begin{aligned} & \text { A } 1 \text { a } \\ & 1 \end{aligned}$	Ser	Ser	Ala	$\begin{aligned} & A \times g \\ & 5 \end{aligned}$	GIn	$A \times B$	$L \in u$	Arg	$\begin{aligned} & \text { Cys } \\ & 10 \end{aligned}$	$\text { A } 1 \text { a }$	Ser	$11 e$	G1n	$\begin{aligned} & L y s \\ & 15 \end{aligned}$	Pbe
G1 y	G1u	A 18	$\begin{aligned} & \text { Ala } \\ & 20 \end{aligned}$		Lys	$\text { A. } 1 \text { a }$	$T \times p$	$\begin{aligned} & S \in I \\ & 25 \end{aligned}$	Val	Ala	A Ig	$L \in u$	$\begin{aligned} & \text { Ser } \\ & 30 \end{aligned}$	$G 1 \mathrm{n}$	L y s
		$\begin{aligned} & \text { L y s } \\ & 3 \mathrm{~S} \end{aligned}$	$\text { A } 1 \text { a }$	$G 1 u$	Phe	Va	$\begin{aligned} & \text { G1u } \\ & 40 \end{aligned}$	Val	Tht	$1 \mathrm{ys}$	$\mathcal{L e v}$	$\begin{aligned} & V \text { a } 1 \\ & 45 \end{aligned}$	Th r	A s \mathbf{p}	Leu
Thi	$\begin{aligned} & \text { Ly } \\ & 50 \end{aligned}$	Va 1	His	Lys	G1u	$\begin{aligned} & \text { Cys } \\ & 55 \end{aligned}$	Cys	His	G 1 y	Assp	$L \in u$ 60	Leu	G10	Cys	A 1 a
$\begin{aligned} & A s p \\ & 65 \end{aligned}$	Asp	Ar 8	A 1 a	Asp	$\begin{aligned} & \text { Le e } \\ & 70 \end{aligned}$	A 1 a	Lys	Ty	11 c	$\begin{aligned} & C y s \\ & 75 \end{aligned}$	Asp	As n	G1n	As p	$\begin{aligned} & \mathrm{Th} \text { f } \\ & 80 \end{aligned}$
110	Ser	Ser	Lys	$\begin{aligned} & \text { Leu } \\ & 85 \end{aligned}$	Lys	G1u	Cys	Cys	$\begin{aligned} & \text { Asp } \\ & 90 \end{aligned}$	Lys	Pro	Len	Leu	$\begin{aligned} & \text { G } 1 \text { u } \\ & 95 \end{aligned}$	Lys
Ser	His	Cy 5	$\begin{array}{lll} 1 & 1 & e \\ 100 \end{array}$	Ala	G1u	Val	G1u	$\begin{array}{r} \text { Ly } \\ 105 \end{array}$	A s \mathbf{p}	A 1 a	110	Pro			

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 117 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linegr

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: NO
(it) ANTI-SENSE: NO
(v) FRAGMENT TYPE: N-terminal
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Leu Thr Pro Asp GIu 115
(2) INFORMATION FOR SEQ ID NO:3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 585 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE; protein
 (i i i) HYPOTHETICAL: NO
 (i y) ANTI-SENSE: NO
 (v) FRAGMENT TYPE: N-terminal

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:3:

$\begin{aligned} & A \leq p \\ & 1 \end{aligned}$	Ala	His	Lys	$\begin{aligned} & S \text { ex } \\ & 5 \end{aligned}$	Glu	Vall	Ala	His	$\begin{aligned} & \text { AIg } \\ & 10 \end{aligned}$	Phe	Lys	$A s p$	Leu	$\begin{aligned} & \text { G1y } \\ & 15 \end{aligned}$	G1u
G 10		Phe	$\begin{aligned} & L y s \\ & 20 \end{aligned}$	Ala	Leu	V a 1	$L \in u$	$\begin{aligned} & 11 e \\ & 25 \end{aligned}$	$\text { A } 1 \text { a }$	Phe	A1a	G1n	$\begin{aligned} & \text { Ty } \\ & 30 \end{aligned}$	Leu	G1n
G1n	Cys	$\begin{aligned} & \text { P } 50 \\ & 35 \end{aligned}$		G14	$A s p$		$\begin{aligned} & \text { Val } \\ & 40 \end{aligned}$	Lys	$\mathrm{L} \in \mathbf{u}$	V a 1	$\text { As } n$	$\begin{aligned} & \text { G10 } \\ & 45 \end{aligned}$	val	T br	G 10
Phe	$\begin{aligned} & \text { A } 1 \text { a } \\ & 50 \end{aligned}$	Lys	Th_{r}	Cys	Val	$\begin{aligned} & \text { A } 1 \text { a } \\ & 55 \end{aligned}$	$\text { As } p$	G $1 \mathbf{u}$	Ser	Ala	$\begin{aligned} & \text { G1u } \\ & 60 \end{aligned}$	As n	Cys	A s \mathbf{p}	L y s
$\begin{aligned} & \text { Ser } \\ & 65 \end{aligned}$	Leu	His	T br	$\mathrm{Le} \mathbf{u}$	$\begin{aligned} & \text { Phe } \\ & 70 \end{aligned}$	G1 y	A s P	Lys	Leu	$\begin{aligned} & \mathrm{Cys} \\ & 75 \end{aligned}$	Tbr	val	Ala	Tbt	$\begin{aligned} & \text { Le u } \\ & 80 \end{aligned}$
A r^{8}	G 1 u	Thr	T y \quad r	$\begin{aligned} & \text { G1y } \\ & 85 \end{aligned}$	G 1 u	Met	A 1 a	Asp	$\begin{aligned} & C y s \\ & 90 \end{aligned}$	Cys	Ala	Lys	G 1 n	$\begin{aligned} & \text { G1u } \\ & 95 \end{aligned}$	P 10
G1u	A I g	Asin	$\begin{gathered} G 10 \\ 100 \end{gathered}$	Cys	Phe	Leu	G11	$\begin{aligned} & \mathrm{His} \\ & 105 \end{aligned}$	L ys	Asp	Asp	A \leqslant n	$\begin{array}{ll} P & 1 \\ 1 & 0 \end{array}$	As ${ }^{\text {a }}$	Leu
Pro	A 18	$\begin{array}{lll} L & e & u \\ 1 & 1 & 5 \end{array}$	Val	A 18	P 10	G 1 u	$\begin{array}{lll} \text { Va } 1 \\ 1 & 20 \end{array}$	Asp	V a 1	Met	Cys	$\begin{aligned} & \mathrm{T} \mathbf{~ r ~} \\ & 125 \end{aligned}$	A 1 a	Pbe	His
A $\mathbf{S P}^{\mathbf{p}}$	$\begin{aligned} & \text { Asn } \\ & 130 \end{aligned}$	G1u	G1u	Th r	Phe	$\begin{array}{lll} L & e & \mathbf{u} \\ 1 & 3 & 5 \end{array}$	L y s	Ly s	T y r	Leu	$\begin{aligned} & \text { Ty r } \\ & 140 \end{aligned}$	G 1 u	$11 e$	A 1 a	A 18
$\begin{aligned} & A \times B \\ & 145 \end{aligned}$	His	Pro	T $\mathrm{y}_{\mathbf{t}}$	Phe	$\begin{aligned} & \mathrm{T} y \mathrm{r} \\ & 150 \end{aligned}$	A 1 a	Pro	G10	Lev	$\begin{aligned} & L \in u \\ & 155 \end{aligned}$	Phe	Pbe	A $1 \mathbf{a}$	L y s	$\begin{aligned} & A \div 8 \\ & 160 \end{aligned}$
Ty	Lys	Ala	A 1 a	$\begin{gathered} \text { Phe } \\ 165 \end{gathered}$	Thr	G 1 u	Cys	Cys	$\begin{gathered} \text { G1n } \\ 170 \end{gathered}$	A1a	Ala	$A \leq p$	Lys	$\begin{aligned} & A 1 a \\ & 175 \end{aligned}$	A 1 a
Cys	Leo	Leu	$\begin{aligned} & \text { Pro } \\ & 180 \end{aligned}$	L ys	Lev	A s \mathbf{p}	G1u	$\begin{aligned} & \mathrm{L} e \mathrm{u} \\ & 185 \end{aligned}$	A 18	Asp	G10	G 1 y	$\begin{aligned} & \text { Lys } \\ & 190 \end{aligned}$	A 1 a	Ser
Ser	A 1 a	$\begin{gathered} \text { L y s } \\ 195 \end{gathered}$	G1n	Ar_{g}	Leu	Lys	$\begin{aligned} & C y s \\ & 200 \end{aligned}$	A. 1 a	Ser	L eu	G1n	$\begin{aligned} & \text { Lys } \\ & 205 \end{aligned}$	Phe	G 1 y	G 1 u
A I $\mathrm{g}^{\text {d }}$	$\begin{aligned} & \text { A } 11 \begin{array}{l} \text { a } \\ 2 \end{array} \quad \end{aligned}$	Phe	Lys	A 1 a	T f p	$\begin{array}{lll} A & 1 & a \\ 2 & 1 & 5 \end{array}$	V a 1	A 1 a	A 18	Leu	$\begin{array}{lll} S & e & \mathrm{r} \\ 2 & 2 & 0 \end{array}$	G 1 n	A 19	Pbe	Pro
$\begin{aligned} & \text { L y s } \\ & 225 \end{aligned}$	Ala	G 1 u	Pbe	$\text { A } 1 \mathbf{a}$	$\begin{aligned} & G 1 u \\ & 230 \end{aligned}$	val	Ser	Lys	$\mathrm{L} \in \mathrm{u}$	$\begin{aligned} & \mathrm{Val} \\ & 235 \end{aligned}$	Thr	Assp	Leu	Thy	$\begin{aligned} & \text { Ly s } \\ & 240 \end{aligned}$
Val	His	Tbr	G 1 u	$\begin{aligned} & C y s \\ & 245 \end{aligned}$	Cys	His	G19	Asp	$\begin{array}{lll} L & e & u \\ 2 & 5 & 0 \end{array}$	Leu	G 1 u	Cys	A1a	$\begin{aligned} & \text { Asp } \\ & 255 \end{aligned}$	As p
A \% $\mathrm{g}^{\text {c }}$	A 1 a	Asp	$\begin{aligned} & \mathrm{L} \in \mathrm{u} \\ & 260 \end{aligned}$	A 1 a	Lys	T y \quad	110	$\begin{aligned} & C y s \\ & 265 \end{aligned}$	$\text { G } 1 \mathbf{u}$	As n	G1n	$A s p$	$\begin{aligned} & \text { Ser } \\ & 270 \end{aligned}$	I 1e	Ser
Ses	Lys	$\begin{array}{lll} L & e & u \\ 2 & 7 & 5 \end{array}$	Lys	G1u	Cys	$C y s$	$\begin{aligned} & 61 u \\ & 280 \end{aligned}$	L y s	Pro	Leu	Leu	$\begin{array}{r} G 1 u \\ 285 \end{array}$	L y s	Ser	His
Cys	$\begin{aligned} & 11 e \\ & 290 \end{aligned}$	Ala	$\mathrm{G} 1 \mathrm{u}$	Val	G1u	$\begin{aligned} & \text { Asn } \\ & 295 \end{aligned}$	$A \leq p$	$01 \mathrm{u}$	Met	Pro	$\begin{aligned} & \text { A } 1 \text { a } \\ & 300 \end{aligned}$	$A s p$	Leu	$\mathbf{P}_{\mathbf{I}} \mathbf{0}$	Ser

$\begin{aligned} & 1 \text { en } \\ & 305 \end{aligned}$	Ala	$\text { A } 1 \text { a }$	Asp	Phe	$\begin{array}{lll} \text { V a } & 1 \\ 3 & 1 & 0 \end{array}$	G1u	Ser	Lys	$A s p$	$\begin{array}{lll} V & \text { a } \\ 3 & 1 & 5 \end{array}$	Cys	Lys	$\text { As } n$	$\text { Ty } \mathrm{r}$	$\begin{aligned} & \text { A1a } \\ & 320 \end{aligned}$
G1u	A 1 a	Lys	Asp	$\begin{array}{lll} \text { V a } & 1 \\ 3 & 2 \end{array}$			G1y	Met	$\begin{aligned} & \text { Phe } \\ & 330 \end{aligned}$		Tyr	G 1 u	Tyr	$\begin{array}{r} \text { A } 112 \\ 3 \\ 3 \end{array}$	A 18
A r g	His	Pro	$\begin{aligned} & A \leq p \\ & 340 \end{aligned}$	T $\mathrm{y}^{\text {r }}$	Ses	Val	Val	$\begin{aligned} & \text { Le u } \\ & 345 \end{aligned}$	Leu	Leu	A I^{8}	Leu	$\begin{gathered} A 1 a \\ 350 \end{gathered}$	Lys	Tbr
T y	$G 1 u$	$\begin{aligned} & \mathrm{T} \text { h r } \\ & 3 \mathrm{~S} \end{aligned}$	Tbr	Lev	G 1 u	Lys	$\begin{aligned} & C y s \\ & 360 \end{aligned}$	Cys	A 1 a	A 1 a	His	$\begin{aligned} & \text { Asp } \\ & 365 \end{aligned}$	Proo	H i s	G1u
C ys	$\begin{aligned} & \text { Ty } \\ & 370 \end{aligned}$	Ala	Lys	Val	Phe	$\begin{aligned} & \text { Asp } \\ & 375 \end{aligned}$	G1	Pbe	Lys	P 10	$\begin{aligned} & L \in u \\ & 380 \end{aligned}$	V a 1	G1u	G1u	P 10
$\begin{aligned} & G 1 n \\ & 385 \end{aligned}$	Asin	Leu	$11 e$	Lys	$\begin{aligned} & \text { G1n } \\ & 390 \end{aligned}$	$\text { A.s } n$	Cys	G1u	Leu	$\begin{aligned} & \text { Pbe } \\ & 395 \end{aligned}$	L y s	G1n	Leu	G 1 y	$\begin{aligned} & G 1 u \\ & 400 \end{aligned}$
T y r	Ly s	Phe	G1n	$\begin{gathered} A \leqslant n \\ 405 \end{gathered}$	A 1 a	Leu	$L \in u$	Val	$\begin{array}{r} A r g \\ 418 \end{array}$	Ty \quad r	Thr	L y s	L y s	$\begin{aligned} & \text { V a } 1 \\ & 415 \end{aligned}$	P 50
G1n	V a 1	Ser	$\begin{aligned} & \text { Tb } \\ & 420 \end{aligned}$	Pso	Tht	Leu	V a 1	$\begin{array}{r} G 1 u \\ 425 \end{array}$	val	Ser	A 18	A s a	$\begin{aligned} & L \in v \\ & 430 \end{aligned}$	G 1 y	Lys
val	G 1 y	$\begin{aligned} & S e r \\ & 435 \end{aligned}$	Ly s	Cys	Cys	Lys	$\begin{array}{r} H i s \\ 440 \end{array}$	Pro	G1u	A 1 a	L y s	$\begin{aligned} & \text { A r } \\ & 445 \end{aligned}$	Met	Pro	Cys
A1a	$\begin{aligned} & 61 u \\ & 450 \end{aligned}$	$A \leq p$	T y	$L e u$	Set	$\begin{aligned} & \text { V a } 1 \\ & 455 \end{aligned}$	Val	Leu	Assa	G1n	$\begin{aligned} & L e v \\ & 460 \end{aligned}$	Cys	Val	$L \mathrm{e} u$	His
$\begin{array}{r} \text { G1u } \\ 465 \end{array}$	Lys	Tht	Pro	val	$\begin{aligned} & \mathrm{Ser} \\ & 470 \end{aligned}$	As P	A r g	val	Thr	$\begin{aligned} & 1 \mathrm{ys} \\ & 475 \end{aligned}$	Cys	Cys	Tht	G 1 u	$\begin{aligned} & \text { Ser } \\ & 480 \end{aligned}$
Leu	Va_{1}	Asin	A 18	$\begin{aligned} & A I g \\ & 485 \end{aligned}$	PIo	Cys	Phe	Set	$\begin{aligned} & A 12 \\ & 490 \end{aligned}$	Leu	G1u	Val	Asp	$\begin{array}{r} G 10 \\ 495 \end{array}$	Tbr
T y r	val	P1o	$\begin{array}{lll} l & y & s \\ 5 & 0 & 0 \end{array}$	G1u	Phe	As n	$\text { A } 1 \mathbf{a}$	$\begin{gathered} G 1 u \\ 505 \end{gathered}$	Ihr	Phe	Thr	Phe	$\begin{array}{ccc} H & i & s \\ 5 & 1 & 0 \end{array}$	A 1 a	$A s p$
11 e	Cys	$\begin{array}{ll} \mathrm{T} & \mathrm{~h} \\ 5 & 1 \\ \hline \end{array}$	Leu	Ser	G10	Lys	$\begin{aligned} & \text { G } 1 \text { u } \\ & 520 \end{aligned}$	$A I g$	G11	11 e	Lys	$\begin{aligned} & L y s \\ & 525 \end{aligned}$	G1a	Thir	A 1 a
Leu	$\begin{aligned} & \mathrm{Val} \\ & 5 \end{aligned}$	G1u	Leu	V a 1	Lys	$\begin{array}{ccc} \mathrm{H} \text { i s } \\ 53 & \end{array}$	Lys	Pro	Lys	$\text { A } 1 \text { a }$	$\begin{aligned} & \text { Thx } \\ & 540 \end{aligned}$	L. Y s	G 1 u	G 1 n	Leu
$\begin{aligned} & \text { L y s } \\ & 545 \end{aligned}$	A 1 a	Val	Met	Asp	$\begin{aligned} & A s p \\ & 5 S 0 \end{aligned}$	Pb	A 19	Ala	Phe	$\begin{aligned} & \text { Vall } \\ & 555 \end{aligned}$	G1u	Lys	Cys	Cys	$\begin{array}{ll} \text { L y } & s \\ 5 & 6 \end{array}$
A 1 a	A s p	Asp	L y s	$\begin{aligned} & \text { G1u } \\ & 565 \end{aligned}$	Thr	Cys	Pbe	A 1 a	$\begin{gathered} G 10 \\ 570 \end{gathered}$	G10	G1y	Lys	Lys	$\begin{array}{lll} L & e & u \\ 5 & 7 \end{array}$	V a 1
A 1 a	Ala	Ser	$\begin{array}{cll} \text { G } 1 \\ 5 & n \\ \hline \end{array}$	$\text { A } 1 \text { a }$	$A 1 a$	Le u	G1y	$\begin{gathered} L \in u \\ 585 \end{gathered}$							

(2) INPORMATION FOR SEQ ID NO:4
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 583 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linesi

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: NO
(i y) ANTI-SENSE: NO
(v) FRAGMENT TYPE: N-terminal
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:4:

-continued

465					470					475					480
Val	As n	Arg	A 18	$\begin{aligned} & \text { Pro } \\ & 485 \end{aligned}$	Cys	Phe	Ser	Ala	$\begin{aligned} & L \in 0 \\ & 490 \end{aligned}$	Thy	Pro	Asp	G 1 u	$\begin{aligned} & \text { Th } \\ & 495 \end{aligned}$	T y \quad I
V a 1	Pro	Ly s	$\begin{array}{ccc} A & 1 & a \\ 5 & 0 & 0 \end{array}$	$\mathrm{Phe}_{\mathrm{h}}$	$A s p$	G1u	Lys	$\begin{aligned} & \text { Len } \\ & 505 \end{aligned}$	Pbe	Thr	Pbe	His	$\begin{gathered} \text { A } 11 \text { a } \\ 51 \end{gathered}$	Asp	11 e
Cys	Tbr	$\begin{array}{lll} L & \varepsilon & u \\ 5 & 1 & 5 \end{array}$	P I o	As p	Thr	G 1 u	$\begin{aligned} & \text { L y s } \\ & 5220 \end{aligned}$	G1n	I 1 e	L ys	Lys	$\begin{aligned} & \text { G1n } \\ & 525 \end{aligned}$	Tht	A 1 a	Leut
Val	$\begin{array}{cc} G 1 u \\ 5 & 30 \end{array}$	Leu	Lev	Ly s	His	$\begin{array}{lll} \text { L y s } \\ 5 & 3 & 5 \end{array}$	Pro	Lys	A1a	Thr	$\begin{aligned} & \text { G1u } \\ & 540 \end{aligned}$	G10	G1	Leu	L y s
$\begin{aligned} & \mathrm{Th} \mathrm{r} \\ & 545 \end{aligned}$	Val	Me:	G 1 \quad a	Asm	$\begin{aligned} & \text { Phe } \\ & 550 \end{aligned}$	Val	Ala	Pbe	Val	$\begin{aligned} & A \& p \\ & 555 \end{aligned}$	Lys	Cys	Cys	A 1 a	$\begin{aligned} & \text { A } 1 \text { a } \\ & 560 \end{aligned}$
Asp	As p	Ly s	G 1 u	$\begin{aligned} & A 1 a \\ & 565 \end{aligned}$	Cys	Phe	A 1 a	Val	$\begin{gathered} G 1 u \\ 570 \end{gathered}$	G1y	Pro	Lys	Leu	$\begin{aligned} & \text { VaI } \\ & 575 \end{aligned}$	Val
Ser	Tbr	G 1 n	$\begin{aligned} & \text { Th r } \\ & 580 \end{aligned}$	Ala	Leu	Ala									

(2) INRORMATION FOR SEQ ID NO:5:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 583 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(i i) MOLECULE TYPE: protein
(i i i) HYPOTHETICAL: NO
(ive ANTI-SENSE: NO
(v) FRAGMENT TYPE: N-terminal
(x i) SEQUEACE DESCRIPTION: SEQ ID NO:5:

$\begin{gathered} \text { A } s p \\ 1 \end{gathered}$	Thir	His	Lys	$\begin{aligned} & S e x \\ & s \end{aligned}$	G1u	$11 \mathrm{e}$	$\text { A } 1 \mathbf{a}$	His	$\begin{gathered} A I g \\ 10 \end{gathered}$	Phe	Asn	$A s p$	Lev	$\begin{aligned} & \text { G1y } \\ & 15 \end{aligned}$	
L ys	His	Phe	$\begin{aligned} & \text { Lys } \\ & 20 \end{aligned}$	G1y				$\begin{aligned} & \text { Val } \\ & 25 \end{aligned}$	$\text { A } 1 \mathbf{a}$				$\begin{aligned} & \text { Ty I } \\ & 30 \end{aligned}$		G1ı
G1 n	Cys	$\begin{aligned} & \text { Pro } \\ & 35 \end{aligned}$	Phe	G10	Asp	His	$\begin{aligned} & \text { Val } \\ & 40 \end{aligned}$	Lys	$L \in u$	Val	As n	$\begin{aligned} & G 10 \\ & 45 \end{aligned}$	val	Thr	G1u
Pbe	$\begin{aligned} & \text { A1a } \\ & 50 \end{aligned}$	Lys	Lys	Cys	$\text { A } 1 \mathbf{a}$	A 1 a 55	$A \leq p$	G1u	Ser	$\text { A } 1 \text { a }$	$\begin{aligned} & \text { G1u } \\ & 60 \end{aligned}$	A 51	Cys	Asp	Ly s
$\begin{aligned} & \text { Ser } \\ & 65 \end{aligned}$	Leu	His	Thr	Leu	$\begin{aligned} & \text { Phe } \\ & 70 \end{aligned}$	G 1 y	Asp	Lys	Len	$\begin{aligned} & C y s \\ & 75 \end{aligned}$	Thr	Val	Ala	Thr	$\begin{aligned} & L e u \\ & 80 \end{aligned}$
A ${ }^{\text {m }}$	A 1 a	Thr	T y r	$\begin{aligned} & \text { G } 1 \text { y } \\ & 85 \end{aligned}$	G 1 u	$L \in u$	A 1 a	$A s p$	$\begin{aligned} & \text { Cys } \\ & 90 \end{aligned}$	Cys	G1u	Ly s	G 1 n	$\begin{aligned} & G 1 u \\ & 95 \end{aligned}$	Pro
G 1 u	A I $\mathrm{g}^{\text {g }}$	Asin	$\begin{aligned} & G 1 u \\ & 100 \end{aligned}$	Cys	$\mathbf{P h e}_{\mathrm{h}}$	Leu	Thr	$\begin{gathered} \mathrm{His} \\ 105 \end{gathered}$	L y s	Asp	$A s p$	His	$\begin{aligned} & \text { P I } 0 \\ & 1 \\ & 1 \end{aligned}$	As n	$L \in u$
Pro	Lys	$\begin{array}{lll} 1 & e & 0 \\ 1 & 1 & 5 \end{array}$	Lys	Pro	G 1 u	Pro	$\begin{aligned} & \text { Asp } \\ & 120 \end{aligned}$	A 1 a	G1n	Cys	A 1 a	Ala 125	Phe	G1n	G 10
Asp	$\begin{aligned} & \text { P r o } \\ & 130 \end{aligned}$	Asp	L ys	Pbe	Leu	$\begin{array}{r} G 1 y \\ 135 \end{array}$	L y s	Tyr	Leu	T y	$\begin{aligned} & \text { G1u } \\ & 140 \end{aligned}$	Val	A 1 a	Arg	A 18
$\begin{gathered} \text { His } \\ 145 \end{gathered}$	Pro	T ${ }^{\text {r }}$	Phe	Ty 5	$\begin{aligned} & \text { G1y } \\ & 150 \end{aligned}$	P10	G10	Leu	Leu	$\begin{aligned} & \text { Phe } \\ & 155 \end{aligned}$	His	A 1 a	G1u	G 1 u	$\begin{aligned} & \text { Ty } \\ & 160 \end{aligned}$
Ly s	A 1 a	Asp	Phe	$\begin{aligned} & \text { Th } \\ & 165 \end{aligned}$	G : u	Cys	Cys	PIo	$\begin{aligned} & A 1 a \\ & 170 \end{aligned}$	A s p	$A s p$	Lys	$L \in u$	$\begin{aligned} & A 1 a \\ & 175 \end{aligned}$	C ys
$L \in u$	11 e	Pro	$\begin{array}{ll} \text { Ly } \\ 1880 \end{array}$	Leu	Asp	A 1 a	Leu	$\begin{aligned} & \text { Lys } \\ & 185 \end{aligned}$	G 10	A $\times 8$	11 e	Lev	$\begin{aligned} & 1 \in u \\ & 190 \end{aligned}$	Ser	Ser
Ala	L y s	$\begin{array}{r} \text { G1u } \\ 195 \end{array}$	A 18	Leu	Lys	Cys	$\begin{aligned} & S E I \\ & 200 \end{aligned}$	Ser	Pbe	G18	$A \operatorname{si}$	$\begin{aligned} & P h e \\ & 205 \end{aligned}$	019	G10	Arg

18

-continued

$\text { A } 1 \mathrm{a}$	$\begin{array}{lll} \mathrm{V} & \mathrm{l} \\ 2 & 1 & 0 \end{array}$	Lys	Ala	$\text { T } \mathrm{f} p$	Ser	$\begin{array}{lll} \mathrm{V} & \mathrm{a} & 1 \\ 2 & 1 & 5 \end{array}$	$\text { A } 1 \text { a }$	$A \mathbf{A F}_{\mathrm{g}}$	Le u	Ser	$\begin{array}{r} \text { G } 11 n \\ 220 \end{array}$	Lys	$\mathbf{P h e}_{\mathrm{h}}$		Ly s
$\begin{array}{ll} \mathrm{A} & 1 \mathrm{a} \\ 22 & \end{array}$	Asp	Phe	A 1 a	G1u	$\begin{aligned} & \text { VaI } \\ & 230 \end{aligned}$	Ses	$\mathrm{L} y \mathrm{~s}$	11 c	Val	$\begin{aligned} & \text { Th } 5 \\ & 23 \end{aligned}$	$A \leqslant p$	Leu	Thi	Ly s	$\begin{aligned} & \mathrm{Va} 1 \\ & 240 \end{aligned}$
His	Lys	G1u	Cys	$\begin{aligned} & \text { Cys } \\ & 245 \end{aligned}$	His	G1y	As p	Leu	$\begin{aligned} & L \in u \\ & 250 \end{aligned}$	G 1 u	Cys	A 1 a	As p	$\begin{aligned} & A \leqslant p \\ & 255 \end{aligned}$	A r 8
Ala	Asp	Leu	$\begin{aligned} & A 1 a \\ & 260 \end{aligned}$	L y s	T y \quad r	I 1 e	C ys	$\begin{gathered} \text { G } 10 \\ 265 \end{gathered}$	His	G1n	A \leqslant p	Ser	$\begin{array}{ll} 110 \\ 270 \end{array}$	Ser	G 1 y
Lys	Le u	$\begin{aligned} & \mathrm{L} y \mathrm{~s} \\ & 275 \end{aligned}$	Ala	Cys	Cys	Asp	$\begin{array}{lll} L & y & 8 \\ 2 & 8 & 0 \end{array}$	Pro	Leu	Leu	G1n	$\begin{aligned} & \text { L ys } \\ & 285 \end{aligned}$	Ser	His	Cys
$11 e$	$\begin{aligned} & \text { A } 1 \mathrm{a} \\ & 290 \end{aligned}$	G1u	val	Lys	G1u	$\begin{aligned} & A \leqslant p \\ & 295 \end{aligned}$	$A s p$	Lev	Pro	Ser	$\begin{aligned} & A \leqslant p \\ & 300 \end{aligned}$	11 e	Pro	A 1 a	Leu
$\begin{aligned} & \text { A } 1 \text { a } \\ & 305 \end{aligned}$	Ala	As p	Phe	Ala	$\begin{array}{ccc} G & 1 & u \\ 3 & 1 & 0 \end{array}$	Asp	L y s	G 1 u	11	$\begin{array}{lll} C & y & s \\ 3 & 1 & 5 \end{array}$	$L y s$	H i s	T y \quad I	Lys	$\begin{aligned} & \text { Asp } \\ & 320 \end{aligned}$
Ala	Lys	Asp	Yal	$\begin{aligned} & \text { Phe } \\ & 325 \end{aligned}$	Leu	G1y	Thr	Phe	$\begin{aligned} & L \in u \\ & 3 \\ & 3 \end{aligned}$	T y	G 1 :	T y 1	Ser	$\begin{aligned} & A r g \\ & 335 \end{aligned}$	A 58
His	Pro	As p	$\begin{aligned} & \text { Ty r } \\ & 340 \end{aligned}$	Ser	Val	Ser	Leu	$\begin{aligned} & \mathrm{L} \in \mathrm{u} \\ & 345 \end{aligned}$	Leu	A 5 g	11 e	A 1 a	$\begin{gathered} \text { Ly s } \\ 350 \end{gathered}$	Thr	Ty
G1u	Ala	$\begin{aligned} & \mathrm{Th} \mathbf{r} \\ & 355 \end{aligned}$	Leu	G1u	Lys	Cys	$\begin{aligned} & C y s \\ & 360 \end{aligned}$	A 1 a	G1u	A. 1 a	As \mathbf{p}	$\begin{aligned} & P r o \\ & 365 \end{aligned}$	Pro	A 1 a	Cys
T y	$\begin{aligned} & A I g \\ & 370 \end{aligned}$	Tb	Val	Pbe	A $\leq \mathbf{p}$	$\begin{aligned} & \text { G1n } \\ & 375 \end{aligned}$	Ph	Th	Pr	L.	$\begin{array}{lll} v a & 1 \\ 3 & 8 & 0 \end{array}$	G 1 u	G1u	P I_{0}	Lys
$\begin{aligned} & \text { Ser } \\ & 385 \end{aligned}$	Leu	Val	Ly s	Lys	$\begin{gathered} A S n \\ 390 \end{gathered}$	C ys	A s \mathbf{p}	$L \in u$	Pbe	$\begin{gathered} \text { G1u } \\ 395 \end{gathered}$	G10	Val	G1y	G10	$\begin{aligned} & \text { Ty r } \\ & 400 \end{aligned}$
Asp	Pbe	G1n	Asin	Ala 405	Leu	110	Val	A r g	$\begin{aligned} & \text { Ty } \\ & 410 \end{aligned}$	This	L y s	Lys	Ala	$\begin{aligned} & \text { Pro } \\ & 415 \end{aligned}$	G1:
val	Ser	Thr	$\begin{aligned} & \text { Pro } \\ & 420 \end{aligned}$	Thr	Leu	Val	G1:	$\begin{aligned} & 11 e \\ & 425 \end{aligned}$	G 1 y	A I_{8}	Thr	Leu	$\begin{aligned} & \text { G1y } \\ & 430 \end{aligned}$	Lys	Val
G19	Ser	$\begin{aligned} & \text { Arg } \\ & 435 \end{aligned}$	Cys	C ys	Lys	Leu	$\begin{aligned} & \text { P10 } \\ & 440 \end{aligned}$	G1u	Set	G1	A 18	$\begin{aligned} & L \in u \\ & 445 \end{aligned}$	Pro	Cys	Ser
G1u	$\begin{aligned} & A \leqslant n \\ & 450 \end{aligned}$	His	Leu	Ala	Leu	$\begin{aligned} & \text { A1 a } \\ & 455 \end{aligned}$	$L \in u$	As	A $\mathrm{r} \boldsymbol{g}$	Leo	$\begin{aligned} & C y s \\ & 460 \end{aligned}$	Val	Leu	His	G1u
$\begin{aligned} & 1 y s \\ & 465 \end{aligned}$	Th	Pr	$V_{\text {a }}$	Se	$\begin{aligned} & G 1 u \\ & 470 \end{aligned}$	Lys	110	Tb	Lys	$\begin{aligned} & C y s \\ & 475 \end{aligned}$	Cys	Thr	Asp	Ser	$\begin{aligned} & L \in u \\ & 480 \end{aligned}$
Ala	G 1 u	Arg	AI 8	$\begin{aligned} & \text { P } 10 \\ & 485 \end{aligned}$	Cys	Phe	Ser	A 1 a	$\begin{array}{r} \text { Le } \\ 490 \end{array}$	G1u	$L \in u$	Asp	G1u	$\begin{aligned} & G 1 y \\ & 495 \end{aligned}$	T $\mathrm{yr}^{\text {r }}$
Pro	Val	Lys	$\begin{gathered} G 1 u \\ 500 \end{gathered}$	Phe	Lys	Ala	G10	$\begin{aligned} & \text { Th } \boldsymbol{r} \\ & 505 \end{aligned}$	Phe	Thr	Pbe	His	$\begin{gathered} A 1 \\ \mathbf{A} \\ 5 \end{gathered}$	Asp	11 e
Cys	Thr	$\begin{array}{lll} L & e & u \\ 5 & 1 & 5 \end{array}$	PIo	G 1 u	A sp	G 1 u	$\begin{aligned} & 1 y 8 \\ & 520 \end{aligned}$	G1n	116	Lys	$L y s$	$\begin{gathered} G 1 n \\ 525 \end{gathered}$	Ser	Ala	$\mathrm{L} \in \mathrm{u}$
A 1 a	$\begin{array}{ll} \text { G } 14 \\ 5 & 3 \end{array}$	Leu	V a 1	Lys	His	$\begin{aligned} & \mathrm{L} y \mathrm{~s} \\ & 53 \end{aligned}$	Pro	L. ys	A 1 a	Thr	$\begin{aligned} & \text { Ly s } \\ & 540 \end{aligned}$	G 10	G1n	Lev	Lys
$\begin{aligned} & \mathrm{T} \text { b } \mathrm{r} \\ & 545 \end{aligned}$	Val	Leu	OLy	Asin	$\begin{aligned} & \text { Pbe } \\ & 550 \end{aligned}$	Ser	A 1 a	Pbe	Val	Ala 555	Lys	Cys	Cys	G1y	$\begin{array}{ll} \text { A } 18 \\ 56 \end{array}$
G 1 u	Asp	Lys	G 1 u	$\begin{aligned} & A 1 a \\ & 565 \end{aligned}$	Cys	Phe	Ala	G1u	$\begin{gathered} \text { G } 10 \\ 570 \end{gathered}$	G1 1	Pro	Lys	$L \in u$	$\begin{aligned} & \text { V a } 1 \\ & 575 \end{aligned}$	A 1 a
Ser	Sex	G1:	Lev 580	$\text { A } 1 \mathbf{a}$	$L \in u$	A 1 a									

(2) INPORMATION FOR SEQ ID NO:6:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 583 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(i i) MOLECULE T YPE: protein
(i i i) HYPOTHETICAL: NO

(i v) ANII-SENSE: NO
 (v) FRAGMENT TYPE: N-terminal

(x i) SEQUENCE DESCRIPTION: SEQ ID NO. 6 :

$\begin{aligned} & A \& p \\ & 1 \end{aligned}$	Th:	His	Lys	$\begin{aligned} & S \text { ex } \\ & 5 \end{aligned}$	Glu	I le	Ala	His	$\begin{aligned} & A E g \\ & 10 \end{aligned}$	Phe	$A \leq n$	A	$L \in u$	$\begin{gathered} \text { G1y } \\ 15 \end{gathered}$	G10
G1u	As ${ }^{\text {a }}$	Phe	$\begin{aligned} & \text { G1n } \\ & 20 \end{aligned}$	G1y	$L \in u$	Val	$\mathrm{Le} \mathbf{u}$	$\begin{aligned} & 11 e \\ & 25 \end{aligned}$	$\text { A } 1 \text { a }$	Phe	Ser	G1n	$\begin{aligned} & \text { Ty y } \\ & 30 \end{aligned}$	$L e u$	G1n
G10	Cys	$\begin{aligned} & \text { Pro } \\ & 35 \end{aligned}$	Pbe	As ${ }^{\text {p }}$	G 1 u	His	$\begin{aligned} & \text { Val } \\ & 40 \end{aligned}$	Ly s	Len	Val	Lys	$\begin{aligned} & \text { G10 } \\ & 45 \end{aligned}$	Len	Tht	G 1 u
Pbe	Ala 50	Lys	Th	Cys	Val	$\begin{aligned} & \text { A1a } \\ & 55 \end{aligned}$	$A s p$	G1u	Se	$\mathrm{His}_{\mathrm{i}}$	$\begin{aligned} & A 1 a \\ & 60 \end{aligned}$	G1y	Cys	$A \leq p$	Lys
$\begin{aligned} & \text { Ser } \\ & 65 \end{aligned}$	Leu	His	Thr	$L \in u$	$\begin{aligned} & \text { Ph } \\ & 70 \end{aligned}$	Gly	$A s p$	G1u	Leu	$\begin{aligned} & \text { Cys } \\ & 75 \end{aligned}$	L y s	Val	A 1 a	Tht	$\begin{aligned} & \text { Leu } \\ & 80 \end{aligned}$
Arg	G 1 u	Ihr	T y	$\begin{aligned} & \text { G1y } \\ & 85 \end{aligned}$	$A s p$	Met	A 1 a	As p	$\begin{aligned} & \text { Cys } \\ & 90 \end{aligned}$	Cys	G10	L y s	G 1 n	$\begin{aligned} & 61 u \\ & 95 \end{aligned}$	Pro
G 10	AIg	Ass	$\begin{aligned} & G 10 \\ & 100 \end{aligned}$	Cys	Phe	Leu	As n	$\begin{array}{ccc} \mathrm{H} i & \mathrm{~s} \\ 1 & 0 \end{array}$	Lys	Asp	Asp	Ser	$\begin{array}{lll} P & 1 & 0 \\ 1 & 1 & 0 \end{array}$	Asp	Lev
Pro	L y s	$\begin{gathered} L e v \\ 1 \end{gathered}$	L y s	Proor	G1u	Pr	$\begin{array}{r} A \leq p \\ 120 \end{array}$	Thr	Leu	Cys	A1a	$\begin{array}{r} \text { G } 14 \\ 125 \end{array}$	Phe	L y s	A 1 a
A $\$ p$	$\begin{aligned} & \text { G1u } \\ & 130 \end{aligned}$	Ly	L y s	Phe	Trp	$\begin{aligned} & \text { G1y } \\ & 135 \end{aligned}$	L y s	T y	Leu	T $\boldsymbol{y}^{\text {r }}$	$\begin{aligned} & G 10 \\ & 140 \end{aligned}$	Y a 1	A 1 a	AIg	Arg
$\begin{array}{r} \text { His } \\ 145 \end{array}$	Pro	T y \quad r	$\mathbf{P}^{\text {h }}$	T y	$\begin{array}{r} A 1 a \\ 150 \end{array}$	$\mathbf{P r}_{\text {r }}$	G 1 u	$L \in u$	Leo	$\begin{aligned} & \text { Tyt } \\ & 155 \end{aligned}$	T y r	A 1 a	Ass	Lys	$\begin{aligned} & \text { Ty } \\ & 160 \end{aligned}$
As:	G 1 y	val	Phe	$\begin{aligned} & \text { G } 1 \mathrm{n} \\ & 165 \end{aligned}$	G 1 u	Cys	Cys	G18	$\begin{aligned} & \text { A } 1 \text { a } \\ & 170 \end{aligned}$	G 1 u	As p	L ys	G1y	$\begin{array}{r} A 1 a \\ 175 \end{array}$	Cys
Leu	Leu	Pro	$\begin{array}{lll} \text { L y s } \\ 188 \end{array}$	I	Asp	A. 1 a	Met	$\begin{gathered} A \mathrm{I} \\ 185 \end{gathered}$	G 10	L y s	Va 1	Leu	Ala 190	Ser	ser
A 1 a	Arg	$\begin{array}{r} \text { G10 } \\ 195 \end{array}$	AI_{8}	Leu	A 18	Cys	$\begin{array}{ll} A 1 a \\ 200 \end{array}$	Ser	116	G1n	Ly s	$\begin{aligned} & \text { Phe } \\ & 205 \end{aligned}$	G1y	G10	A 18
A 1 a	$\begin{array}{lll} 1 & e \\ 2 & 1 \end{array}$	L y s	A 1 a	Trp	Ser	$\begin{array}{lll} \mathrm{V} a 1 \\ 2 & 1 \end{array}$	A 1 a	A 18	Leu	Set	$\begin{array}{ll} \text { G } 1 \\ 2 & n \\ 2 \end{array}$	L y s	Pbe	Pro	Lys
$\begin{aligned} & \text { A } 11 \\ & 2 \end{aligned}$	Asp	Pbe	T $\mathrm{hr}_{\mathbf{r}}$	Asp	$\begin{array}{lll} \mathrm{V} & 1 \\ 2 & 3 & 0 \end{array}$	T b	Lys	[1e	V a 1	$\begin{aligned} & \mathrm{Th} \\ & 235 \end{aligned}$	Asp	Leu	Th:	Ly s	$\begin{array}{lll} \text { V a } \\ 244 \end{array}$
His	L y s	G 1 u	Cys	$\begin{aligned} & C y s \\ & 245 \end{aligned}$	His	G 1 y	A s p	Leu	$\begin{array}{lll} L & 6 & u \\ 2 & 5 & 0 \end{array}$	G 1 u	Cys	A 1 a	A s p	$\begin{aligned} & A \leq p \\ & 255 \end{aligned}$	A ${ }^{1} \mathrm{~g}$
Ala	Asp	L. eu	$\begin{aligned} & A 1 a \\ & 260 \end{aligned}$	Lys	T y \quad r	11 e	Cys	$\begin{gathered} \text { Asp } \\ 265 \end{gathered}$	His	G 1 1	A s p	A 1 a	$\begin{aligned} & L \in u \\ & 270 \end{aligned}$	Ser	Ser
Lys		$\begin{aligned} & \mathrm{L} y \mathrm{~s} \\ & 275 \end{aligned}$	G1u	$C y s$	Cys	Asp	$\begin{aligned} & \mathrm{L} y \mathrm{~s} \\ & 280 \end{aligned}$	Pro	val	Leu	G1u	$\begin{aligned} & \text { Lys } \\ & 285 \end{aligned}$	Set	His	Cys
110	$\begin{aligned} & A 1 a \\ & 290 \end{aligned}$	G1u	$\text { V a } 1$	Asp	Lys	$\begin{aligned} & \text { Asp } \\ & 295 \end{aligned}$	A 1 a	Val	Pro	G 1 u	$\begin{aligned} & \text { Asn } \\ & 300 \end{aligned}$	Lev	Pro	Pro	Leu
$\begin{aligned} & \text { Thy } \\ & 305 \end{aligned}$	A 1 a	Asp	Pbe	Ala	$\begin{array}{ccc} \text { G } & 1 & \mathbf{u} \\ 3 & 1 & 0 \end{array}$	As p	Ly s	G 1 u	Val	$\begin{aligned} & C y s \\ & 3 y 5 \end{aligned}$	L y s	Ass	T y	G1 ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{G} 1 \mathrm{u} \\ & 320 \end{aligned}$
Ala	Lys	As P	Val	$\begin{aligned} & \text { Phe } \\ & 325 \end{aligned}$	Leu	G1y	Ser	Phe	$\begin{aligned} & \text { Le u } \\ & 330 \end{aligned}$	T y r	G 10	Tyr	Ser	$\begin{aligned} & A+E \\ & 335 \end{aligned}$	A ${ }^{\text {I }} \mathrm{g}$
His	Pro	G1u	$\begin{aligned} & \text { Ty r } \\ & 340 \end{aligned}$	Ala	Val	Ser	Val	$\begin{aligned} & L e u \\ & 345 \end{aligned}$	Le u	A 18	$L \in u$	$\text { A } 1 \mathrm{a}$	$\begin{aligned} & 1 y s \\ & 350 \end{aligned}$	G1u	Tyt
G1:	A 1 a	$\begin{array}{ll} \mathrm{T} & \mathrm{~h} \\ \hline & 5 \end{array}$	Leu	G1u	A s \mathbf{p}	Cys	$\begin{array}{ll} C y s \\ 36 & 0 \end{array}$	Ala	L ys	G14	A s p	$\begin{aligned} & \text { Pro } \\ & 365 \end{aligned}$	His	A 1 a	Cys
T y r	A 1 a	Tbr	Val	Pbe	Asp	L ys	$L \in u$	Lys	His	Leu	V a 1	A. $s p$	G10	Proor	G1n

-continued

	370					375					380				
$\begin{aligned} & A \leq n \\ & 385 \end{aligned}$			Lys	Lys	$\begin{gathered} A s n \\ 39 \end{gathered}$	Cys	G1u	$\mathcal{L} \in u$	Phe	$\begin{gathered} \text { G1u } \\ 395 \end{gathered}$	Lys	His	Gly	G1u	$\begin{aligned} & \text { Ty } \\ & 400 \end{aligned}$
G1y	Pbe	G10	A s n	$\begin{aligned} & \text { A1 a } \\ & 405 \end{aligned}$	$\mathrm{L} \in \mathrm{u}$	$11 \mathrm{e}$	val	$A r g$	$\begin{aligned} & \mathrm{Tyr} \\ & 410 \end{aligned}$	Thr	Arg	Ly s	A 1 a	$\begin{aligned} & \text { Pro } \\ & 415 \end{aligned}$	$\text { G } 1 \mathrm{n}$
Val	Set	Thr	$\begin{aligned} & \text { Pro } \\ & 420 \end{aligned}$	Thr	Leu	$\mathrm{V}_{\text {a }} \mathrm{I}$	$\text { G } 1 \mathrm{u}$	$\begin{aligned} & 11 e \\ & 425 \end{aligned}$	Ser	A r^{8}	Ser	Leu	$\begin{array}{r} \text { G1y } \\ 430 \end{array}$	Lys	V a 1
G1y	Tbr	$\begin{aligned} & 1 \mathrm{ys} \\ & 435 \end{aligned}$	Cys	Cys	Ala	Lys	$\begin{aligned} & \text { P } 10 \\ & 440 \end{aligned}$	G10	Ser	G 1 u	$A \times g$	Met 445	Pro	Cys	Thr
G 10	$\begin{aligned} & A \leqslant p \\ & 450 \end{aligned}$	$\mathrm{T} \mathbf{y} \mathbf{r}$	Leu	Set	$L \in u$	$\begin{aligned} & 11 e \\ & 455 \end{aligned}$	$\mathrm{Le} \mathbf{u}$	$\text { As } n$	$A \subset g$	Leu	$\begin{aligned} & C y s \\ & 460 \end{aligned}$	Val	Lev	His	G 1 u
$\begin{gathered} 1 \text { y s } \\ 465 \end{gathered}$	Tht	Pro	VaI	Ser	$\begin{gathered} \text { G1u } \\ 470 \end{gathered}$	Lys	Val	Thr	L y s	$\begin{aligned} & C y s \\ & 475 \end{aligned}$	cys	This	G 10	Ser	$\begin{aligned} & \text { Leu } \\ & 480 \end{aligned}$
V a 1	Asin	A 18	A 18	$\begin{aligned} & \text { Pro } \\ & 485 \end{aligned}$	Cys	Phe	Ser	$A \leq p$	$\begin{aligned} & L \in u \\ & 490 \end{aligned}$	Thr	Leu	A $s \mathrm{p}$	G10	$\begin{aligned} & \text { Thr } \\ & 495 \end{aligned}$	T y
val	PIo	Lys	$\begin{array}{lll} \text { Pro } \\ 5 & 0 & 0 \end{array}$	Phe	$A s p$	$G 10$	Lys	$\begin{aligned} & \text { Phe } \\ & 505 \end{aligned}$	Phe	Thr	Phe	His	$\begin{aligned} & A 1 a \\ & 5 \\ & 5 \end{aligned}$	$A s p$	11 e
Cys	Thi	Leu 515	Pra_{1}	A s p	Tht	G 10	$\begin{aligned} & 1 y s \\ & 520 \end{aligned}$	Gln	L 1 e	1 ys	Lys	$\begin{aligned} & G 1 n \\ & 525 \end{aligned}$	Tbs	Ala	Leu
V a 1	$\begin{aligned} & \text { G } 10 \\ & 530 \end{aligned}$	Leu	Leu	L y s	His	$\begin{aligned} & 1 y \mathrm{y} \\ & 535 \end{aligned}$	Pro	Lys	A 1 a	Thr	$\begin{aligned} & A \leqslant p \\ & 540 \end{aligned}$	G1u	G10	Leu	1 ys
$\begin{aligned} & \mathrm{Thr} \\ & 545 \end{aligned}$	val	Met	G1u	$A \leq n$	Pbe 550	Va_{1}	A 1 a	Phe	$\mathrm{va} 1$	$\begin{gathered} A \leq p \\ 555 \end{gathered}$	Lys	Cys	Cys	Ala	$\begin{array}{ll} A & 1 \\ 5 & 6 \end{array}$
Asp	Asp	L y s	G 1 u	$\begin{array}{r} \text { G1y } \\ 565 \end{array}$	Cys	Pbe	Val	Leu	$\begin{aligned} & \text { G } 1 \text { u } \\ & 570 \end{aligned}$	G 1 y	Pro	Lys	Leu	$\begin{aligned} & \text { V a } 1 \\ & 575 \end{aligned}$	Ala
Ser	Thr	G1n	A 1 a 580	$\text { A } 1 \text { a }$	$\mathrm{L} \subset \mathrm{u}$	A 1 a									

(2) INPORMATION FOR SEQ ID NO:7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 584 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: lineat

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: NO

(i v) ANTT-SENSE: NO
(v) FRAGMENT TYPE: N-terminal
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:7:

$\begin{gathered} \text { Glu } \\ 1 \end{gathered}$	A1 a	His	$\mathrm{L} y \mathrm{~s}$	$\begin{aligned} & \text { Ser } \\ & 5 \end{aligned}$	Glu	$11 \mathrm{e}$	Ala	His	$\begin{aligned} & \text { Arg } \\ & 10 \end{aligned}$	Pbe	Lys	$A s p$	Leu	$\begin{aligned} & \text { G1y } \\ & 15 \end{aligned}$	
G1n	His	Pbe	$\begin{aligned} & \text { Ly s } \\ & 20 \end{aligned}$	G1y	Leu	Val	Leu	$\begin{array}{ll} 11 \\ 25 \end{array}$	A. 1 a	Pbe	Ser	G1n	$\begin{aligned} & \mathrm{Tyr} \\ & 30 \end{aligned}$	Leu	G 1 n
Lys	Cys	$\begin{aligned} & \text { Pro } \\ & 35 \end{aligned}$	Ty r	G1u	$\text { G } 1 \mathrm{u}$	His	$\begin{aligned} & 11 e \\ & 40 \end{aligned}$	L y s	$\underline{L} \mathbf{u}$	V a 1	$\text { G } 1 \mathrm{n}$	$\begin{aligned} & G 1 u \\ & 45 \end{aligned}$	val	Thr	Assp
Phe	$\begin{aligned} & \text { A } 1 \text { a } \\ & 50 \end{aligned}$	L y s	Thr	$C \mathrm{ys}$	Val	$\begin{aligned} & \text { A } 1 \text { a } \\ & 55 \end{aligned}$	Assp	G1u	A : n	Ala	$\begin{aligned} & \text { G1u } \\ & 60 \end{aligned}$	Asin	Cys	Asp	Ly s
$\begin{aligned} & \text { Set } \\ & 65 \end{aligned}$	110	His	Thr	Leu	$\begin{aligned} & \text { Phe } \\ & 70 \end{aligned}$	G1y	As p	Lys	Leu	$\begin{aligned} & \text { Cys } \\ & 75 \end{aligned}$	A 1 a	110	Pro	Lys	$\begin{aligned} & L \in u \\ & 80 \end{aligned}$
ATg	Asp	Asin	Tyr	$\begin{aligned} & \text { G1 y } \\ & 85 \end{aligned}$	$\text { G } 1 u$	Leu	A 1 a	Asp	$\begin{aligned} & C y s \\ & 90 \end{aligned}$	Cys	A 1 a	Lys	G1n	$\begin{aligned} & \text { G1u } \\ & 95 \end{aligned}$	Pro
G1u	Arg	As n	$\begin{aligned} \text { G } 14 \\ 100 \end{aligned}$	Cys	Pbe	Leu	G1n	$\begin{array}{r} \text { His } \\ 105 \end{array}$	Ly s	Asp	$A \leq p$	Asin	$\begin{array}{lll} \mathbf{P} & 1 & 0 \\ 1 & 1 & 0 \end{array}$	Asn	Lev

Pro	Pro	$\begin{gathered} \text { Pbe } \\ 115 \end{gathered}$	$\text { G } 1 \mathrm{n}$	Arg			$\begin{aligned} & \text { A1a } \\ & 120 \end{aligned}$	G1u	Ala	Me:	Cys	$\begin{aligned} & \mathrm{Th} \mathbf{r} \\ & 125 \end{aligned}$		Phe	G1n
O 10	$\begin{aligned} & A s n \\ & 130 \end{aligned}$	Pro	Thr	Sef	Pbe	$\begin{aligned} & L e v \\ & 135 \end{aligned}$	G1y	His	Tyr	Leu	His 140	G1u	va_{1}	A 1 a	A 18
$\begin{gathered} A \div g \\ 145 \end{gathered}$	His	Pro	T y r	Phe	$\begin{aligned} & 1 y r \\ & 150 \end{aligned}$	A 1 a	Pro	G1u	Leu	$\begin{aligned} & L \in 日 \\ & 155 \end{aligned}$	T y r	Ty	A 1 a	G1u	$\begin{gathered} \mathrm{L} y \mathrm{~s} \\ 160 \end{gathered}$
T ${ }^{1}$ r	Asm	G1u	Val	$\begin{aligned} & \mathrm{L} e \mathrm{u} \\ & 165 \end{aligned}$	Thr	G 1 n	Cys	Cys	$\begin{aligned} & \mathrm{Tb} \mathrm{r} \\ & 170 \end{aligned}$	G 1 u	Ser	Asp	L ys	$\begin{aligned} & \text { A } 1 \text { a } \\ & 175 \end{aligned}$	Ala
Cys	Leu	Thi	$\begin{array}{ll} P & 1 \\ 18 & 0 \end{array}$	Lys	Leu	Asp	Ala	$\begin{aligned} & \text { Yal } \\ & 185 \end{aligned}$	Ly s	G 1 u	L y s	Ala	$\begin{aligned} & L \in u \\ & 190 \end{aligned}$	Val	Ala
A 1 a	Val	$\begin{array}{r} A r g \\ 195 \end{array}$	G10	Ar 8	Met	Lys	$\begin{aligned} & C y s \\ & 200 \end{aligned}$	Ser	Ster	Met	G 1 n	$\begin{aligned} & A \times 8 \\ & 2 \end{aligned}$	Pbe	G1y	G 1 u
A 18	$\begin{aligned} & A 1 \\ & A 10 \\ & 2 \end{aligned}$	Ph	L y s	Ala	Trp	$\begin{array}{lll} A & 1 & a \\ 2 & 1 & 5 \end{array}$	Val	Ala	Ar 8	Met	$\begin{array}{ll} S \in f \\ 220 \end{array}$	G 1 n	A 58	Pbe	Pro
$\begin{array}{lll} A & n \\ 2 & 2 & 5 \end{array}$	Ala	G10	Pbe	Ala	$\begin{gathered} G 1 u \\ 230 \end{gathered}$	110	Tbr	Lys	Leu	$\begin{gathered} A 1 \\ A \\ 2 \end{gathered} \mathbf{a}$	Tbr	Asp	Val	Thr	$\begin{aligned} & \text { Lys } \\ & 240 \end{aligned}$
11 e	As n	Lys	G1u	$\begin{aligned} & C y s \\ & 245 \end{aligned}$	Cys	His	G19	As $\mathrm{s}^{\text {P }}$	$\begin{array}{lll} L & \text { eu } \\ 2 & 5 & 0 \end{array}$	Leu	G 1 u	Cys	A 1 a	$\begin{gathered} \text { Asp} \\ 255 \end{gathered}$	Asp
A 18	A 1 a	G1u	$\begin{aligned} & L e u \\ & 260 \end{aligned}$	Ala	Lys	T y	Met	$\begin{aligned} & \text { Cys } \\ & 265 \end{aligned}$	G1u	As n	G 1 n	A 1 a	$\begin{array}{ll} \mathrm{Th} \mathbf{r} \\ 27 \end{array}$	116	Ser
Set	L y s	$\begin{aligned} & L \in u \\ & 275 \end{aligned}$	G1n	A 1 a	Cys	Cys	$\begin{aligned} & \text { Asp } \\ & 280 \end{aligned}$	L \% ${ }^{\text {s }}$	Pro	val	Leu	$\begin{aligned} & \text { G1n } \\ & 285 \end{aligned}$	Lys	Ser	G1:
Cys	$\begin{aligned} & L e u \\ & 290 \end{aligned}$	Ala	G1u	Tbr	G:	$\begin{array}{r} H \text { i } \\ 295 \end{array}$	Asp	As ${ }^{\text {n }}$	11e	PIo	$\begin{array}{ll} A 1 a \\ 3 & 0 \end{array}$	As ${ }^{\text {p }}$	Leu	Pro	Ser
$\begin{array}{lll} 1 & 1 & 0 \\ 3 & 0 & 5 \end{array}$	A 1 a	A 1 a	As p	be	$\begin{array}{lll} \mathrm{V} & 1 \\ 3 & 1 \end{array}$	G1	Asp	Lys	G10	$\begin{array}{lll} V & 1 \\ 3 & 1 & 5 \end{array}$	Cys	Lys	As n	T y \quad	$\begin{array}{cll} A & 1 \\ 3 & 2 \end{array}$
G1u	A 1 a	Lys	Asp	$\begin{array}{lll} V & \text { a } \\ 3 & 2 & 5 \end{array}$	Phe	Leu	G1y	Tht	$\begin{aligned} & \text { Phe } \\ & 330 \end{aligned}$	Leu	T y	G1u	Ty	$\begin{aligned} & \text { Ser } \\ & 335 \end{aligned}$	A $\quad 8$
A $\times \mathrm{E}$	His	Pro	$\begin{aligned} & \text { Asp } \\ & 340 \end{aligned}$	T ${ }^{\text {r }}$	Se:	Val	Ser	$\begin{aligned} & L \subset u \\ & 345 \end{aligned}$	Leu	Leu	A 5 g	Leu	$\begin{array}{ll} A & 1 \\ 3 & \text { a } \end{array}$	Lys	L y s
T y	G10	$\begin{aligned} & \text { A } 1 \text { a } \\ & 3555 \end{aligned}$	Thr	Leu	G1u	Lys	$\begin{aligned} & C y s \\ & 360 \end{aligned}$	Cys	A. 1 a	G1u	G1y	$\begin{aligned} & \text { Asp } \\ & 365 \end{aligned}$	Pro	Pro	A 1 a
Cys	$\begin{aligned} & \mathrm{Ty} \\ & 370 \end{aligned}$	G1y	T \quad r	Val	Leu	$\begin{aligned} & A 1 a \\ & 375 \end{aligned}$	G1u	Phe	G 1 n	Pro	$\begin{aligned} & \mathrm{L} e \mathrm{e} \\ & 380 \end{aligned}$	Val	G1u	G 1 u	Pro
$\begin{aligned} & \text { Lys } \\ & 385 \end{aligned}$	Ass	Lev	Val	Lys	$\begin{aligned} & \mathrm{Th} \\ & 390 \end{aligned}$	Asin	Cys	G1u	Leu	$\begin{aligned} & \text { Ty } \\ & 395 \end{aligned}$	G1:	Lys	$L \in u$	GIy	$\begin{array}{r} 61 u \\ 400 \end{array}$
T y	G1y	Pbe	G1n	$\begin{aligned} & A \leq n \\ & 405 \end{aligned}$	A 1 a	Val	Leu	Val	$\begin{array}{ll} A & B \\ 4 & 1 \end{array}$	Ty	Tbr	G1	Lys	$\begin{aligned} & \text { A1a } \\ & 415 \end{aligned}$	Pro
G18	Va 1	Ser	$\begin{aligned} & \text { Th r } \\ & 420 \end{aligned}$	Pro	Tir	Leu	Val	$\begin{gathered} \text { G1u } \\ 425 \end{gathered}$	A 1 a	A 1 a	A If	As n	$\begin{aligned} & 1 \in u \\ & 430 \end{aligned}$	O1y	Arg
Va 1	Gly	$\begin{aligned} & \text { Tb } \\ & 435 \end{aligned}$	Lys	Cys	Cys	Tbis	$\begin{aligned} & L e u \\ & 440 \end{aligned}$	Pro	G1u	A 1 a	G 1 n	$\begin{aligned} & \text { AI } \\ & 445 \end{aligned}$	Leu	Pro	Cys
Val	$\begin{aligned} & \text { G1u } \\ & 450 \end{aligned}$	A 3 P	T y	Leu	Ser	$\begin{array}{r} \text { A } 1 \text { a } \\ 455 \end{array}$	112	Leu	As ${ }^{\text {a }}$	A 18	$\begin{array}{r} L e u \\ 460 \end{array}$	Cys	Val	Leu	His
$\begin{aligned} & G 1 u \\ & 465 \end{aligned}$	Lys	Tbs	Pso	Val	$\begin{aligned} & S e r \\ & 470 \end{aligned}$	G1u	Lys	Val	Tbr	$\begin{aligned} & \text { Lys } \\ & 475 \end{aligned}$	Cys	Cys	Set	G1y	$\begin{aligned} & \text { Ser } \\ & 480 \end{aligned}$
Leu	val	G1u	Ar 8	$\begin{aligned} & \text { A } 18 \\ & 485 \end{aligned}$	Pro	Cys	Pbe	Ser	$\begin{aligned} & \text { A1a } \\ & 490 \end{aligned}$	Leu	Thr	Val	As P	$\begin{aligned} & G 1 u \\ & 495 \end{aligned}$	Thr
T y \quad r	Val	Pro	$\begin{array}{lll} \text { L y s } \\ 5 & 0 & 0 \end{array}$	G1:	Pbe	Lys	Ala	$\begin{gathered} \text { G1u } \\ 505 \end{gathered}$	Thr	Phe	Thr	Phe	$\begin{array}{cc} \mathrm{H} \text { i s } \\ 510 \end{array}$	Ser	A s \mathbf{P}
110	Cys	$\begin{array}{lll} \mathbf{T} & h & \mathrm{r} \\ 5 & 1 & 5 \end{array}$	Lea	Pro	A s p	Lys	$\begin{aligned} & G 1 u \\ & 520 \end{aligned}$	Lys	G1a	1 1 e	Lys	$\begin{aligned} & L y s \\ & 525 \end{aligned}$	G1n	Thr	Ala
Leu	$\begin{aligned} & A 1 a \\ & 530 \end{aligned}$	G1u	Leu	Vall	Lys	$\begin{gathered} \text { His } \\ 535 \end{gathered}$	Lys	Pro	Lys	Ala	$\begin{aligned} & \text { Th } \\ & 540 \end{aligned}$	G10	Asp	G 1	Leu

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{L} y \mathrm{~s} \\
& 545
\end{aligned}
\] & Th \(\quad\) & & Met & G1y & \[
\begin{array}{r}
\text { Asp } \\
550
\end{array}
\] & Phe & \[
\text { A } 1 \text { a }
\] & G1n & Phe & \[
\begin{aligned}
& \text { Va } 1 \\
& 555
\end{aligned}
\] & Asp & Lys & Cys & Cys & \[
\begin{aligned}
& 1 \text { y s } \\
& 560
\end{aligned}
\] \\
\hline A 1 a & Ala & Asp & Ly s & \[
\begin{aligned}
& \text { Asp } \\
& 565
\end{aligned}
\] & Asin & Cys & Phe & Ala & \[
\begin{aligned}
& \mathrm{Thr} \\
& 570
\end{aligned}
\] & G1u & G1y & Pro & Asn & \[
\begin{aligned}
& 104 \\
& 575
\end{aligned}
\] & val \\
\hline Ala & AIg & Ser & \[
\begin{aligned}
& \text { Lys } \\
& 580
\end{aligned}
\] & G1u & Ala & Leu & A 1 a & & & & & & & & \\
\hline
\end{tabular}
```

(2) INPORMATION FOR SEQ ID NO:8:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 579 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: NO
(i y) ANTI-SENSE: NO
(v) FRAGMENT TYPE: N-terminal
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:8:

		275					280					285			
Thr	$\begin{aligned} & 1 \subset 0 \\ & 290 \end{aligned}$	Glu	$\mathrm{A} s \mathrm{n}$	$A s p$	$A \leq p$	$\begin{aligned} & \text { V a } 1 \\ & 295 \end{aligned}$		Ala	G1u	$L \in u$	$\begin{aligned} & S E r \\ & 300 \end{aligned}$			I $1 e$	Thr
$\begin{gathered} \text { G1u } \\ 305 \end{gathered}$	Pbe	Thrir	G 1 u	Assp	$\begin{array}{lll} \mathbf{P} & \mathbf{O} \\ 3 & 1 & 0 \end{array}$	His	Val	Cys	G1n	$\begin{array}{ccc} L & y & s \\ 3 & 1 & 5 \end{array}$	$\text { Ty } \mathrm{r}$	A 1 a	G10	As:	$\begin{array}{lll} \mathbf{L} & \text { y } \\ 3 & 2 & 0 \end{array}$
Ser	Pbe	L eu	G 10	$\begin{aligned} & 115 \\ & 325 \end{aligned}$	Ser	Pro	Trp	G1n	$\begin{aligned} & \text { Set } \\ & 330 \end{aligned}$	G18	G1u	T \quad ¢	Pro	$\begin{gathered} \text { G1u } \\ 335 \end{gathered}$	Leu
Ser	G10	G1:	$\begin{aligned} & \text { Pbe } \\ & 340 \end{aligned}$	Leu	Leu	G1 1	Sel	$\begin{aligned} & \text { A1 a } \\ & 345 \end{aligned}$	Lys	G10	T $\mathrm{y}^{\text {r }}$	G1u	$\begin{aligned} & S e r \\ & 350 \end{aligned}$	Leu	Leu
Asm	L y s	$\begin{gathered} C y s \\ 355 \end{gathered}$	Cys	Pbe	Ser	$A \leq p$	$\begin{aligned} & A s n \\ & 360 \end{aligned}$	PIo	P 10	G1u	Cys	$\begin{aligned} & \text { Ty } \\ & 365 \end{aligned}$	Lys	Asp	G19
A 1 a	$\begin{aligned} & \text { Asp } \\ & 370 \end{aligned}$	$A=8$	$\mathbf{P h e}_{\mathrm{h}}$	Met	Asm	$\begin{gathered} G 1 u \\ 375 \end{gathered}$	A 1 a	Lys	G10	A r g	$\begin{aligned} & \text { Phe } \\ & 380 \end{aligned}$	A 1 a	T y r	Leu	Lys
$\begin{gathered} \text { G1n } \\ 385 \end{gathered}$	Asin	Cys	$A \leq p$	$11 \mathrm{e}$	$\begin{aligned} & L \in u \\ & 390 \end{aligned}$	His	G 10	His	G1y	$\begin{aligned} & \text { G14 } \\ & 395 \end{aligned}$	Ty	Leu	Phe	Glu	$\begin{aligned} & A \leq n \\ & 400 \end{aligned}$
G10	Leu	Leu	116	$\begin{aligned} & \text { A } 58 \\ & 405 \end{aligned}$	Tyr	T br	L y s	Ly s	$\begin{array}{r} \mathrm{Met} \\ 410 \end{array}$	Pro	$G 1 n$	Val	Ser	$\begin{gathered} A s p \\ 415 \end{gathered}$	G1u
This	Leu	11 c	$\begin{aligned} & G 1 y \\ & 420 \end{aligned}$	11 e	A 1 a	His	G1n	Met 425	Ala	Asp	110	G19	$\begin{array}{r} \text { G1u } \\ 430 \end{array}$	His	Cy s
Cys	Ala	$\begin{aligned} & \mathrm{V} \text { a } 1 \\ & 435 \end{aligned}$	Pro	G1u	Asm	G1 ${ }^{\text {a }}$	$\begin{aligned} & A 1 g \\ & 440 \end{aligned}$	Met	Pro	Cys	A 1 a	$\begin{aligned} & \text { G1u } \\ & 445 \end{aligned}$	G 1 y	Asp	Leu
Thr	$\begin{array}{ll} 11 \\ 450 \end{array}$	$L \in u$	112	G I y	Lys	Me 455	Cys	G10	$A I g$	GIn	$\begin{aligned} & 1 y s \\ & 460 \end{aligned}$	L y s	Tht	Phe	110
$\begin{gathered} A \leqslant n \\ 465 \end{gathered}$	Asin	His	val	$\text { A } 1 \text { a }$	$\begin{gathered} H 1 s \\ 470 \end{gathered}$	Cys	Cys	Thr	As p	$\begin{aligned} & S e r \\ & 475 \end{aligned}$	T y I	Sex	G1y	Met	$\begin{aligned} & A Y g \\ & 480 \end{aligned}$
Ser	Cys	Phe	Thr	$\begin{array}{r} A 1 a \\ 485 \end{array}$	Leu	G 1 y	PIo	$A s p$	$\begin{aligned} & \text { G1u } \\ & 490 \end{aligned}$	A s p	Ty	V a 1	Pro	$\begin{aligned} & \text { PIo } \\ & 495 \end{aligned}$	Pro
V a 1	Tht	Asp	$\begin{aligned} & A s p \\ & 50 \end{aligned}$	Thr	Pbe	His	Pbe	$\begin{array}{cc} \text { A.s p } \\ 5 & 0 \end{array}$	Asp	L y s	110	Cys	$\begin{array}{ll} \mathrm{T} & \mathrm{r} \\ 5 & 1 \end{array}$	Ala	Asm
A \leqslant P	Lys	$\begin{array}{ccc} G & 1 & u \\ 5 & 1 & 5 \end{array}$	Lys	GIn	H is	$11 \mathrm{e}$	$\begin{array}{lll} L & y & s \\ 5 & 2 & 0 \end{array}$	G1n	Lys	Pbe	Leu	$\begin{aligned} & \text { Val } \\ & 5225 \end{aligned}$	Lys	Leu	11 c
L y s	$\begin{array}{lll} \text { Va } \\ 5 & 3 & 0 \end{array}$	$S \in \mathrm{r}$	P 10	Lys	Leu	$\begin{array}{ll} G 1 u \\ 5 & 3 \\ \hline \end{array}$	Lys	A.ss	His	110	$\begin{aligned} & \text { A } 5 \text { p } \\ & 540 \end{aligned}$	G 10	T ${ }^{\text {P }}$	Leu	Leu
$\begin{aligned} & \text { G1u } \\ & 545 \end{aligned}$	Phe	Leu	Lys	Met	$\begin{aligned} & \text { Val } \\ & 550 \end{aligned}$	G1n	L y s	Cys	Cys	Th r 555	A 1 a	Asp	G1u	His	$\begin{gathered} \text { G } 1 \mathrm{n} \\ 560 \end{gathered}$
Pro	Cys	Phe	A sp	$\begin{aligned} & \text { Thy } \\ & 565 \end{aligned}$	G1u	Lys	P 10	V .1	$\begin{aligned} & L \in 0 \\ & 570 \end{aligned}$	11 c	G 10	His	Cys	$\begin{aligned} & \text { G1n } \\ & 575 \end{aligned}$	Lys
Leu	His	Pro													

(2) INPORMATION FOR SEQ ID NO.S:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 590 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: NO
(i v) ANTI-SENSE: NO
(v) FRAGMENT TYPE: N-terminal
(x i) SEQUENCE DESCRIPTION: SEQ ID NO9:

Assp	Ser	$\begin{aligned} & \text { Th r } \\ & 35 \end{aligned}$	Leu	G1y	Asp	Leu	$\begin{aligned} & \text { Val } \\ & 40 \end{aligned}$	Pro	Leu	110	Ala	$\begin{aligned} & \text { G1u } \\ & 45 \end{aligned}$	A 1 a	$L \in u$	Ala
Met	$\begin{aligned} & \text { G1y } \\ & 50 \end{aligned}$	Val	L y s	C ys	Cys	$\begin{aligned} & S e r \\ & 55 \end{aligned}$	Asp	T \quad r	Pro	PIo	$\begin{aligned} & G 1 u \\ & 60 \end{aligned}$	As p	Cys	G1u	Arg
$\begin{aligned} & \text { Asp } \\ & 65 \end{aligned}$	val	A 1 a	Asp	Leu	$\begin{aligned} & \text { Phe } \\ & 70 \end{aligned}$	G1n	Ser	A 1 a	val	$\begin{aligned} & \text { Cy s } \\ & 75 \end{aligned}$	Set	Set	G1u	Tbr	$\begin{aligned} & \text { Let } \\ & 80 \end{aligned}$
Val	G 1 u	L ys	As n	Asp	Leu	Lys	Met	Cys	$\begin{aligned} & \text { Cys } \\ & 90 \end{aligned}$	G 1 u	Lys	Thr	A 1 a	$\begin{aligned} & \text { A } 1 \text { a } \\ & 95 \end{aligned}$	G1u
A $\times \mathrm{g}$	This	His	$\begin{aligned} & \text { Cys } \\ & 100 \end{aligned}$	Pbe	Val	A s p	His	$\begin{gathered} \text { Lys } \\ 105 \end{gathered}$	A 1 a	Lys	116	P50	$\begin{array}{rl} A I g \\ 1 & 0 \end{array}$	Asp	Lev
Ser	Leu	$\begin{gathered} L \\ y \end{gathered}$	A. 1 a	G 1 u	Le	P:o	$\begin{aligned} & A 1 a \\ & 120 \end{aligned}$	A 1 a	A s	G 1 n	Cys	$\begin{aligned} & \text { G } 14 \\ & 125 \end{aligned}$	A sp	Phe	L ys
Lys	$\begin{aligned} & A s p \\ & 130 \end{aligned}$	His	L y s	A 1 a	Phe	$\begin{aligned} & V \text { a } 1 \\ & 13 \end{aligned}$	G1 y	A. ${ }^{\text {g }}$	Phe	110	$\begin{aligned} & \text { Phe } \\ & 140 \end{aligned}$	Lys	Phe	Ser	Lys
$\begin{aligned} & \text { Ser } \\ & 145 \end{aligned}$	As n	Pro	Met	L	$\begin{aligned} & P \\ & 1 \\ & 150 \end{aligned}$	10	His	Val	Va	$\begin{aligned} & 1 \in 0 \\ & 155 \end{aligned}$	Ala	110	Ala	Lys	$\begin{gathered} \text { G1y } \\ 160 \end{gathered}$
T y	G 1 y	G1u	V a 1	$\begin{aligned} & L \in u \\ & 165 \end{aligned}$	Tbr	T b \quad \%	Cys	Cys	$\begin{gathered} G 19 \\ 170 \end{gathered}$	G 1 u	A1:	G10	A 1 a	$\begin{array}{r} \text { G } 1 \mathrm{n} \\ 175 \end{array}$	Thr
Cys	Phe	Asp	$\begin{aligned} & \text { Th r } \\ & 180 \end{aligned}$	L y s	L y s	1 a	T	$\begin{aligned} & \text { Phe } \\ & 185 \end{aligned}$	G 1	His	Ala	Val	$\begin{array}{r} \text { Met } \\ 190 \end{array}$	Lys	Arg
val	A 1 a	$\begin{aligned} & \text { G } 10 \\ & 195 \end{aligned}$	Le	g			$\begin{aligned} & \mathrm{Cys} \\ & 200 \end{aligned}$		v	His	Lys	$\begin{aligned} & \text { Lys } \\ & 205 \end{aligned}$	T y r	G 1 y	A sp
A If_{8}	$\begin{array}{lll} \mathbf{V} & \text { a } \\ 2 & 1 & 0 \end{array}$	va	L y		L	$\begin{array}{lll} 1 & y & s \\ 2 & 1 & 5 \end{array}$	Le	V		T	$\begin{array}{lll} S & \mathrm{r} \\ 2 & 2 & 0 \end{array}$	G 1 n	Lys	Met	Pro
$\begin{array}{rl} G 11 \\ 22 & 5 \end{array}$	Ala	Ser			$\begin{aligned} & \text { G } 1 \text { u } \\ & 230 \end{aligned}$	e	G			$\begin{aligned} & \text { Val } \\ & 235 \end{aligned}$	Asp	Lys	I 1 e	Val	$\begin{array}{cc} A & 1 a \\ 2 & 40 \end{array}$
Tht	Val	A 1 a	Pro	$\begin{aligned} & \mathrm{Cys} \\ & 245 \end{aligned}$	Cys	Ser	G19	As p	$\begin{array}{cc} \text { Met } \\ 250 \end{array}$	Val	Thr	Cys	Met	$\begin{aligned} & \text { Ly s } \\ & 255 \end{aligned}$	G 1 u
A ${ }^{\text {g }} \mathrm{g}$	Ly s	Thy	$\begin{array}{lll} L & 6 & \mathbf{u} \\ 2 & 6 & 0 \end{array}$	Val	Asp	G1u	Val	$\begin{gathered} \text { Cys } \\ 265 \end{gathered}$	Ala	Asp	G1u	Ser	$\begin{array}{ll} V & 1 \\ 27 & 0 \end{array}$	Leu	Ser
Arg	Ala	$\begin{aligned} & A 1 a \\ & 275 \end{aligned}$	G 1	Le	Ser		$\begin{aligned} & C y s \\ & 280 \end{aligned}$	C		G	A	$\begin{array}{ll} \text { A1 a } \\ 285 \end{array}$	Val	His	A Ig
GIy	$\begin{aligned} & \text { Set } \\ & 290 \end{aligned}$	C y	V a 1	10	A 1 a	$\begin{array}{r} \text { Met } \\ 295 \end{array}$	L y s	Pro	As	Pr	$\begin{aligned} & \text { Ly s } \\ & 300 \end{aligned}$	Pro	Asp	G 1 y	Leu
$\begin{aligned} & \text { Ser } \\ & 305 \end{aligned}$	G 1	Hi	T y	A	$\begin{array}{lll} 1 & 1 & e \\ 3 & 1 & 0 \end{array}$	His	A 1	A. ${ }^{\text {P }}$	1	$\begin{array}{cll} A & 1 & \text { a } \\ 3 & 1 & 5 \end{array}$	Ala	Val	Cys	GIn	$\begin{array}{ll} \text { TH } \\ 320 \end{array}$
Phe	Thr	Lys	Pro	$\begin{aligned} & \mathbf{T h r} \\ & 325 \end{aligned}$	As p	VaI	Ala	Met	$\begin{aligned} & \text { G1y } \\ & 330 \end{aligned}$	Lys	Leu	Val	Ty	$\begin{aligned} & G 1 u \\ & 335 \end{aligned}$	I $1 e$
Ser	val	A 58	$\begin{gathered} \mathrm{His} \\ 340 \end{gathered}$	P $\quad 0$	G 1 u	Ser	Ser	$\begin{gathered} G 1 n \\ 345 \end{gathered}$	G1]	Val	I 1 e	Leu	$\begin{aligned} & A I g \\ & 350 \end{aligned}$	Pbe	Ala
Lys	G10	$\begin{array}{lll} \text { A } 1 & \text { a } \\ 3 & 5 & \end{array}$	G 1 u	G 1 n	A. 1 a	Leu	$\begin{aligned} & L \in u \\ & 360 \end{aligned}$	G1n	Cys	Cys	As p	$\begin{gathered} M \in t \\ 365 \end{gathered}$	G 1 u	Asp	His
Ala	$\begin{aligned} & \text { G1u } \\ & 370 \end{aligned}$	Cys	V a 1	Lys	Tbr	$\begin{aligned} & A 1 a \\ & 375 \end{aligned}$	Leu	A 1 a	G1y	Ses	Asp	I 1 e	Asp	Lys	Lys
$\begin{array}{lll} 1 & 1 & 0 \\ 3 & 8 & 5 \end{array}$	Thr	A. ${ }^{\text {s }}$	G1	Th	$\begin{aligned} & \text { Asp } \\ & 390 \end{aligned}$	T y	T y	Lys	Lys	$\begin{gathered} M \in 1 \\ 395 \end{gathered}$	Cys	A 1 a	A 1 a	G10	$\begin{array}{r} A 1 a \\ 400 \end{array}$
A I a	Val	Ser	Asp	$\begin{gathered} A s p \\ 405 \end{gathered}$	Ser	Phe	G 1 u	Lys	$\begin{aligned} & S \text { e } r \\ & 410 \end{aligned}$	Met	Met	Val	Ty r	$\begin{aligned} & \text { Ty r } \\ & 415 \end{aligned}$	Thr
A r g	I 1e	Met	$\begin{aligned} & \text { P } 10 \\ & 420 \end{aligned}$	G1 1	A 1 a	Ser	Pbe	$\begin{array}{r} A s p \\ 425 \end{array}$	G1n	Leu	His	Met	$\begin{aligned} & V a 1 \\ & 430 \end{aligned}$	Ser	G1n
Thr	Val	$\begin{array}{r} H i s \\ 435 \end{array}$	As p	val	Leu	His	$\begin{aligned} & \text { A1a } \\ & 440 \end{aligned}$	Cys	Cys	Lys	A s p	$\begin{aligned} & \text { G1u } \\ & 445 \end{aligned}$	G1n	G 1 y	His

-continued

Phe	$\begin{aligned} & \mathrm{V} \text { a } 1 \\ & 450 \end{aligned}$	Leo	Pro	cys	A1a	$\begin{aligned} & \text { G1u } \\ & 455 \end{aligned}$		Lys	Leu	Tbr	$\begin{aligned} & \text { Asp } \\ & 460 \end{aligned}$	Ala	110	Asp	A 1 a
$\begin{aligned} & \mathrm{Tbr} \\ & 465 \end{aligned}$	Cys	Asp	Asp	Ty	$\begin{aligned} & \text { Asp } \\ & 470 \end{aligned}$	Pro	Ser	Ser	11 e	$\begin{aligned} & \text { As } n \\ & 475 \end{aligned}$	Pro	His	110	A1a	$\begin{aligned} & \text { His } \\ & 480 \end{aligned}$
Cys	Cys	As n	G1n	$\begin{aligned} & \mathrm{SeJ} \\ & 485 \end{aligned}$	T y ${ }^{\text {r }}$	Ser	Met	AIg	$\begin{array}{r} \text { Ar } \\ 490 \end{array}$	His	Cys	11e	Leu	$\begin{aligned} & \text { A1a } \\ & 495 \end{aligned}$	110
G1n	Pro	Asp	$\begin{array}{ll} \text { Th } \\ 50 & 1 \end{array}$	G10	Pbe	Thit	Pro	$\begin{array}{lll} P & 1 & 0 \\ 5 & 0 & 5 \end{array}$	G 1 u	Leu	Asp	Ala	$\begin{aligned} & S \in r \\ & 510 \end{aligned}$	Ser	Phe
His	Met	$\begin{aligned} & G 1 y \\ & 515 \end{aligned}$	Pro	G 10	Leu	Cys	$\begin{aligned} & \mathrm{Th} \mathbf{~ r} \\ & 520 \end{aligned}$	Lys	Asp	Scr	Lys	$\begin{aligned} & \text { Asp } \\ & 525 \end{aligned}$	Leu	Leo	Leu
Ser	$\begin{aligned} & \text { G1y } \\ & 530 \end{aligned}$	Ly s	Lys	Leu	Leu	$\begin{aligned} & \text { Ty r } \\ & 535 \end{aligned}$	G 1 y	Val	Vat	Ar 8	$\begin{gathered} \mathrm{H} \text { i } \mathrm{s} \\ 54 \end{gathered}$	Lys	Tbr	Thr	110
$\begin{aligned} & \text { Th r } \\ & 545 \end{aligned}$	G1u	Asp	His	Lea	$\begin{aligned} & \text { Ly s } \\ & 550 \end{aligned}$	Thy	11 e	Ser	This	$\begin{array}{r} \text { Lys } \\ 555 \end{array}$	Ty	His	Tbr	Met	$\begin{aligned} & \text { Ly s } \\ & 560 \end{aligned}$
G10	Lys	Cys	Cys	$\begin{aligned} & \text { A1a } \\ & 565 \end{aligned}$	Ala	G10	Asp	G1n	$\begin{aligned} & A 1 a \\ & 570 \end{aligned}$	A 1 a	Cys	Phe	Tbi	$\begin{array}{ll} \text { G1u } \\ 575 \end{array}$	G 10
A 1 a	Pro	L y s	$\begin{aligned} & L e 0 \\ & 580 \end{aligned}$	Va 1	Ser	G 1 u	Ser	$\begin{gathered} \text { A1 a } \\ 585 \end{gathered}$	G 1 u	Lev	val	Lys	$\begin{aligned} & \text { Val } \\ & 590 \end{aligned}$		

What is claimed is:

1. A serum albumin protein fragment consisting of at least one serum albumin binding region selected from the group consisting of binding region subdomain חA and binding region subdomain IIIA.
2. A serum albumin protein fragment according to claim 1 wherein the serum albumin binding region consists of binding region subdomain IIA.
3. A serum albumin protein fragment according to claim 1 wherein the serum albumin binding region consists of binding region subdomain IIIA.
4. A serum albumin protein fragment according to claim 1 wherein the serum albumin binding region consists of binding region subdomains IIA. IIB and IIIA.
5. A serum albumin protein fragment according to claim 40 1 wherein the serum albumin binding region is a binding region of a serum albumin selected from the group consisting of human. bovine, equine, ovine, rat, frog, sheep. salmon, mouse, and sea lamprey serum albumin proteins.
6. A serum albumin protein fragment according to claim 5 wherein the serum albumin binding region is a human serum albumin binding region.
7. A serum albumin protein fragment according to claim ${ }_{30} 5$ wherein the serum albumin binding region is an equine serum albumin binding region.
8. A serum albumin protein fragment according to claim 5 wherein the serum albumin binding region is a bovine serum albumin binding region.
9. A serum albumin protein fragment according to claim 8 wherein the serum albumin binding region consists of SEQ ID NO: 1 .
10. A serum albumin protein fragment according to claim 8, wherein the serum albumin binding region consists of SEQ ID NO:2.
11. A serum albumin protein fragment according to claim 4 wherein the serum albumin binding region consists of amino acids 190 to 494 of SEQ ID NO:4.
