

US006537746B2

(12) United States Patent

Arnold et al.

(54) METHOD FOR CREATING POLYNUCLEOTIDE AND POLYPEPTIDE SEQUENCES

- (75) Inventors: Frances Arnold, Pasadena, CA (US);
 Zhixin Shao, Penzberg, DE (US);
 Alexander Volkov, South Pasadena, CA (US)
- (73) Assignee: Maxygen, Inc., Redwood City, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 132 days.
- (21) Appl. No.: 09/205,448
- (22) Filed: Dec. 4, 1998

(65) **Prior Publication Data**

US 2002/0137661 A1 Sep. 26, 2002

Related U.S. Application Data

- (60) Provisional application No. 60/067,908, filed on Dec. 8, 1997.
- (51) Int. Cl.⁷ Cl2Q 1/68
- (52) **U.S. Cl.** **435**/6; 435/91.1; 435/91.2; 435/69.1; 435/320.1; 536/27; 935/47

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,683,202 A	7/1987	Mullis
4,800,159 A	1/1989	Mullis et al.
4,816,567 A	3/1989	Cabilly et al.
4,959,312 A	9/1990	Sirotkin
4.965.188 A	10/1990	Mullis et al.

1,994,368 A	A	2/1991	Goodman et al.
1,994,379 <i>I</i>	A *	2/1991	Chang 435/69.1
5,023,171 A	A	6/1991	Ho et al.
5,043,272 A	A	8/1991	Hartley
5,093,257 A	A	3/1992	Gray
5,106,727 A	A	4/1992	Hartley et al.
5,169,764 A	A	12/1992	Shooter et al.
5 1 76 995 4	Δ	1/1993	Sninsky et al

US 6,537,746 B2

Mar. 25, 2003

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

EP	0 252 666	1/1988
EP	552 266	1/1993

(10) Patent No.:

(45) Date of Patent:

(List continued on next page.)

OTHER PUBLICATIONS

Andersson et al., "Muller's ratchet decreases fitness of a DNA-based microbe", *PNAS*, 93: 906–907 (Jan. 1996).

(List continued on next page.)

Primary Examiner—W. Gary Jones

Assistant Examiner-Janell E. Taylor

(74) Attorney, Agent, or Firm-Townsend and Townsend and Crew LLP

(57) ABSTRACT

The invention provides methods for evolving a polynucleotide toward acquisition of a desired property. Such methods entail incubating a population of parental polynucleotides comprising heteroduplexes. The heteroduplexes are then exposed to a cellular DNA repair system to convert the heteroduplexes to parental polynucleotide variants or recombined polynucleotide variants. The resulting polynucleotides are then screened or selected for the desired property.

42 Claims, 24 Drawing Sheets

U.S. PATENT DOCUMENTS

5.187.083	Α	2/1993	Mullis
5.223.408	Α	6/1993	Goeddel et al.
5,234,824	A	8/1993	Mullis
5.264,563	Α	11/1993	Huse
5,279,952	Α	1/1994	Wu
5,314,809	Α	5/1994	Erlich et al.
5,316,935	Α	5/1994	Arnold et al.
5,356,801	Α	10/1994	Rambosek et al.
5,360,728	Α	11/1994	Prasher
5,418,149	Α	5/1995	Gelfand et al.
5,422,266	Α	6/1995	Cormier et al.
5,470,725	Α	11/1995	Borriss et al.
5,489,523	Α	2/1996	Mathur
5,502,167	Α	3/1996	Waldmann et al.
5,512,463	Α	4/1996	Stemmer
5,514,568	Α	5/1996	Stemmer
5,521,077	Α	5/1996	Khosla et al.
5,523,388	Α	6/1996	Huse
5,541,309	Α	7/1996	Prasher
5,556,750	А	9/1996	Modrich et al.
5,556,772	Α	9/1996	Sorge et al.
5,571,708	Α	11/1996	Yang et al.
5,605,793	Α	2/1997	Stemmer
5,629,179	Α	5/1997	Mierendorf et al.
5,652,116	Α	7/1997	Grandi et al.
5,679,522	А	10/1997	Modrich et al.
5,698,426	Α	12/1997	Huse
5,714,316	Α	2/1998	Weiner et al.
5,723,323	Α	3/1998	Kauffman et al.
5,756,316	А	5/1998	Schellenberger
5,763,192	A	6/1998	Kauffman et al.
5,770,434	Α	6/1998	Huse
5,773,267	Α	6/1998	Jacobs et al.
5,783,431	Α	7/1998	Peterson et al.
5,795,747	A	8/1998	Henco et al.
5,808,022	A	9/1998	Huse
5,811,238	A	9/1998	Stemmer et al.
5,814,476	A	9/1998	Kauffman et al.
5,817,483	A	10/1998	Kauffman et al.
5,824,469	A	10/1998	Horwitz et al.
5,824,485	A	10/1998	I nompson et al.
5,824,514	A	10/1998	Kauliman et al.
5,830,090	A	11/1998	Short Stommor at al
5,030,721	A	11/1998	Stemmer et al.
5 027 150	A	11/1998	Stemmer et al.
5 942 642	A	12/1008	Potpor
5 851 813	Λ	12/1998	Decrosiere
5 858 725	Δ	1/1000	Crowe et al
5 866 363	Δ	2/1999	Pieczenik
5,800,505	Δ	2/1999	Huse
5 877 402	Δ	3/1999	Maliga et al
5 928 905	A	7/1999	Stemmer et al.
5 939 250	A	8/1999	Short
5 955 358	A	9/1999	Huse
5.958.672	A	9/1999	Short
5.965.408	A	10/1999	Short
5.965.415	A	10/1999	Radman et al.
5.976.862	A	11/1999	Kauffman et al.
6.001.574	Α	12/1999	Short et al.
6.004.788	Α	12/1999	Short
6,030,779	A	2/2000	Short
6,051,409	A	4/2000	Hansen et al.
6,054,267	A	4/2000	Short
6,057,103	Α	5/2000	Short
6,071,889	Α	6/2000	Weiss et al.
6,074,853	Α	6/2000	Pati et al.
6,087,177	Α	7/2000	Wohlstadter
6,087,341	Α	7/2000	Khavari et al.
6,093,873	Α	7/2000	Chambon et al.

6,096,548	Α	8/2000	Stemmer								
6,103,463	Α	* 8/2000	Chetverin et al 435/6								
6,117,679	Α	9/2000	Stemmer								
6,132,970	Α	10/2000	Stemmer								
6,165,793	Α	12/2000	Stemmer								
6,168,919	$\mathbf{B1}$	1/2001	Short								
6,171,820	B1	1/2001	Short								
6,174,673	B1	1/2001	Short et al.								
6,180,406	B1	1/2001	Stemmer								
FOREIGN PATENT DOCUMENTS											
544 809 B1 12/1998											
	_										

EP	544 809 B1	12/1998
EP	563 296 B1	3/1999
WO	WO 90/07576	7/1990
WO	WO 90/14424	11/1990
WO	WO 90/14430	11/1990
WO	WO 91/01087	2/1991
WO	WO 91/06570	5/1991
WO	WO 91/06643	5/1991
WO	WO 91/06645	5/1991
WO	WO 91/07506	5/1991
WO	WO 91/15581	10/1991
WO	WO 91/16427	10/1991
WO	WO 92/06176	4/1992
WO	WO 92/07075	4/1992
WO	WO 92/18645	10/1992
WO	WO 93/01282	1/1993
WO	WO 93/02191	2/1993
WO	WO 93/06213	4/1993
WO	WO 93/11237	6/1993
WO	WO 93/12228	6/1993
WO	WO 93/15208	8/1993
WO	WO 93/16192	8/1993
WO	WO 93/18141	9/1993
WO	WO 93/19172	9/1993
WO	WO 93/25237	12/1993
WO	WO 94/03596	2/1994
WO	WO 94/09817	5/1994
WO	WO 94/11496	5/1994
WO	WO 94/13804	6/1994
WO	WO 95/17413	6/1995
WO	WO 95/22625	8/1995
WO	WO 96/17056	6/1996
WO	WO 96/33207	10/1996
WO	WO 97/07205	2/1997
WO	WO 97/20078	6/1997
WO	WO 97/25410	7/1997
WO	WO 97/35966	10/1997
WO	WO 98/01581	1/1998
WO	WO 98/27230	6/1998
WO	WO 98/28416	7/1998
WO	WO 98/41622	9/1998
WO	WO 98/41623	9/1998
WO	WO 98/41653	9/1998
WO	WO 98/42832	10/1998
WO	WO 99/29902	6/1999
WO	WO 00/04190	1/2000
WO	WO 00/06718	2/2000
WO	WO 00/09727	2/2000
WO	WO 00/18906	4/2000

OTHER PUBLICATIONS

Bailey, "Toward a Science of Metabolic Engineering", *Science*, 252: 1668–1680 (1991).

Barrett et al., "Genotypic analysis of multiple loci in somatic cells by whole genome amplification", *Nuc. Acids Res.*, 23(17): 3488–3492 (1995).

Cameron et al., "Cellular and Metabolic Engineering An Overview", *Applied Biochem. Biotech.*, 38: 105–140 (1993).

Chakrabarty, "Microbial Degradation of Toxic Chemicals: Evolutionary Insights and Practical Considerations", *ASM News*, 62(3): 130–137 (1996).

Chater, "The Improving Prospects for Yield Increase by Genetic Engineering in Antibiotic–Producing Strepto-mycetes", *Biotechnology*, 8: 115–121 (Feb. 1990).

Chen et al., "Tuning the activity of an enzyme for unusual environments: Sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide", *PNAS*, 90: 5618–5622 (Jun. 1993).

Dieffenbach et al., *PCR Primer, A Laboratory Manual*, Cold Spring Harbor Laboratory Press, pp. 583–589, 591–601, 603–612, and 613–621 (1995).

Evnin et al., "Substrate specificity of trypsin investigated by using a genetic selection", *PNAS*, 87: 6659–6663 (Sep. 1990).

Ippolito et al. "Structure assisted redesign of a proteinzinc-binding site with femtomolar affinity", *PNAS*, 92: 5017–5021 (May 1995).

Kellogg et al., "Plasmid–Assisted Molecular Breeding: New Technique for Enhanced Biodegradation of Persistent Toxic Chemicals", *Science*, 214: 1133–1135 (Dec. 4, 1981).

Kunkel, "Rapid and efficient site-specific mutagenesis without phenotypic selection", *PNAS*, 82: 488–493 (Jan. 1985). Levichkin et al., "A New Approach to Construction of Hybrid Genes: Homolog Recombination Method", *Mol. Biology*, 29(5) part 1: 572–577 (1995).

Lewis et al., "Efficient site directed in vitro mutagenesis using ampicillin selection", *Nuc. Acids Res.*, 18(12): 3439–3443 (1990).

Moore et al., "Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents", *Nature Biotech.*, 14: 458–467 (Apr. 1996).

Omura, "Philosophy of New Drug Discovery", *Microbiol. Rev.*, 59(3): 259–279 (Sep. 1986).

Piepersberg, "Pathway Engineering in Secondary Metabolite-Producing Actinomycetes", *Crit. Rev. Biotech.*, 14(3):251–285 (1994).

Prasher, "Using GFP to see the light", TIG, 11(8) (Aug. 1995).

Rice et al., "Random PCR mutagenesis screening of secreted proteins by direct expression in mammalian cells", *PNAS*, 89: 5467–5471 (Jun. 1992).

Simpson et al., "Two paradigms of metabolic engineering applied to amino acid biosynthesis", *Biochem. Soc. Transactions*, vol. 23 (1995).

Steele et al., "Techniques for Selection of Industrially Important Microorganisms", *Ann. Rev. Microbiol.*, 45: 89–106 (1991).

Stephanopoulos et al., "Metabolic engineering—methodologies and future prospects", *Trends Biotech*. 11: 392–396 (1993).

Stephanopoulos, "Metabolic engineering", Curr. Opin. Biotech., 5: 196–200 (1994).

Wehmeier, "New multifunctional *Escherichia coli*–Streptomyces shuttle vectors allowing blue–white screening on XGal plates", *Gene*, 165: 149–150 (1995).

Atreya et al., "Construction of in-frame chimeric plant genes by simplified PCR strategies," *Plant Mol. Biol.*, 19:517–522 (1992).

Bock et al., "Selection of single–stranded DNA molecules that bind and inhibit human thrombin," *Nature*, 355:564–566 (Feb. 2, 1992).

Clackson et al., "Making antibody fragments using phage display libraries," *Nature*, 352:624–628 (Aug. 15, 1991).

Crameri et al., "10(20)-Fold aptamer library amplification without gel purification," *Nuc. Acids Res.*, 21(18):4410 (1993).

Cull et al., "Screening for receptor ligands using libraries of peptides linked to the C terminus of the lac repressor," *PNAS*, 89:1865–1869 (Mar. 1992).

Cwirla et al., "Peptides on phage: A vast library of peptides for identifying ligands," *PNAS*, 87:6378–6382 (Aug. 1990). Daugherty et al., "Polymerase chain reaction facilitates the cloning, CDR–grafting, and rapid expression of a murine monoclonal antibody directed against the CD18 component of leukocyte integrins," *Nuc. Acids Res.*, 19(9):2471–2476 (1991).

Delagrave et al., "Searching Sequence Space to Engineer Proteins: Exponential Ensemble Mutagenesis," *Biotechnology*, 11:1548–1552 (Dec. 1993).

Dube et al., "Artificial mutants Generated by the Insertion of Random Oligonucleotides into the Putative Nucleoside Binding Site of the HSV-1 Thymidine Kinase Gene," *Biochemistry*, 30(51):11760–11767 (1991).

Fullen et al., "Genetic Algorithms and Recursive Ensemble Mutagenesis in Protein Engineering," *Complexity Int.'l 1994 I*, printed from website http://www.csu.edu.au/ci/vol1/ fuellen/REM.html on Dec. 7, 1999.

Ghosh et al., "Arginine–395 Is Required for Efficient in Vivo and in Vitro Aminoacylation of tRNAs by *Escherichia coli* Methionyl–tRNA Stnthetase," *Biochemistry*, 30:11767–11774 (1991).

Goldman et al., "An Algorithmically Optimized Combinatorial Library Screened by digital Imaging Spectroscopy," *Biotechnology*, 10:1557–1561 (Dec. 1992).

Harlow et al., "Construction of Linker–Scanning Mutations using the Polymerase Chain Reaction," *Methods in Mol. Biol.*, 31:87–96 (1994).

Heda et al., "A simple in vitro site directed mutagenesis of concatamerized cDNA by inverse polymerase chain reaction," *Nuc. Acids Res.*, 20(19):5241–5242 (1992).

Ho et al., "DNA and Protein Engineering Using the Polymerase Chain Reaction: Splicing by Overlap Extension," *DNA and Protein Eng. Techniques*, 2(2):50–55 (1990).

Hodgson, "The Whys and Wherefores of DNA Amplification," *Biotechnology*, 11:940–942 (Aug. 1993).

Horton et al., "Gene Splicing by Overlap Extension," *Mehtods in Enzymology*, 217:270–279 (1993).

Horton et al., "Gene Splicing by Overlap Extension: Tailor-Made Genes Using the Polymerase chain Reaction," *Bio-Techniques*, 8(5):528–535 (May 1990).

Jayaraman et al., "Polymerase chain reaction-mediated gene synthesis: Synthesis of a gene coding for isozyme c of horseradish peroxidase," *PNAS*, 88:4084–4088 (May 1991). Jones et al., "A Rapid Method for Recombination and Site-Specific Mutagenesis by Placing Homologous ends on DNA Using Polymerase Chain Reaction," *BioTechniques*, 10(1): 62–66 (1991).

Joyce, G. F., "Directed Molecular Evolution," *Scientific American*, (Dec. 1992).

Klug et al., "Creating chimeric molecules by PCR directed homologous DNA recombination," *Nuc. Acids Res.*, 19(10):2793 (1991).

Krishnan et al., "Direct and crossover PCR amplification to facilitate Tn5supF–based sequencing of λ phage clones," *Nuc. Acids Res.*, 19(22):6177–6182 (1991).

Lowman, H.B. et al, "Affinity Maturation of Human Growth Hormone by Monovalent Phage Display," *J. Mol. Biol.*, 234:564–578 (1993).

Majumder, K., "Ligation-free gene synthesis by PCR: synthesis and mutagenesis at multiple loci of a chimeric gene encoding OmpA signal peptide and hirudin," *Gene*, 110:89–94 (1992).

Marks et al., "By–passing Immunization, Human Antibodies from V–gene Libraries Displayed on Phage," *J. Mol. Biol.*, 222:581–597 (1991).

McCafferty et al., "Phage antibodies: filamentous phage displaying antibody variable domains," *Nature*, 348:552–554 (Dec. 6, 1990).

Morl et al., "Group II intron RNA–catalyzed recombination of RNA in vitro," *Nuc. Acids Res.*, 18(22):6545–6551 (1990).

Mullis et al., "Specific Synthesis of DNA in Vitro via a Polymerase–Catalyzed Chain Reaction," *Methods in Enzymology*, 155:335–351 (1987).

Mullis et al., "Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction," Cold Spring Harbor Symposia on Quantitative Biology, 51:263–273 (1986). Nissim et al., "Antibody fragments from a 'single pot' display library as immunochemical reagents," *EMBO Journal*, 13(3):692–698 (1994).

Osuna et al., "Combinatorial mutagenesis of three major groove–contacting residues of Eco RI: single and double amino acid replacements retaining methyltransferase–sensitive activities," *Gene*, 106:7–12 (1991).

Paabo et al., "DNA Damage Promotes Jumping between Templates during Enzymatic Amplification," *J. Biol. Chem.*, 265(8):4718–4721 (Mar. 15, 1990).

Robles et al., "Hydropathy and Molar Volume Constraints on Combinatorial mutants of the Photosynthetic Reaction Center," J. Mol. Biol., 232:242–252 (1993).

Saiki et al., "Diagnosis of sickle Cell Anemia and β -Thalassemia with Enzymatically Amplified DNA and Nonradioactive Allele–Specific Oligonucleotide Probes," *New England J. of Medicine*, 319(9):537–541 (Sep. 1, 1988).

Saiki et al., "analysis of enzymatically amplified β -globin and HLA–DQ α DNA with allele–specific oligonucleotide probes," *Nature*, 324:163–166 (Nov. 13, 1986).

Saiki et al., "Enzymatic Amplification of β –Globin Genomic Sequences and Restriction Site analysis for Diagnosis of Sickle Cell Anemia," *Science*, 230:1350–1354 (Dec. 20, 1985).

Saiki et al., "Primer–Directed Enzymatic Amplification of DNA with a Thermostabl; DNA Polymerase," *Science*, 239:487–491 (Jan. 20, 1988).

Sambrook et al., *Molecular Cloning, A Laboratory Manual*, Cold Spring Laboratory Press, Cold Spring Harbor, New York (1989).

Scharf et al., "Direct Cloning and Sequence Analysis of Enzymatically Amplified Genomic Sequences," *Science*, 233:1076–1078 (Sep. 1986).

Scott et al., "Searching for Peptide Ligands with an Epitope Library," *Science*, 249:386–390 (Jul. 20, 1990).

Sikorski et al., "In Vitro Mutagenesis and Planned Shuffling: From Cloned Gene to Mutant Yeast," *Methods in Enzymology*, 194:302–318 (1991).

Smith et al., "Unwanted Mutations in PCR Mutagenesis: Avoiding the Predictable," *PCR Methods and Applications*, 2(3):253–257 (Feb. 1993). Villarreal et al., "A General Method of Polymerase–Chain– Reaction–Enabled Protein Domain Mutagenesis: Construction of a Human Protein S–Osteonectin Gene," *Analytical Biochem.*, 197:362–367 (1991).

Weissenhorn et al., "Chimerization of antibodies by isolation of rearranged genomic variable regions by the polymerase chain reaction," *Gene*, 106:273–277 (1991).

Yao et al., "Site-directed Mutagenesis of Herpesvirus Glycoprotein Phosphorylation Sites by Recombination Polymerase Chain Reaction," *PCR Methods and Applications*, 1(3):205–207 (Feb. 1992).

Yolov et al., "Constructing DNA by polymerase recombination," *Nuc. Acids Res.*, 18(13):3983–3986 (1990).

Yon et al., "Precise gene fusion by PCR," *Nuc. Acids Res.*, 17(12):4895 (1989).

Youvan et al., "Recursive Ensemble Mutagenesis: A Combinatorial Optimization Technique for Protein Engineering," from Parallel Problem Solving from Nature, 2, Manner eds., pp. 401–410 (1992).

Zoller, M.J., "New recombinant DNA methodology for protein engineering," *Curr. Opin. Biotech.*, 3:348–354 (1992).

Opposition Statement in matter of Australian Patent Application 703264 (Affymax Technologies NV), filed by Diversa Corporation on Sep. 23, 1999.

Adey et al., "Preparation of second-generation phage libraries," *Phage Disp. Pept. Proteins*, eds. Kay et al., pp. 277–291 (1996).

Carter, P., "Improved Oligonucleotide–Directed Mutagenesis Using M13 Vectors," *Methods in Enzymology*, 154:382–383 (1985).

Collet et al., "A Binary plasmid System for shuffling combinatorial antibody Libraries," *PNAS*, 89(21):10026–10030 (1992).

Higuchi et al., "A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions," *Nuc. Acids Res.*, 16(15):7351–7367 (1988).

Kang et al., "Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries," *PNAS*, 88(24):11120–11123 (1991).

Kim et al., "Cloning and Nucleotide Sequence of the Collb Shufflon," *Plasmid*, 22:180–184 (1989).

Komano et al., "Physical and Genetic Analyses of IncI2 Plasmid R721: Evidence for the Presence of Shufflon," *Plasmid*, 23:248–251 (1990).

Komano et al., "Distribution of Shufflon among Incl Plasmids," J. Bacteriology, 169(11):5317–5319 (1987).

Maryon et al., "Characterization of recombination intermediates from DNA injected into *Xenopus laevis* oocytes: evidence for a nonconservative mechnism of homologous recombination," *Mol. Cell Biol.*, 11(6):3278–3287 (1991).

Michael, S.F., "Thermostable Ligase–Mediated Incorporation of Mutagenic Oligonucleotides During PCR Amplification," chapter 19 from *Methods in Molecular Biology*, *PCR Cloning Protocols from Molecular Cloning to Genetic Engineering*, eds. B. White, Humana Press, totowa, New Jersey, pp. 189–195 (1997).

Ner et al., "Laboratory Methods: A Simple and Efficient Procedure for Generating Random Point Mutations and for Codon Replacements Using Mixed Oligodeoxynucleotides," *DNA*, 7(2):127–134 (1988). Olsen et al., "Hybrid Bacillus (1–3,1–4)–beta–glucanases: engineering thermostable enzymes by construction of hybrid genes," *Mol. Gen. Genet.*, 225(2):177–185 (1991).

Prodromou et al., "Protocol, Recursive PCR: a novel technique for total gene synthesis," *Protein Engineering*, 5(8):827–829 (1992).

Rouwendal et al., "Simulatenous Mutagenesis of Multiple Sites: Application of the Ligase Chain Reaction Using PCR Products Instead of Oligonucleotides," *BioTechniques*, 15(1):68–70, 72–74, 76 (1993).

Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd edition, Cold Spring Harbor Laboratory Press, pp. 14.2, 14.34, and 14.35 (1989).

Sandhu et al., "Dual Asymmetric PCR: One–Step Construction of Synthetic Genes," *BioTechniques*, 12(1):14–16 (1992).

Shi et al., "Rapid PCR Construction of a Gene Containing Lym-1 Antibody Variable Regions," *PCR Methods and Applications*, 3:46–53 (1993).

Shuldiner et al., "Hybrid DNA artifact from PCR of closely related target sequences," *Nuc. Acids Res.*, 17(11):4409 (1989).

Smith et al., "Localized sex in bacteria," *Nature*, 349:29–31 (1991).

Stemmer et al., "Increased Antibody Expression from *Escherichia–coli* Through Wobble–Base Library Muatagenesis by Enzymatic Inverse PCR," *Gene*, 123(1):1–7 (1993). Stemmer et al., "Enzymatic Inverse PCR—A Restriction Site Independent, single–Fragment Method for High–Efficiency, Site–Directed Mutagenesis," *Biotechniques*, 13(2):214 (1992).

Stemmer et al., "Expression of Antibody FV Fragments Specific for a Heavy Metal Chelate Indium Edta In *Escherichia–coli*," J. Cell Biochem., Suppl. 0(15 part G), p. 217 (1991).

Stemmer et al., "A 20–Minute Ethidium Bromide High–slat Extraction Protocol for Plasmid DNA," *Biotechniques*, 10(6):726 (1991).

Wu et al., "Allele–specific enzymatic amplification of beta– globin fgenomic for diagnosis of sickle cell anemia," *PNAS*, 86(6):2757–2760 (1989).

Statutory Declaration of Dr. Gerald Joyce in Australian Opposition against application 703264.

Statutory Declaration of Mae Li Gan in Australian Opposition against application 703264.

Request for leave to amend the Statement of Grounds and Particulars re: opposition 703264 in Australian (Jan. 25, 2001).

Amended Statement of Particulars re: opposition 703264 in Australia (Jan. 25, 2001).

Biotransformations, Pathogenesis, and Evolving Biotechnology, Program and Abstracts, Pseudomonas '89, American Society for Microbiology and The University of Illinois, 7/9–13/89, abstracts 11–21 to 11–25.

Graf et al., "Random circular permutation of genes and expressed polypeptide chains: Application of the method to the catalytic chains of aspartate transcarbamoylase," *PNAS*, 93:11591–11596 (1996).

Janczewski et al., "Molecular phylogenetic inference from saber-toothed cat fossils of Rancho La Brea," *PNAS*, 89:9769–9773 (1992).

Kramer et al., "Oligonucleotide-directed construction of mutations via gapped duplex DNA," *Methods in Enzymology*, 154:350–367 (1987).

Kunkel et al., "Rapid and efficient site-specific mutagenesis without phenotypic selection," *Methods in Enzymology*, 154:367–382 (1987).

Shao et al., "Random-priming in vitro recombination: an effective tool for directed evolution," *Nuc. Acids Res.*, 26(2):681–683 (1998).

Zoller et al., "Oligonucleotide–directed mutagenesis: a simple method using two oligonucleotide primers and a single–stranded DNA template," *Methods in Enzymology*, 154:329–350 (1987).

Statutory Declaration of Ngarie Pepit–Young in Australian Opposition against application 703264.

Statutory Declaration of Ruth Bird in Australian Opposition against application 703264.

Lorberboum–Calski et al., "Cytotoxic activity of an interleukin 2–Pseudomonas exotoxin chimeric protein produced in *Escherichia coli*," *PNAS*, 85:1922–1926 (1988).

Arkin et al., "An Algorithm for Protein Engineering: Simulations of Recursive Ensemble Mutagenesis" *Proc. Natl. Acad. Sci. USA*, 89(16):7811–7815 (1992).

Balint et al., "Antibody Engineering By Parsimonious Mutagenesis", *Gene*, 137(1):109–118 (1993).

Bartel et al., "Isolation of New Ribozymes From a Large Pool of Random Sequences", *Science*, 261:1411–1418 (1993).

Beaudry et al., "Directed Evolution of an RNA Enzyme," *Science*, 257:635–641 (1992).

Berger et al., "Phoenix Mutagenesis: One–Step Reassembly of Multiply Cleaved Plasmids With Mixtures of Mutant and Wild–Type Fragments," *Anal. Biochem.*, 214:571–579 (1993).

Berkhout et al., "In Vivo Selection of Randomly Mutated Retroviral Genomes," *Nucleic Acids Research*, 21(22):5020–5024 (1993).

Cadwell et al., "Randomization of Genes by PCR Mutagenesis," *PCR Methods and Applications*, 2:28–33 (1992).

Calogero et al., "In Vivo Recombination and the Production of Hybrid Genes," *Microbiology Letters*, 76:41–44 (1992). Caren et al., "Efficient Sampling of Protein Sequence Space for Multiple Mutants," *Biotechnology*, 12(5):517–520

(1994). Crameri et al., "Combinatorial Multiple Cassette Mutagenesis Creates All The Permutations Of Mutant And Wild-

Type Sequences", *Biotechniques*, 18(2):194–196 (1995).

Crameri et al., "Improved Green Fluorescent Protein By Molecular Evolution Using DNA Shuffling" *Nat. Biotechnol.*, 14(3):315–319 (1996).

Crameri et al., "Construction And Evolution Of Antibody-Phage Libraries By DNA Shuffling", *Nat. Med.*, 2(1):100-102 (1996).

Crameri et al., "Molecular Evolution Of An Arsenate Detoxification Pathway By DNA Shuffling", *Nat. Biotechnol.*, 15(5):436–438 (1997).

Crameri et al., "DNA Shuffling Of A Family Of Genes From Diverse Species Accelerates Directed Evolution", *Nature*, 391(3664):288–291 (1998).

Delagrave et al., "Recursive Ensemble Mutagenesis," *Protein Engineering*, 6(3):327–331 (1993).

Fang et al., "Human Strand-specific Mismatch Repair Occurs by a Bidirectional Mechanism Similar to That of the Bacterial Reaction", *J. Biol. Chem.*, 268(16): 11838–11844 (Jun. 5, 1993). Feinberg et al., "A Technique for Radiolabeling DNA Restriction Endonuclease Fragments to High Specific Activity," *Anal. Biochem.*, 132:6–13 (1983).

Fisch et al., "A Stragety Of Exon Shuffling For Making Large Peptide Repertoires Displayed On Filamentous Bacteriophage", *Proc Natl Acad Sci USA*, 93(15):7761–7766 (1996).

Gates et al., "Affinity Selective Isolation Of Ligands From Peptide Libraries Through Display On A Iac Repressor 'Headpiece Dimer'", J. Mol. Biol., 255(3):373–386 (1996). Gram et al., "In Vitro Selection and Affinity Maturation of Antibodies From a Naïve Combinatorial Immunoglobulin Library", Proc. Natl. Acad. Sci. USA, 89:3576–3580 (1992). Greener et al., "An Efficient Random Mutagenesis Technique Using An E. coli Mutator Strain", Methods in Molecular Biology, 57:375–385 (1995).

Heim et al., "Wavelength Mutations And Posttranslational Autoxidation Of Green Fluorescent Protein", *Proc. Natl. Acad. Sci. USA*, 91(26):12501–12504 (1994).

Hermes et al., "Searching Sequence Space by Definably Random Mutagenesis: Improving the Catalytic Potency of an Enzyme," *Proc. Natl. Acad. Sci. USA*, 87(2):696–700 (1990).

Ho et al., "Site–Directed Mutagenesis by Overlap Extension Using the Polymerase Chain Reaction," *Gene*, 77:51–59 (1989).

Horton et al., "Engineering Hybrid Genes Without the Use of Restriction Enzymes: Gene Splicing by Overlap Extension," *Gene*, 77:61–68 (1989).

Jones et al., "Recombinant Circle PCR and Recombination PCR for Site–Specific Mutagenesis Without PCR Product Purification," *Biotechniques* 12(4):528–534 (1992).

Kim et al., "Human Immunodeficiency Virus Reverse Transcriptase," *The Journal of Biological Chemistry*, 271(9):4872–4878 (1996).

Leung et al., "A Method For Random Mutagenesis of a Defined DNA Segment Using a Modified Polymerase Chain Reaction," *Techniques*, 1:11–15 (1989).

Marks et al., "By-Passing Immunization: Building High Affinity Human Antibodies by Chain Shuffling," *Bio/Technology*, 10:779–783 (1992).

Marton et al., "DNA Nicking Favors PCR Recombination", *Nucleic Acids Res.*, 19(9):2423–2426 (1991).

Meyerhans et al., "DNA Recombination During PCR," *Nucleic Acids Research*, 18(7):1687–1691 (1990).

Near, "Gene Conversion Of Immunoglobulin Variable Regions In Mutagenesis Cassettes By Replacement PCR Mutagenesis", *Biotechniques*, 12(1):88–97 (1992).

Oliphant et al., "Cloning of Random–Sequence Oligodeoxynucleotides," *Gene*, 44(2–3):177–183 (1986).

Perlak, "Single Step Large Scale Site–Directed In Vitro Mutagenesis Using Multiple Oligonucleotides", *Nucleic Acids Res.*, 18(24):7457–7458 (1990). Pharmacia Catalog, pp. 70–71 (1993 Edition).

Pompon et al., "Protein Engineering by cDNA Recombination in Yeasts: Shuffling of Mammalian Cytochrome P-450 Functions," *Gene*, 83(1):15-24 (1989).

Rao et al., "Recombination and Polymerase Error Facilitate Restoration of Infectivity in Brome Mosaic Virus," *Journal* of Virology, 67(2):969–979 (1993).

Rapley, "Enhancing PCR Amplification And Sequencing Using DNA–Binding Proteins", *Mol. Biotechnol.*, 2(3):295–298 (1994).

Reidhaar–Olson et al., "Combinatorial Cassette Mutagenesis as a Probe of the Informational Content of Protein Sequences," *Science*, 241:53–57 (1988).

Stemmer, "Rapid Evolution of a Protein in Vitro by DNA Shuffling," *Nature*, 370:389–391 (1994).

Stemmer, "DNA Shuffling by Random Fragmentation and Reassembly: In Vitro Recombination for Molecular Evolution" *Proc. Natl. Acad. Sci. USA*, 91(22):10747–10751 (1994).

Stemmer et al., "Selection of an Active Single Chain FV Antibody from a Protein Linker Library Prepared by Enzymatic Inverse PCR," *Biotechniques*, 14(2):256–265 (1992). Stemmer, "Searching Sequence Space", *Biotechnology*, 13:549–553 (1995).

Stemmer et al., "Single-Step Assembly of A Gene And Entire Plasmid From Large Numbers Of Oligodeoxyribonucleotides", *Gene*, 164(1):49–53 (1995).

Stemmer, "The Evolution of Molecular Computation", *Science*, 270(5241):1510 (1995).

Stemmer, "Sexual PCR and Assembly PCR" *Encyclopedia Mol. Biol.*, VCH Publishers, New York, pp. 447–457 (1996). Wang et al., "Identification Of Glial Filament Protein And Vimentin In The Same Intermediate Filament System In Human Glioma Cells", *Proc. Natl. Acad. Sci. USA*, 81(7):2102–2106 (1984).

Weber et al., "Formation of Genes Coding for Hybrid Proteins by Recombinant Between Related, Cloned Genes in *E. coli,*" *Nucleic Acids Research*, 11(16):5661–5669 (1983). Weisberg et al., "Simultaneous Mutagenesis Of Multiple Sites: Application Of The Ligase Chain Reaction Using PCR Products Instead Of Oligonucleotides", *BioTechniques*, 15(1):68–76 (1993).

Winter et al., "Making Antibodies By Phage Display Technology", Ann. Rev. Immunol., 12:433–455 (1994).

Zhang et al., "Directed Evolution Of A Fucosidase From A Galactosidase By DNA Shuffling And Screening", *Proc. Natl. Acad. Sci. USA*, 94(9):4504–4509 (1997).

Zhao et al., "Molecular Evolution by Staggered Extension Process (StEP) In Vitro Recombination", *Nature Biotech.*, 16:258–261 (1998).

* cited by examiner

U.S. Patent

FIG. 2

FIG. 3

Ч	MASVLTNINAMSALQTLRSISSNMEDTQSRISSGMRVGSASDNAAYWSIATTMRSDNASLSAVQDAIGLG	ч Ч	lupini FlaA
۲H	MTSILTNNSAMAALSTLRSISSSMEDTQSRISSGLRVGSASDNAAYWSIATTMRSDNQALSAVQDALGLG	ч Ч	melioti FlaA
71	AAKVDTASAGMDAVIDVVKQIKNKLVTAQESSADKTKIQGEVKQLQEQLKGIVDSASFSGENWLKGDLST	Я.	lupini FlaA
71	AAKVDTAYSGMESAIEVVKEIKAKLVAATEDGVDKAKIQEEITQLKDQLTSIAEAASFSGENWLQADLSG	Я.	melioti FlaA
141	TT.TKSVVGSFVRE.GGTVSVKTIDYALNASKVLVDTRATGTKTGILDTAYTGLNANTVTVDINKGGVIT	ਸ ਮ	lupini FlaA
141	·· IIIIII·III·III··III···IIII···II·II···II·I GPVTKSVVGGFVRDSSGAVSVKKVDYSLNTDTVLFDTTGNTGILDKVY.NVSQASVTLPVNVNGTTS	ц.	melioti FlaA
209	QASVRAYSTDEMLSLGAKVDGANSNVAVGGGSASSRSTAAGLRVASTLRPPSPHQHQSLASLPPLTPPLK	Я.	lupini FlaA
207	EYTVGAYNVDDLIDASATFDGDYANVGAGALAGDYVKVQGSWVKAVDVAATGQE	Я.	melioti FlaA
279	LVLQLLPVTPSSSTKPTAAP.VQVNLTQSVLTMDVS.SMSSTDVGSYLTGVEKALTSLTSAGAELGSIKO	ч. Ч	lupini FlaA
277	VVYDDGTTKWGVDTTVTGAPATNVAAPASIATIDITIAAQAGNLDALIAGVDEALTDMTSAAASLGSISS	Я.	melioti FlaA
347	RIDLQVDFASKLGDALAKGIGRLVDADMNEESTKLKALQTQQQLAIQSLSIANSDSQNILSLPR 410	Я.	lupini FlaA
331	RIDLQSDFVNKLSDSIDSGVGRLVDADMNEESTRLKALQTQQQLAIQALSIANSDSQNVLSLFR 394	Я.	melioti FlaA

FIG. 5

Sheet 5 of 24

FIG. 6B

ATCGCAAACAGCGACTTCGCAGAACATTCTGTCGCTGTTAACACGCGCAAACAGCGGACTCGCAGAACATTCTGTCGCTGTTAA	SCS01
AAAAGGTATTGGCCGTCTCGTTGATGCTGACATGAATGAA	SCS01
CTCTCACCAGCCTGACGAGCGCTGGGCGCTGAACTCGGCTCTATCAAACAGCGGCGTCGATGGTTGATTTTTGCTTCCAAgctGGGCGACGCTCTCGC	SCS01
GCGCCGGTGCAGGTAAACCTCACCCAGTCGGTCGACCATGGATGTCAGCTCGATGAGCTCGACGACGGAGCAGCTACCTCACGGGCGTGGAAAAGG	SCS01
ACACCAGTGGCTGGCAGGTTTGCCGCCGCTTACACCGCCGCTGAAGCTGGTACTGCAGGCTGCCGGTGACGCCATCATCATCGTCGACGAAACCAAACCAGCG	SCS01
CCAGGGCAACTATGCTCTTCAGGGCGGGTAACAGCTACGTCAAAAGGTCGAAAACGTCTGGGGTTCGA.GCTGAGACCGCATCA	SCS01
TGACGGTCAACAACGGGGTCGAATCCCAGGCCTCCGTCCGGGCCTATtCGCTGGAGTCCCTCACCGAAGCCGGTGCGGAGGTT	SCS01
GCTCTGAATGCTTCCAAGGTTCTGGTGGATACCCGCGCAACGGGCACCAAGACCGGCATTCTGGACAAGGTCTACAAGGTCTCGCAGGCAAGCGTAAGCGTCACGC	SCS01
TCAAGGGGGATCTTTCCACGACGACAACCAAATCAGTGGTTGGCTCCTTCGTTGATCGTGAAGGCGGTACCGTATCGGTCAAGACCATCGATTAC	SCS01
GACGGCGTCGACGAGGCCAAGATCCAAGAAAATCACTCAGGTCAAGGACCAGCTGACGAGGCATCGCCGACGGGCTTCCTTC	SCS01
TGGCCTCGGTGCCAAGGTCGATACCGCTTCGGCGGGTATGGGTGCGGTTATCGATGTGTAGAGCAGATCAAGAACAAGCTGGTCACTGCCACCGAA	SCS01
GCATGCGCGTTGGTTCGGCTTCCGACAACGCCGCTTATTGGTCTATCGCGACCACCATGCGCTCGGACAATGCCTCGCCTTTCCGGCTGTTCAGGATGCAAT	SCS01
ATGGCAAGCGTTCTCACAAACATTAACGCAATGTCTGCTCTCAGACGCTGCGTTCGATTTCTTCCAACATGGAAGAACACCCAGAGCCGTATTTTCCAGCG	SCS01

FIG. 7A

ATCGCCAACTCGGACTCGCAGAACGTCCTGTCGCTCAA	SCS02
GTCGGGCGTCGGCCGTCTCGTCGACGGGACATGAACGAGGAGTCGACCCCGCCTCAAGGCCCTGCAGACCCAGCAGCAGCAGCCCATCCAGGCCCTGTCG	SCS02
<u>CTCTCACCAGCATGACCAGCGCTGCCCTCGCTCGGCTCCATCTCCCTCGCGCGAGAGCGAATTCGTCAACAAGCTCTCGGACTCGGACTCGATCGA</u>	SCS02
CCAACGTTTCGGCCGGCCAGTCGGGTCGCGAACATCAACATCGTCGGGCTCGGGCGGG	SCS02
ACCGGCGCCCACCGGTCAAGAAATCGCCGCCACCACGACGGCAGCTGGTACCATCACTGCAGCTGGGTCGTCGTCGTCGGCAACGCTCCTGCCG	SCS02
AAACAGCAACGTTGCTGCTGGCGGCGGCCTTCGTCAAGGTCGACGGCAGCTGGGTTAAGGGTAGCGTCGACGCTGCGGCCTCCATCACCGCATCA	SCS02
TGAÇGGTTGATATCAACGGCGGCGTCAACCCCAGGCCTCCGTCCG	SCS02
GCTCTGAATGCTTCCAAGGTTCTGGTGGATACCGGGCACCAAGGCCGGCATTCTCGGATACTGCGGCCTTAACCGGCCTTAACGCGAACACGG	SCS02
TGCAGGCGGAACCTCAGCGGCGCGCCGTCATCACCAGAGGCGTCGTCGGTTCGTTC	SCS02
TCTTCTGCCGACAAAACGaAGATTCAGGGCGAAGTCAAGCAGCTTCAGGAGCAGTTGAAAGGGCaTCGTTGATTCCGGTTGTCTCCGGTGAGAAACTGGC	SCS02
CGGCCTCGGCGCCGCCAGGTTGATACCGCCTATTCCGGTATGGAATCGGCGATCGAT	SCS02
ATGACGAGCATTCTCACCAACAACTCCGCAATGGCCGCGCGTTTCCGGAGTGCGCTCGATCTCTTCCAGCATGAGAGACGAGGCGGCATCTCCTCCG GCCTTCGCGTTCGGGTTCGGCCTCCGACACGCCGCCTACTGGTCGATTGCGACCACCACGGCTCCGAGCAGCCAGGCCGTCCAGGACGCCGTCCAGGACGCCCCT	SCS02 SCS02

FIG. 7B

ES01	ATGACGAGGCATTCTCACCAACAACTCCGCAATGGCCGCGCGTTTCCGGAGTGCGCTCGATCTTTCCAGCATGGAAGACACGCAGAGCCGCAGTCTCCTCCG
ES01	GCCTTCGCGTCGGCTTCGGCCTCCGACAACGCCGCCTACTGGGTCGATTGCGGCCCTCCGACAACCAGGCCCTTTCGGCCGTCCAGGACGCCCT
ES01	CGGCCTCGGCGCCGCCCAAGGTTGATACCGCCTATTCCGGTTATGGGACTCGACGACGCGTTAAGGGAAATCAAGGCCCTAGGCCGCTCCAGGACGCCCT
ES01	GGCCTCGGCGGCGGCCGCCCAAGGTTCCGCCTATTCCGGTTATGGGACTCGGTGGGACGGCGTTAAGGGAAATCAAGGCCCTAGGCTGGCGCCCTCCGGAA
ES01	GACGGCGTCGACAAGGTTCCAAGAAGAAATCACTCAGGTCAGGCGCTGGACGGGGGGAAATCCAAGGCCCAAGGTCGGGGGGGG
ES01 ES01	GCTCTGAATGCTTCCAAGGTTCTGGTGGGATGCCCGCGGCGCGGGGGGGG
ES01	CCAGGGCAACTATGCTCTTCAGGGCGGGTAACAGCTACGTCAAGGTCGACGGCAGCTGGGGTTAAGGGTAGCGTCGACGGCTGCGGCTTCCATCACCGCATCA
ES01	ACACCAGTCGCTGGCAAGTTTGCCGCCGCTTACACCGGCCGCTGAAGCTGGTAGCTGGCGGCTGGCGGGTGACGCCGGTCGACGACGGCGGAAGCCAACCAA
ES01	GCGCCGGTGCAGGTAAACCTCACCCAGTCGTGGACCATGGATGTCAGCTCGATGAGCTCGACGACGATGTCGGCAGCTACCTCACGGGCGTGGAAAAGG
ES01	CTCTCACCAGCCTGACGAGCGCTGGCGCTCAACTCGGCTTCCATCGCGCATCGACCAGAGCGAAATTTCGTCGACAAAGCTCTCGGACTCGATCGA
ESOI	<u>GTCGGGCCGTCCGTCTCGTCGTCGACGCGGACATCAACGAGGAGTCGACCCCGCCTCAAGGCCCTGCAGACCCAGCAGCTCGCCATCCAGGCCCTGTCG</u>
TOCA	

FIG. 7C

00000000000000000000000000000000000000	ATGACGAGCATTCTCACCAACACTCCGCAATGGCCGCGCTTTCCGGAGTGCGCTCGATCTTCCCAGCATGGAGGACGCCGCGAGGAGCCGCATCTCCTCCG GCCTTCGGCGGCGCGGC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACCGGCCCCCCGGTCAAGAAATCGCCGCTAACAGTCAGGACGGCTGGTACCATCGGTGCGTGGGTCGGGGTGGGGTGGGGGTGGGGGGTGGGGGG
	FIG. 7D

FIG. 11

FIG. 12

U.S. Patent

٦ 61 GCCGCCGGGCCGATCGAGTTCGTCGCCTTCGTCGTGCCGCAGATCGCCCTGCGGCTC 181 GGCGCCGACCTGGTCGCTCAGATCGTGGTGGCGCCGAAGGAGCTGCCGGTCGGCCTGCTC 241 ACCGCGATGATCGGCACCCCGTACCTGCTCTGGCTCCTGCTTCGGCGATCAAGAAAGGTG 301 AGCGGATGAACGCCCGCCTGCGTGGCGAGGGCCTGCACCTCGCGTACGGGGGACCTGACCG 361 TGATCGACGGCCTCGACGTCGACGTGCACGACGGGCTGGTCACCACCATCATCGGGCCCA 481 GGCAGGTGCTGCTGGACGGCCGCCGCATCGACCGGACCCCCACCCGTGACGTGGCCCGGG 541 TGCTCGGCGTGCTGCCGCAGTCGCCCACCGCGCCCGAAGGGCTCACCGTCGCCGACCTGG 601 TGATGCGCGGCCGGCACCGGCACCAGACCTGGTTCCGGCAGTGGTCGCGCGACGACGAGG 661 ACCAGGTCGCCGACGCGCTGCGCTGGACCGACATGCTGGCGTACGCGGACCGCCCGGTGG 721 ACGCCCTCTCCGGCGGTCAGCGCCAGCGCGCCTGGATCAGCATGGCGCTGGCCCAGGGCA 781 CCGACCTGCTGCTGCTGGACGAGCCGACCACCTTCCTCGACCTGGCCCACCAGATCGACG 841 TGCTGGACCTGGTCCGCCGGCTGCACGCCGAGATGGGCCGGACCGTGGTGATGGTGCTGC 901 ACGACCTGAGCCTGGCCGCCCGGTACGCCGACCGGCTGATCGCGATGAAGGACGGCCGGA 961 TCGTGGCGAGCGGGGCGCCGGACGAGGTGCTCACCCCGGCGCTGCTGGAGTCGGTCTTCG 1021 GGCTGCGCGCGATGGTGGTGCCCGACCCGGCGACCCGGCACCCCGCTGGTGATCCCCCTGC 1081 CGCGCCCCGCCACCTCGGTGCGGGCCTGAAATCGATGAGCGTGGTTGCTTCATCGGCCTG νт

1201	GTC	CTC	GTA	CAT	GCG	ССТ	GAA	AGC	AGC	AGC	GAT	CGC	CTT	CGG	TGT	GAT	CGT	GGC	GAC	CGC
3	s	S	Y	М	R	\mathbf{L}	к	A	А	A	I	A	F	G	v	I	v	A	т	А
1261	AGC	CGT	GCC	GTC.	ACC	CGC	TTC	CGG	CAG	GGA	ACA	TGA	CGG	CGG	СТА	TGC	GGC	ССТ	GAT	CCG
23	А	v	Ρ	s	Ρ	А	S	G	R	Е	н	D	G	G	Y	А	A	L	I	R
1321	CCG	GGC	стс	GTA	CGG	CGT	ccc	GCA	CAT	CAC	CGC	CGA	CGA	CTT	CGG	GAG	ССТ	CGG	ттт	CGG
				• • • •				••••					• • • • •	•		00				
43	R	A	S	Y	G	v	Ρ	Н	Ι	Т	A	D	D	F	G	S	L	G	F	G
1381	CGT	CGG	GTA	CGT	GCA	GGC	CGA	GGA	CAA	CAT	CTG	CGT	CAT	CGC	CGA	GAG	CGT	AGT	GAC	GGC
63	v	G	Y	v	Q	A	E	D	N	I	С	v	I	А	Ē	s	v	v	т	A
1441	CAA	CGG	r GA(GCG	GTC	GCG	GTG	GTT	CGG	TGC	GAC	CGG	GCC	GGA	CGA	CGC	CGA	TGT	GCG	CAG
		~				_		_						-			_		_	-
83	Ν	G	E	R	S	R	W	F	G	A	Т	G	Р	D	D	A	D	v	R	S

FIG. 13A

.	Pat	en	t		Ma	ar. 2	25, 2	200.	3		She	et 1	18 c	of 24	4			U	S 6	5,53	87,746	6 B2
	1501	CGA	CCT	CTT	CCA	.ccg	CAA	.GGC	GAT	CGA	CGA	'CCG	CGT	CGC	CGA	.GCG	GCT	ССТ	CGA	AGG	GCC	
	103	D	L	F	H	R	ĸ	A	I	D	D	R	v	A	Е	R	L	L	E	G	Ρ	
	1561	CCG	CGA	CGG	CGT	GCG	GGC	GCC	GTC	GGA	CGA	CGT	rcce	GGA	CCA	.GAT	GCG	CGG	CTT	CGT	'CGC	
	123	R	D	G	v	R	A	₽	S	D	D	v	R	D	Q	М	R	G	F	v	A	
	1621	CGG	CTA	CAA	.CCA	.CTT	ССТ	ACG	CCG	CAC	CGG	CGT	GCA	.CCG	CCT	GAC	CGA	.ccc	GGC	GTG	CCG	
	143	G	Y	N	н	F	L	R	R	Т	G	v	н	R	L	Т	D	Ρ	A	С	R	
	1681	CGG	CAA	.GGC	CTG	GGT	GCG	ccc	GCT	CTC	CGA	GAT	CGA	TCT	'CTG	GCG	TAC	GTC	GTG	GGA	CAG	
	163	G	ĸ	A	W	v	R	Ρ	L	S	Е	Ι	D	L	W	R	Т	S	W	D	S	
	1741	CAT	'GGT	'CCG	GGC	CGG	TTC	CGG	GGC	GCT	GCI	'CGA	CGG	CAT	CGT	CGC	CGC	GAC	GCC	ACC	TAC	
	183	М	v	R	A	G	S	G	A	L	L	D	G	Ι	v	A	Α	Т	P	P	Т	
	1801	AGC	CGC	CGG	GCC	CGC	GTC	AGC	ccc	GGA	.GGC	ACC	CGA	CGC	CGC	CGC	GAT	CGC	CGC	CGC	CCT	
	203	A	A	G	P	A	S	А	Ρ	E	A	Ρ	D	A	Α	A	I	A	A	Α	L	
	1861	CGA	.CGG	GAC	GAG	CGC	GGG	CAT	CGG	CAG	CAA	CGC	GTA	CGG	сст	CGG	CGC	GCA	GGC	CAC	CGT	
	223	D	G	Т	S	A	G	I	G	S	N	A	Y	G	L	G	A	Q	A	Т	v	
	1921	GAA	.CGG	CAG	CGG	GAT	GGT	GCT	GGC	CAA	.ccc	GCA	CTI	ccc	GTG	GCA	.GGG	CGC	CGC	ACG	CTT	
	243	N	G	S	G	М	v	\mathbf{L}	Α	N	₽	н	F	P	W	Q	G	A	A	R	F	
	1981	CTA	.CCG	GAT	GCA	.CCT	CAA	GGT	GCC	CGG	CCG	ста	CGA	CGI	'CGA	.GGG	CGC	GGC	GCT	GAT	CGG	
	263	Y	R	М	Н	L	к	v	P	G	R	Y	D	v	Ε	G	A	A	L	I	G	
	2041	CGA	.ccc	GAT	CAT	CGG	GAT	CGG	GCA	CAA	.CCG	CAC	GGT	'CGC	CTG	GAG	CCA	CAC	CGT	CTC	CAC	
	283	D	Ρ	I	I	G	I	G	н	N	R	Т	v	A	W	S	Η	Т	v	S	Т	
	2101	CGC	CCG	CCG	GTT	CGT	GTG	GCA	CCG	CCT	GAG	CCT	CGI	GCC	CGG	CGA	.ccc	CAC	СТС	CTA	TTA	
	303	A	R	R	F	v	W	н	R	L	S	L	v	Ρ	G	D	P	Т	S	Y	Y	
	2161	CGT	CGA	.CGG	CCG	GCC	CGA	GCG	GAT	GCG	CGC	CCG	CAC	GGT	'CAC	GGT	CCA	GAC	CGG	CAG	CGG	
	323	v	D	G	R	Ρ	Ε	R	М	R	A	R	т	v	Т	v	Q	т	G	S	G	
	323	V	D	G	R	Р	Е	ĸ	M	к FIC	A 3. 1	к 134	т 4	V	Т.	V	Q	т	G	5	G	

(CONTINUED)

2221	CCC	GGT	CAG	CCG	CAC	CTT	CCA	CGA	CAC	CCG	CTA	CGG	CCC	GGT	GGC	CGT	GAT	GCC	GGG(CAC
343	₽	v	S	R	т	F	н	D	т	R	Y	G	P	v	A	v	М	Þ	G	т
2281	CTT	CGA	CTG	GAC	GCC	GGC	CAC	CGC	GTA	CGC	CAT	CAC	CGA	CGT	CAA	CGC	GGG	CAA	CAA	CCG
363	F	D	W	Т	P	A	т	А	Y	A	I	т	D	v	N	A	G	N	N	R
2341	CGC	CTT	CGA	CGG	GTG	GCT	GCG	GAT	GGG	CCA	GGC	CAA	GGA	CGT	CCG	GGC	GCT	CAA	GGC	GT
383	A	F	D	G	W	L	R	М	G	Q	A	к	D	v	R	A	L	к	A	v
2401	CCT	CGA	CCG	GCA	CCA	GTT	ССТ	GCC	CTG	GGT	CAA	CGT	GAT	CGC	CGC	CGA	CGC	GCG	GGG	CGA
403	L	D	R	н	Q	F	L	P	W	v	N	v	I	A	A	D	A	R	G	E
2461	GGC	CCT	CTA	CGG	CGA	TCA'	TTC	GGT	CGT	ccc	CCG	GGT	GAC	CGG	CGC	GCT	CGC	rgc	CGC	CTG
423	A	L	Y	G	D	н	S	v	v	P	R	v	Т	G	A	L	A	Α	Α	С
2521	CAT	ccc	GGC	GCC	GTT	CCA	GCC	GCT	CTA	CGC	CTC	CAG	CGG	CCA	GGC	GGT	CCT	GGA	CGG7	TC
443	I	Ρ	А	P	F	Q	₽	L	Y	A	S	S	G	Q	A	v	L	D	G	S
2581	CCG	GTC	GGA	CTG	CGC	GCT	CGG	CGC	CGA	ccc	CGA	CGC	CGC	GGT	ccc	GGG	CAT	FCT (CGGG	ccc
2581 463	CCG0 R	GTC S	GGA D	CTG(C	CGCC A	GCT(L	CGG(G	CGC(A	CGA(D	P	CGA(D	CGC(A	CGC(A	GGT(V	CCC(P	GGG	CAT I	rcto L	CGG(G	CCC P
2581 463 2641	CCGO R GGCO	GTC(S GAG(GGA D	CTGO C GCCO	CGCC A GGTC	GCT(L GCG(G G G GTT		D D CGA	P P CGAG	CGAC D	CGC A	CGCC A CACC	GGT(V CAA(P P	G G CAA	CAT: I	L L CAG	CGGC G TCAC	P P TG
2581 463 2641 483	CCGC R GGCC A	GTC S GAG S	GGA D CCT L	CTG C GCCC P	CGCC A GGTC V	GCT(L GCG(R	G G G TT F	CGCC A CCGC R	CGA D CGA D	P CGAC D	CGAC D CTAC Y	CGC A CGT V	CGCC A CACC T	GGT(V CAA(N	P P CTC S	GGG G CAA N	I CGA D	rcto L CAG S	GGGG G FCAC H	P P TG W
2581 463 2641 483 2701	CCGO R GGCO A GCTO	GTC S GAG S GGC	GGA D CCT L CAG	CTG C GCCC P	EGCO A GGTO V GGCO	GCT L GCG R CGC	G G G TT F	CGCC A CCGC R GCTC	CGA D CGA D D	P CGAC D	CGAC D CTAC Y CTTC	CGC A CGT V	CGCC A CACC T GCGC	GGT(V CAA(N GAT(P P CTC S	GGG G CAA N	I CGA D CAA	L L CAG' S	G G FCAC H	P P TG W
2581 463 2641 483 2701 503	CCGG R GGCC A GCTC L	GTC(S GAG(S GGC(A	GGA D CCT L CAG S	CTGC C GCCC P CCCCC	CGCC A GGTC V GGCC A	ECTO L ECCO R CCCC A	G G G F CCCC	CGCC A CCCGC R GCTC L	CGA(D CGA(D GGA) E	P CGA0 D G	CGA(D CTA(Y CTT(F	CGCC A CGTC V CCCCC	CGCC A CACC T GCGC R	GGT(V CAA(N GAT(I	P P CTC(S CCT(L	G G CAA(N CGGG G	I CGA(D CAA(N	ICT(L CAG' S CGA/ E	CGGG G FCAG H ACGG R	P TG W CAC T
2581 463 2641 483 2701 503 2761	CCGC R GGCC A GCTC L CCCC	S S S S S S S S S S C S C S C S C S C S	GGA D CCT L CAG S CAG	CTG C GCCC P CCCC	CGCC A GGTC V GGCC A GCCC	GCGC L GCGC R CGCC A CACC	GGGG G GTTC F CCCCC	CGCC A CCCGC R GCTC	CGA(D CGA(D GGA) E	P CGAC D G G GCTC	CGA(D CTA(Y CTT(F F GGA(CGCC A CGTC V CCCC CCAC	CGCC A CACC T GCCC R GATC	GGT(V CAA(N GAA(I CCA(P CTCC S CCTC L	G G CAA(N CGGG G GCGQ	I CGA(D CAA(N	ICT(L CAG' S CGAA E	CGGC G FCAC H ACGC R	P P CTG W CAC T
2581 463 2641 483 2701 503 2761 523	CCCC R GGCC A GCTC L CCCC P	STCC S S S S S S S S C C C R R	GGA D CCT L CAG S CAG S	CTGG C GCCC P CCCCC L	EGCCC A GGCCC A GCCCC R	L GCGC R CGCC A CACC T	G G G F CCCCC R	CGCC A CCCGC R GCTC L GCTC L	CGA(D CGA(D GGGA) E CGGG G	P CGAC D AGGC G SCTC L	CGA(D CTA(Y CTTC F GGA(D	CGCC A CGTC V CCCC Q	CGCC A CACC T GCCGC R GATC I	V V CAAA N JAATO I CCAA	P CTCC S CCTC L GCAC	G G CAA(N CGGG G G GCGG R	I CGA(D CAA(N CCT(L	L L CAG' S CGAA E CGCC A	G G FCAC H ACGC R CGGC G	P P TTG W CAC T CAC T
2581 463 2641 483 2701 503 2761 523 2821	CCGG R GGCC A GCTC L CCCC P GGAC	GTCC S GAGC S GGCC A GCCC R CCGC	GGA D CCT L CAG S S CAG S	CTGG C GCCC P CCCC L GCCC	EGCC A GGTC V GGCC A GCCC R CCGGC	ECGCC R CCGCC A CCACC T	G G F CCCC P CCCG R	CGCC A CCCGC R GCTC L GCTC L	CGA(D CGA(D E GGA) E CGG(G	P CGAQ D AGGQ G G G CACC	CGAG D CTAG Y CTTC F GGAG D CGCC	CGCC A CGTC V CCCC Q CCCC Q	CGCC A T GCGC R GATC I GATC	GGT(V CAA(N JAAT(I CCA(Q Q CTG(P P CTCC S CCTC L GCAC	G G CAA(N CGGG G G G G G G G G G G G G G G G G	I CGA(D CAA(N CCT(L	L L CAG S CGAA E CGCC A STTC	G G FCAC H ACGC R CGGC G	P P TTG W CAC T CAC T
2581 463 2641 483 2701 503 2761 523 2821 543	CCCGC R GGCCC A GCTC L CCCCC P GGGAC D	GTCG S GAGG S GGCG R G G G G	GGA D CCTC L CAG S CAG S S CAG L	CTGG C GCCC P CCCCC L GCCCC P	CGCC A GGCC A GGCCC R GGGCC G	ECCCC E R CCCCC A CCACC T CAAC K	GGGG G GTTC F CCCCC R CCCGC R GGGGG G	CGCC A R CCCGC R GCTC L CTTC F	CGA(D CGA(D E GGGA CGGG G CGGG C CGGC T	P CGAC D AGGC G G G CACC T	CGAG D CTAG Y CTTC F GGGAG D CGCC A	CGCC A CGTC V CCCCC Q CCCCC R	CGCCC A T GCCCCC R GATCC I GCTCC L	CCAC Q CTGC W	P CTCC S CCTC L GCAC Q GCAC Q	GGGGG G CAA(N CGGG G G G G G G G G G G G G G CGG V	I CGAG D CAAG N CCAAG L CAAG CAAG	L CAG S CGAA E CGCC A STTC F	G G TCAC H ACGC G G CCGGC G	P P TTG W CAC T CAC T CAA N
2581 463 2641 483 2701 503 2761 523 2821 543	CCCCC R GGCCC A GCTC L CCCCC D CCCCC	GTCC S GAGC S GGCC R G G G G G G G G G G	GGA D CCT L CAG S S CAG S S CAG L L GCA	CTGG C GCCC P CCCCC L GCCCC P CCGGC	CGCC A GGCC A GGCC G CGCC	GCT(L GCGC(R CGCC A CGCC T CAAC K	CCCC G F CCCCC R CCCCC R G G G G G G	CGCC A CCCGC R GCTC L CTTC F	CGA(D CGA(D GGA) E CGGG C CGGC T	P CGAC D AGGC G G G CACC T CGAC	CGAG D CTAG Y CTTC F GGAG CGCC A	CGCC A CGTC V CCCCC P CCCAC Q Q CCCGC R	CGCC A T GCGC R GATC I GCTC L GGTC	GGT(V CAA(N JAT(I CCA(Q V CTG(W CGC(P P CTCC S CCTC L GCAC Q GCAC Q GCTC	GGGG G CAA N CGGG G G G G G G G G G G C G G C C G G C C C C C A C A	I CGA(D CAA(N CCT(L CAT(M	ICTO L CAG' S CGAI E CGCO A F F	CGGG G H ACGG G G CGGG G CCAC	P P T T CAC T CAC T CAA N

FIG. 13A (CONTINUED)

U .S. P a	atei	nt		N	lar.	25,	200)3		She	et 2	0 of	f 24			ן	US	6,5	37,	746	B2
2941	GAC	CGC	GAC	CGC	CTC	'GAA	.CGG	CGC	GAI	CGT	CGA	.CCT	CAC	CGC	:GGC	CTG	CAC	GGC	GCT	GTC	
583	Т	A	Т	A	S	N	G	A	I	v	D	L	Т	A	A	С	т	A	L	S	
3001	CCG	CTT	CGA	TGA	GCG	TGC	CGA	CCI	GGA	CAG	CCG	GGG	CGC	GCA	CCI	GTT	'CAC	CGA	GTT	CGC	
603	R	F	D	E	R	A	D	L	D	S	R	G	A	н	L	F	Т	E	F	A	
3061	ССТ	CGC	GGG	CGG	AAT	CAG	GTT	CGC	CGA	CAC	CTT	CGA	GG1	GAC	CGA	TCC	GGT	'ACG	CAC	CCC	
623	L	A	G	G	I	R	F	A	D	т	F	Е	v	Т	D	P	v	R	т	P	
3121	GCG	CCG	тст	GAA	CAC	CAC	GGA	TCC	GCG	GGI	ACG	GAC	GGC	GCI	CGC	CGA	CGC	CGT	GCA	ACG	
643	R	R	L	N	Т	Т	D	P	R	v	R	Т	A	L	A	D	A	v	Q	R	
3181	GCT	CGC	CGG	CAT	'CCC	CCT	'CGA	CGC	GAA	GCT	GGG	AGA	CAJ	CCA	CAC	CGA	CAG	CCG	CGG	CGA	
663	L	A	G	I	P	L	D	A	ĸ	\mathbf{L}	G	D	I	н	Т	D	S	R	G	Ε	
3241	ACG	GCG	CAT	ccc	CAT	CCA	CGG	TGG	CCG	GCGG	GGA	AGC	AGG	CAC	CTI	CAA	CGT	GAT	CAC	CAA	
683	R	R	I	Ρ	Ι	H	G	G	R	G	Ε	A	G	Т	F	N	v	I	т	N	
3301	CCC	GCT	CGT	GCC	GGG	CGT	'GGG	ATA	ccc	GCA	GGI	CGT	CCA	CGG	SAAC	ATC	GTT	'CGT	GAT	GGC	
703	P	L	v	P	G	v	G	Y	P	Q	v	v	н	G	Т	S	F	v	М	A	
3361	CGT	CGA	АСТ	CGG	CCC	:GCA	CGG	CCC	GTC	GGG	ACG	GCA	GAI	CCI	CAC	CTA	TGC	'GCA	GTC	GAC	
723	v	E	L	G	Р	н	G	P	S	G	R	Q	I	L	Т	Y	A	Q	S	Т	
3421	GAA	ccc	GAA	стс	ACC	CTG	GTA	CGC	CGA	CCA	GAC	CGI	GCI	CTA	CTC	GCG	GAA	GGG	CTG	GGA	
743	N	₽	N	S	P	W	Y	A	D	Q	Т	v	L	Y	S	R	K	G	W	D	
3481	CAC	CAT	CAA	GTA	CAC	CGA	GGC	GCA	GAI	CGC	GGC	CGA	ccc	GAA	CCJ	GCG	CGI	СТА	.ccg	GGT	
763	Т	I	к	Y	Т	Е	A	Q	I	A	A	D	P	N	L	R	v	Y	R	v	
3541	GGC.	ACA	GCG	GGG	ACG	CTG	ACC	CAC	GTC	CACG	CCG	GCT	CGG	CCC	GTO	CGG	GGG	CGC	AGG	GCG	
783	A	Q	R	G	R	*															

FIG. 13A (CONTINUED) 3661 CGCCCGCGTCCCGGCGCAGCGACTGGCTGAAGCGCCAGGCGTCGGCGGCCCGGGGCAGGT TGTTGAACATCACGTACGCCGGGCCGCCGTCGAGGATGCCGGCGAGGTGTGCCAGCTCGG 3721 3781 CATCCGTGTACACATGCCGGGCGCCGGTGATGCCGTGCAGCCGGTAATAGGCCATCGGCG 3901 CCTCGACCACCTCGTCCGGCCACGGGCCGCGCGCGCCCCACAACAGCCGGACACCGGCCG 4021 AACTCGCCGGGCACTGCAG

FIG. 13A (CONTINUED)

FIG. 14

50

60

METHOD FOR CREATING POLYNUCLEOTIDE AND POLYPEPTIDE SEQUENCES

CROSS-REFERENCES TO RELATED APPLICATIONS

This application derives priority from U.S. Ser. No. 60/067,908, filed Dec. 8, 1997, which is incorporated by reference in its entirety for all purposes.

STATEMENT OF GOVERNMENT INTEREST

The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC §202) in which 15 the contractor has elected to retain title.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document 20 contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright 25 rights whatsoever.

TECHNICAL FIELD

The invention resides in the technical field of genetics, and more specifically, forced molecular evolution of poly-30 nucleotides to acquire desired properties.

BACKGROUND

A variety of approaches, including rational design and directed evolution, have been used to optimize protein functions (1, 2). The choice of approach for a given optimization problem depends, in part, on the degree of understanding of the relationships between sequence, structure and function. Rational redesign typically requires extensive knowledge of a structure-function relationship. Directed evolution requires little or no specific knowledge about structure-function relationship; rather, the essential features is a means to evaluate the function to be optimized. Directed evolution involves the generation of libraries of mutant molecules followed by selection or screening for the desired function. Gene products which show improvement with respect to the desired property or set of properties are identified by selection or screening. The gene(s) encoding those products can be subjected to further cycles of the process in order to accumulate beneficial mutations. This evolution can involve few or many generations, depending on how far one wishes to progress and the effects of mutations typically observed in each generation. Such approaches have been used to create novel functional 55 nucleic acids (3, 4), peptides and other small molecules (3), antibodies (3), as well as enzymes and other proteins (5, 6, 6)7). These procedures are fairly tolerant to inaccuracies and noise in the function evaluation (7).

Several publications have discussed the role of gene recombination in directed evolution (see WO 97/07205, WO 98/42727, U.S. Pat. No. 5,807,723, U.S. Pat. No. 5,721,367, U.S. Pat, No. 5,776,744 and WO 98/41645 U.S. Pat. No. 5,811,238, WO 98/41622, WO 98/41623, and U.S. Pat. No. 5,093,257).

A PCR-based group of recombination methods consists of DNA shuffling [5, 6], staggered extension process [89, 90]

and random-priming recombination [87]. Such methods typically involve synthesis of significant amounts of DNA during assembly/recombination step and subsequent amplification of the final products and the efficiency of amplification decreases with gene size increase.

Yeast cells, which possess an-active system for homologous recombination, have been used for in vivo recombination. Cells transformed with a vector and partially overlapping inserts efficiently join the inserts together in the regions ¹⁰ of homology and restore a functional, covalently-closed plasmid [91]. This method does not require PCR amplification at any stage of recombination and therefore is free from the size considerations inherent in this method. However, the number of crossovers introduced in one recombination event is limited by the efficiency of transformation of one cell with multiple inserts. Other in vivo recombination methods entail recombination between two parental genes cloned on the same plasmid in a tandem orientation. One method relies on homologous recombination machinery of bacterial cells to produce chimeric genes [92]. A first gene in the tandem provides the N-terminal part of the target protein, and a second provides the C-terminal part. However, only one crossover can be generated by this approach. Another in vivo recombination method uses the same tandem organization of substrates in a vector [93]. Before transformation into E. coli cells, plasmids are linearized by endonuclease digestion between the parental sequences. Recombination is performed in vivo by the enzymes responsible for double-strand break repair. The ends of linear molecules are degraded by a 5"3' exonuclease activity, followed by annealing of complementary single-strand 3' ends and restoration of the double-strand plasmid [94]. This method has similar advantages and disadvantages of tandem recombination on circular plasmid.

SUMMARY OF THE INVENTION

The invention provides methods for evolving a polynucleotide toward acquisition of a desired property. Such methods entail incubating a population of parental polynucleotide 40 variants under conditions to generate annealed polynucleotides comprises heteroduplexes. The heteroduplexes are then exposed to a cellular DNA repair system to convert the heteroduplexes to parental polynucleotide variants or recombined polynucleotide variants. The resulting poly-45 nucleotides are then screened or selected for the desired property.

In some methods, the heteroduplexes are exposed to a DNA repair system in vitro. A suitable repair system can be prepared in the form of cellular extracts.

In other methods, the products of annealing including heteroduplexes are introduced into host cells. The heteroduplexes are thus exposed to the host cells' DNA repair system in vivo.

In several methods, the introduction of annealed products into host cells selects for heteroduplexes relative to transformed cells comprising homoduplexes. Such can be achieved, for example, by providing a first polynucleotide variant as a component of a first vector, and a second polynucleotide variant is provided as a component of a second vector. The first and second vectors are converted to linearized forms in which the first and second polynucleotide variants occur at opposite ends. In the incubating step, single-stranded forms of the first linearized vector reanneal with each other to form linear first vector, single-stranded forms of the second linearized vector reanneal with each other to form linear second vector, and single-stranded

50

linearized forms of the first and second vectors anneal with each to form a circular heteroduplex bearing a nick in each strand. Introduction of the products into cells thus selects for cirular heteroduplexes relative to the linear first and second vector. Optionally, in the above methods, the first and second vectors can be converted to linearized forms by PCR. Alternatively, the first and second vectors can be converted to linearized forms by digestion with first and second restriction enzymes.

In some methods, polynucleotide variants are provided in ¹⁰ double stranded form and are converted to single stranded form before the annealing step. Optionally, such conversion is by conducting asymmetric amplification of the first and second double stranded polynucleotide variants to amplify a first strand of the first polynucleotide variant, and a second ¹⁵ strand of the second polynucleotide variant. The first and second strands anneal in the incubating step to form a heteroduplex.

In some methods, a population of polynucleotides com-20 prising first and second polynucleotides is provided in double stranded form, and the method further comprises incorporating the first and second polynucleotides as components of first and second vectors, whereby the first and second polynucleotides occupy opposite ends of the first and second vectors. In the incubating step single-stranded forms $\ ^{25}$ of the first linearized vector reanneal with each other to form linear first vector, single-stranded forms of the second linearized vector reanneal with each other to form linear second vector, and single-stranded linearized forms of the first and second vectors anneal with each to form a circular heteroduplex bearing a nick in each strand. In the introducing step selects for transformed cells comprises the circular heteroduplexes relative to the linear first and second vector.

In some methods, the first and second polynucleotides are obtained from chromosomal DNA. In some methods, the polynucleotide variants encode variants of a polypeptide. In some methods, the population of polynucleotide variants comprises at least 20 variants. In some methods, the population of polynucleotide variants are at least 10 kb in length.

In some methods, the polynucleotide variants comprises natural variants. In other methods, the polynucleotide variants comprise variants generated by mutagenic PCR or cassette mutagenesis. In some methods, the host cells into which heteroduplexes are introduced are bacterial cells. In some methods, the population of variant polynucleotide variants comprises at least 5 polynucleotides having at least 90% sequence identity with one another.

Some methods further comprise a step of at least partially demethylating variant polynucleotides. Demethylation can be achieved by PCR amplification or by passaging variants through methylation-deficient host cells.

Some methods include a further step of sealing one or more nicks in heteroduplex molecules before exposing the heteroduplexes to a DNA repair system. Nicks can be sealed 55 by treatment with DNA ligase.

Some methods further comprise a step of isolating a screened recombinant polynucleotide ariant. In some methods, the polynucleotide variant is screened to produce a recombinant protein or a secondary metabolite whose production is catalyzed thereby.

In some methods, the recombinant protein or secondary metabolite is formulated with a carrier to form a pharmaceutical composition.

In some methods, the polynucleotide variants encode 65 enzymes selected from the group consisting of proteases, lipases, amylases, cutinases, cellulases, amylases, oxidases,

peroxidases and phytases. In other methods, the polynucleotide variants encode a polypeptide selected from the group consisting of insulin, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erthropoietin, luteinizing hormone, chorionic gonadotropin, hyperthalmic releasing factors, antidiuretic hormones, thyroid stimulating hormone, relaxin, interferon, thrombopoietic (TPO), and prolactin.

In some methods, each polynucleotide in the population of variant polynucleotides encodes a plurality of enzymes forming a metabolic pathway.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the process of heteroduplex formation using polymerase chain reaction (PCR) with one set of primers for each different sequence to amplify the target sequence and vector.

FIG. 2 illustrates the process of heteroduplex formation using restriction enzymes to linearize the target sequences and vector.

FIG. 3 illustrates a process of heteroduplex formation using asymmetric or single primer polymerase chain reaction (PCR) with one set of primers for each different sequence to amplify the target sequence and vector.

FIG. 4 illustrates heteroduplex recombination using unique restriction enzymes (X and Y) to remove the homo-duplexes.

FIG. **5** shows the amino acid sequences of the FlaA from *R. lupini* (SEQ ID NO: 1) and *R. meliloti* (SEQ ID NO:2).

FIG. 6 shows the locations of the unique restriction sites utilized to linearize pRL20 and pRM40.

FIGS. 7A, B, C and D show the DNA sequences of four mosaic flaA genes created by in vitro heteroduplex formation followed by in vivo repair ((a) is SEQ ID NO:3, (b) is SEQ ID NO:4, (c) is SEQ ID NO:5 and (d) is SEQ ID NO:6).

FIG. 8 illustrates how the heteroduplex repair process created mosaic flaA genes containing sequence information 40 from both parent genes.

FIG. 9 shows the physical maps of *Actinoplanes utahensis* ECB deacylase mutants with enhanced specific activity ((a) is pM7-2 for Mutant 7-2, and (b) is pM16 for Mutant 16).

FIG. **10** illustrates the process used for Example 2 to recombine mutations in Mutant 7-2 and Mutant 16 to yield ECB deacylase recombinant with more enhanced specific activity.

FIG. 11 Specific activities of wild-type ECB deacylase and improved mutants Mutant 7-2, Mutant 16 and recombined Mutant 15.

FIG. 12. Positions of DNA base changes and amino acid substitutions in recombined ECB deacylase Mutant 15 with respect to parental sequences of Mutant 7-2 and Mutant 16.

FIGS. **13**A, B, C, D and E show the DNA sequence of *A.utahensis* ECB deacylase gene mutant M-15 genes created by in vitro heteroduplex formation followed by in vivo repair (SEQ ID NO:7).

FIG. 14 illustrates the process used for Example 3 to 60 recombine mutations in RC1 and RC2 to yield thermostable subtilisin E.

FIG. **15** illustrates the sequences of RC1 and RC2 and the ten clones picked randomly from the transformants of the reaction products of duplex formation as described in Example 3. The x's correspond to base positions that differ between RC1 and RC2. The mutation at 995 corresponds to amino acid substitution at 181, while that at 1107 corre-

sponds to an amino acid substitution at 218 in the subtilisin protein sequence.

FIG. 16 shows the results of screening 400 clones from the library created by heteroduplex formation and repair for initial activity (A_i) and residual activity (A_r) . The ratio A_i/A_r was used to estimate the enzymes' thermostability. Data from active variants are sorted and plotted in descending order. Approximately 12.9% of the clones exhibit a phenotype corresponding to the double mutant containing both the N181D and the N218S mutations.

DEFINITIONS

Screening is, in general, a two-step process in which one first physically separates the cells and then determines which cells do and do not possess a desired property. Selection is $\ ^{15}$ a form of screening in which identification and physical separation are achieved simultaneously by expression of a selection marker, which, in some genetic circumstances, allows cells expressing the marker to survive while other 20 cells die (or vice versa). Exemplary screening members include luciferase, ßgalactosidase and green fluorescent protein. Selection markers include drug and toxin resistance genes. Although spontaneous selection can and does occur in the course of natural evolution, in the present methods selection is performed by man.

An exogenous DNA segment is one foreign (or heterologous) to the cell or homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous DNA segments are expressed to yield exogenous polypeptides.

The term gene is used broadly to refer to any segment of DNA associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences required for their expression. Genes also include nonexpressed DNA segments that, for example, form recognition sequences for other proteins.

The term "wild-type" means that the nucleic acid fragment does not comprise any mutations. A "wild-type" protein means that the protein will be active at a level of activity found in nature and typically will comprise the amino acid sequence found in nature. In an aspect, the term "wild type" or "parental sequence" can indicate a starting or reference sequence prior to a manipulation of the invention.

dominant species present (i.e., on a molar basis it is more abundant than any other individual macromolecular species in the composition), and preferably a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all 50 macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 to 90 percent of all macromolecular species present in the composition. Most preferably, the object species is purified to essential homogeneity (contaminant species cannot be 55 detected in the composition by conventional detection methods) wherein the composition consists essentially of a single macromolecular species. Solvent species, small molecules (<500 Daltons), and elemental ion species are not considered macromolecular species.

Percentage sequence identity is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number 65 of matched positions by the total number of positions in the window of comparison. Optimal alignment of sequences for

aligning a comparison window can be conducted by computerized implementations of algorithms GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.

The term naturally-occurring is used to describe an object that can be found in nature as distinct from being artificially produced by man. For example, a polypeptide or polynucleotide sequence that is present in an organism (including ¹⁰ viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring. Generally, the term naturally-occurring refers to an object as present in a nonpathological (undiseased) individual, such as would be typical for the species.

A nucleic acid is operably linked when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it increases the transcription of the coding sequence. Operably linked means that the DNA sequences being linked are typically contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame. However, since enhancers generally function when separated from the promoter by several kilobases and intronic sequences may be of variable lengths, some polynucleotide elements may be operably linked but not contiguous.

A specific binding affinity between, for example, a ligand and a receptor, means a binding affinity of at least 1×10^6 M^{-1} .

The term "cognate" as used herein refers to a gene sequence that is evolutionarily and functionally related between species. For example but not limitation, in the human genome, the human CD4 gene is the cognate gene to the mouse CD4 gene, since the sequences and structures of these two genes indicate that they are highly homologous and both genes encode a protein which functions in signaling T cell activation through MHC class II-restricted antigen recognition. 40

The term "heteroduplex" refers to hybrid DNA generated by base pairing between complementary single strands derived from the different parental duplex molecules, whereas the term "homoduplex" reters to double-stranded "Substantially pure" means an object species is the pre- 45 DNA generated by base pairing between complementary single strands derived from the same parental duplex molecules.

> The term "nick" in duplex DNA refers to the absence of a phosphodiester bond between two adjacent nucleotides on one strand. The term "gap" in duplex DNA refers to an absence of one or more nucleotides in one strand of the duplex. The term "loop" in duplex DNA refers to one or more unpaired nucleotides in one strand.

> A mutant or variant sequence is a sequence showing substantial variation from a wild type or reference sequence that differs from the wild type or reference sequence at one or more positions.

DETAILED DESCRIPTION

I. General

The invention provides methods of evolving a polynucleotide toward acquisition of a desired property. The substrates for the method are a population of at least two polynucleotide variant sequences that contain regions of similarity with each other but, which also have point(s) or regions of divergence. The substrates are annealed in vitro at the

25

30

35

regions of similarity. Annealing can regenerate initial substrates or can form heteroduplexes, in which component strands originate from different parents. The products of annealing are exposed to enzymes of a DNA repair, and optionally a replication system, that repairs unmatched pairings. Exposure can be in vivo as when annealed products are transformed into host cells and exposed to the hosts DNA repair system. Alternatively, exposure can be in vitro, as when annealed products are exposed to cellular extracts containing functional DNA repair systems. Exposure of 10 heteroduplexes to a DNA repair system results in DNA repair at bulges in the heteroduplexes due to DNA mismatching. The repair process differs from homologous recombination in promoting nonreciprocal exchange of diversity between strands. The DNA repair process is typi-15 cally effected on both component strands of a heteroduplex molecule and at any particular mismatch is typically random as to which strand is repaired. The resulting population can thus contain recombinant polynucleotides encompassing an essentially random reassortment of points of divergence 20 between parental strands. The population of recombinant polynucleotides is then screened for acquisition of a desired property. The property can be a property of the polynucleotide per se, such as capacity of a DNA molecule to bind to a protein or can be a property of an expression product 25 thereof, such as mRNA or a protein.

II. Substrates For Shuffling

The substrates for shuffling are variants of a reference polynucleotide that show some region(s) of similarity with 30 the reference and other region(s) or point(s) of divergence. Regions of similarity should be sufficient to support annealing of polynucleotides such that stable heteroduplexes can be formed. Variants forms often show substantial sequence identity with each other (e.g., at least 50%, 75%, 90% or $_{35}$ 99%). There should be at least sufficient diversity between substrates that recombination can generate more diverse products than there are starting materials. Thus, there must be at least two substrates differing in at least two positions. The degree of diversity depends on the length of the sub- 40 strate being recombined and the extent of the functional change to be evolved. Diversity at between 0.1-25% of positions is typical. Recombination of mutations from very closely related genes or even whole sections of sequences from more distantly related genes or sets of genes can 45 enhance the rate of evolution and the acquisition of desirable new properties. Recombination to create chimeric or mosaic genes can be useful in order to combine desirable features of two or more parents into a single gene or set of genes, or to create novel functional features not found in the parents. The 50 number of different substrates to be combined can vary widely in size from two to 10, 100, 1000, to more than 10^5 , 10^7 , or 10^9 members.

The initial small population of the specific nucleic acid sequences having mutations may be created by a number of 55 different methods. Mutations may be created by error-prone PCR. Error-prone PCR uses low-fidelity polymerization conditions to introduce a low level of point mutations randomly over a long sequence. Alternatively, mutations can be introduced into the template polynucleotide by 60 oligonucleotide-directed mutagenesis. In oligonucleotidedirected mutagenesis, a short sequence of the polynucleotide is removed from the polynucleotide using restriction enzyme digestion and is replaced with a synthetic polynucleotide in which various bases have been altered from the original 65 sequence. The polynucleotide sequence can also be altered by chemical mutagenesis. Chemical mutagens include, for

example, sodium bisulfite, nitrous acid, hydroxylamine, hydrazine or formic acid. Other agents which are analogues of nucleotide precursors include nitrosoguanidine, 5-bromouracil, 2-aminopurine, or acridine. Generally, these agents are added to the PCR reaction in place of the nucleotide precursor thereby mutating the sequence. Intercalating agents such as proflavine, acriflavine, quinacrine and the like can also be used. Random mutagenesis of the polynucleotide sequence can also be achieved by irradiation with X-rays or ultraviolet light. Generally, plasmid DNA or DNA fragments so mutagenized are introduced into *E. coli* and propagated as a pool or library of mutant plasmids.

Alternatively the small mixed population of specific nucleic acids can be found in nature in the form of different alleles of the same gene or the same gene from different related species (i.e., cognate genes). Alternatively, substrates can be related but nonallelic genes, such as the immunoglobulin genes. Diversity can also be the result of previous recombination or shuffling. Diversity can also result from resynthesizing genes encoding natural proteins with alternative codon usage.

The starting substrates encode variant forms of sequences to be evolved. In some methods, the substrates encode variant forms of a protein for which evolution of a new or modified property is desired. In other methods, the substrates can encode variant forms of a plurality of genes constituting a multigene pathway. In such methods, variation can occur in one or any number of the component genes. In other methods, substrates can contain variants segments to be evolved as DNA or RNA binding sequences. In methods, in which starting substrates containing coding sequences, any essential regulatory sequences, such as a promoter and polyadenylation sequence, required for expression may also be present as a component of the substrate. Alternatively, such regulatory sequences can be provided as components of vectors used for cloning the substrates.

The starting substrates can vary in length from about 50, 250, 1000, 10,000, 100,000, 10^6 or more bases. The starting substrates can be provided in double- or single-stranded form. The starting substrates can be DNA or RNA and analogs thereof. If DNA, the starting substrates can be genomic or cDNA. If the substrates are RNA, the substrates are typically reverse-transcribed to cDNA before heteroduplex formation. Substrates can be provided as cloned fragments, chemically synthesized fragments or PCR amplification products. Substrates can derive from chromosomal, plasmid or viral sources. In some methods, substrates are provided in concatemeric form.

III. Procedures for Generating Heteroduplexes

Heteroduplexes are generated from double stranded DNA substrates, by denaturing the DNA substrates and incubating under annealing conditions. Hybridization conditions for heteroduplex formation are sequence-dependent and are different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, hybridization conditions are selected to be about 25° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium.

Exemplary conditions for denaturation and renaturation of double stranded substrates are as follows. Equimolar concentrations (~1.0–5.0 nM) of the substrates are mixed in

25

1×SSPE buffer (180 mM NaCl, 1.0 mM EDTA, 10 mM NaH₂PO₄, pH 7.4) After heating at 96° C. for 10 minutes, the reaction mixture is immediately cooled at 0° C. for 5 minutes; The mixture is then incubated at 68° C. for 2-6 hr. Denaturation and reannealing can also be carried out by the addition and removal of a denaturant such as NaOH. The process is the same for single stranded DNA substrates, except that the denaturing step may be omitted for short sequences.

By appropriate design of substrates for heteroduplex $_{10}$ formation, it is possible to achieve selection for heteroduplexes relative to reformed parental homoduplexes. Homoduplexes merely reconstruct parental substrates and effectively dilute recombinant products in subsequent screening steps. In general, selection is achieved by designing substrates such that heteroduplexes are formed in open-circles, whereas homoduplexes are formed as linear molecules. A subsequent transformation step results in substantial enrichment (e.g., 100-fold) for the circular heteroduplexes.

FIG. 1 shows a method in which two substrate sequences 20 in separate vectors are PCR-amplified using two different sets of primers (P1, P2 and P3, P4). Typically, first and second substrates are inserted into separate copies of the same vector. The two different pairs of primers initiate amplification at different points on the two vectors. FIG. 1 shows an arrangement in which the P1/P2 primer pairs initiates amplification at one of the two boundaries of the vector with the substrate and the P1/P2 primer pair initiates replication at the other boundary in a second vector. The two primers in each primer pair prime amplification in opposite 30 directions around a circular plasmid. The amplification products generated by this amplification are double-stranded linearized vector molecules in which the first and second substrates occur at opposite ends of the vector. The amplification products are mixed, denatured and annealed. Mixing and denaturation can be performed in either order. Reannealing generates two linear homoduplexes, and an open circular heteroduplex containing one nick in each strand, at the initiation point of PCR amplification. Introduction of the amplification products into host cells selects for the heteroduplexes relative to the homoduplexes because the former transform much more efficiently than the latter.

It is not essential in the above scheme that amplification is initiated at the interface between substrate and the rest of the vector. Rather, amplification can be initiated at any 45 points on two vectors bearing substrates provided that the amplification is initiated at different points between the vectors. In the general case, such amplification generates two linearized vectors in which the first and second substrates respectively occupy different positions relative to the 50 remainder of the vector. Denaturation and reannealing generator heteroduplexes similar to that shown in FIG. 1, except that the nicks occur within the vector component rather than at the interface between plasmid and substrate. Initiation of amplification outside the substrate component of a vector 55 has the advantage that it is not necessary to design primers specific for the substrate borne by the vector.

Although FIG. 1 is exemplified for two substrates, the above scheme can be extended to any number of substrates. For example, an initial population of vector bearing sub-60 strates can be divided into two pools. One pool is PCRamplified from one set of primers, and the other pool from another. The amplification products are denatured and annealed as before. Heteroduplexes can form containing one strand from any substrate in the first pool and one strand 65 from any substrate in the second pool. Alternatively, three or more substrates cloned into multiple copies of a vector can

10

be subjected to amplification with amplification in each vector starting at a different point. For each substrate, this process generates amplification products varying in how flanking vector DNA is divided on the two sides of the substrate. For example, one amplification product might have most of the vector on one side of the substrate, another amplification product might have most of the vector on the other side of the substrate, and a further amplification product might have an equal division of vector sequence flanking the substrate. In the subsequent annealing step, a strand of substrate can form a circular heteroduplex with a strand of any other substrate, but strands of the same substrate can only reanneal with each other to form a linear homoduplex. In a still further variation, multiple substrates can be performed by performing multiple iterations of the scheme in FIG. 1. After the first iteration, recombinant polynucleotides in a vector, undergo heteroduplex formation with a third substrate incorporated into a further copy of the vector. The vector bearing the recombinant polynucleotides and the vector bearing the third substrate are separately PCR amplified from different primer pairs. The amplification products are then denatured and annealed. The process can be repeated further times to allow recombination with further substrates.

An alternative scheme for heteroduplex formation is shown in FIG. 2. Here, first and second substrates are incorporated into separate copies of a vector. The two copies are then respectively digested with different restriction enzymes. FIG. 2 shows an arrangement in which, the restriction enzymes cut at opposite boundaries between substrates and vector, but all that is necessary is to use two different restriction enzymes that cut at different places. Digestion generates linearized first and second vector bearing first and second substrates, the first and second substrates 35 occupying different positions relative to the remaining vector sequences. Denaturation and reannealing generates open circular heteroduplexes and linear homoduplexes. The scheme can be extended to recombination between more than two substrates using analogous strategies to those described with respect to FIG. 1. In one variation, two pools 40 of substrates are formed, and each is separately cloned into vector. The two pools are then cute with different enzymes, and annealing proceeds as for two substrates. In another variation, three or more substrates can be cloned into three or more copies of vector, and the three or more result molecules cut with three or more enzymes, cutting at three or more sites. This generates three different linearized vector forms differing in the division of vector sequences flanking the substrate moiety in the vectors. Alternatively, any number of substrates can be recombined pairwise in an iterative fashion with products of one round of recombination annealing with a fresh substrate in each round.

In a further variation, heteroduplexes can be formed from substrates molecules in vector-free form, and the heteroduplexes subsequently cloned into vectors. Such can be achieved by asymmetric amplification of first and second substrates as shown in FIG. 3. Asymmetric or single primer PCR amplifies only one strand of a duplex. By appropriate selection of primers, opposite strands can be amplified from two different substrates. On reannealing amplification products, heteroduplexes are formed from opposite strands of the two substrates. Because only one strand is amplified from each substrate, reannealing does not reform homoduplexes (other than for small quantities of unamplified substrate). The process can be extended to allow recombination of any number of substrates using analogous strategies to those described with respect to FIG. 1. For example,

substrates can be divided into two pools, and each pool subject to the same asymmetric amplification, such that amplification products of one pool can only anneal with amplification products of the other pool, and not with each other. Alternatively, shuffling can proceed pairwise in an 5 iterative manner, in which recombinants formed from heteroduplexes of first and second substrates, are subsequently subjected to heteroduplex formation with a third substrate. Point mutations can also be introduced at a desired level during PCR amplification.

FIG. 4 shows another approach of selecting for heteroduplexes relative to homoduplexes. First and second substrates are:isolated by PCR amplification from separate vectors. The substrates are denatured and allowed to anneal forming both heteroduplexes and reconstructed homodu- 15 plexes. The products of annealing are digested with restriction enzymes X and Y. X has a site in the first substrate but not the second substrate, and vice versa for Y. Enzyme X cuts reconstructed homoduplex from the first substrate and enzyme Y cuts reconstructed homoduplex from the second 20 substrate. Neither enzyme cuts heteroduplexes. Heteroduplexes can effectively be separated from restriction fragments of homoduplexes by further cleavage with enzymes A and B having sites proximate to the ends of both the first and second substrates, and ligation of the products into vector $\ ^{25}$ having cohesive ends compatible with ends resulting from digestion with A and B. Only heteroduplexes cut with A and B can ligate with the vector. Alternatively, heteroduplexes can be separated from restriction fragments of homoduplexes by size selection on gels. The above process can be 30 Pseudomonas, and Salmonella. generalized to N substrates by cleaving the mixture of heteroduplexes and homoduplexes with N enzymes, each one of which cuts a different substrate and no other substrate. Heteroduplexes can be formed by directional cloning. Two substrates for heteroduplex formation can be obtained by PCR amplification of chromosomal DNA and joined to opposite ends of a linear vector. Directional cloning can be achieved by digesting the vector with two different enzymes, and digesting or adapting first and second substrates to be respectively compatible with cohesive ends of only of the two enzymes used to cut the vector. The first and second substrates can thus be ligated at opposite ends of a linearized vector fragment. This scheme can be extended to any number of substrates by using principles analogous to those described for FIG. 1. For example, substrates can be divided ⁴⁵ into two pools before ligation to the vector. Alternatively, recombinant products formed by heteroduplex formation of first and second substrates, can subsequently undergo heteroduplex formation with a third substrate.

IV. Vectors and Transformation

In general, substrates are incorporated into vectors either before or after the heteroduplex formation step. A variety of cloning vectors typically used in genetic engineering are suitable.

The vectors containing the DNA segments of interest can be transferred into the host cell by standard methods, depending on the type of cellular host. For example, calcium chloride transformation is commonly utilized for prokaryotic cells, whereas calcium phosphate treatment. 60 Lipofection, or electroporation may be used for other cellular hosts. Other methods used to transform mammalian cells include the use of Polybrene, protoplast fusion, liposomes, electroporation, and microinjection, and biolisitics (see, generally, Sambrook et al., supra). Viral 65 vectors can also be packaged in vitro and introduced by infection. The choice of vector depends on the host cells. In

general, a suitable vector has an origin of replication recognized in the desired host cell, a selection maker capable of being expressed in the intended host cells and/or regulatory sequences to support expression of genes within substrates being shuffled.

V. Types of Host Cells

In general any type of cells supporting DNA repair and replication of heteroduplexes introduced into the cells can be 10 used. Cells of particular interest are the standard cell types commonly used in genetic engineering, such as bacteria, particularly, E. coli (16, 17). Suitable E. coli strains include E. coli mutS, mutL, dam⁻, and/or recA⁺, E.coli XL-10-Gold ([Tet^r Δ (mcrA)183 Δ (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte] [F'proAB lacl^qZAM15 Tn10 (Tet') Amy Cam']), E. coliES1301 mutS [Genotype: lacZ53, mutS201:Tn5, thyA36, rha-5, metB1, deoC, IN(rrnD-rrnE)] (20, 24, 28-42). Preferred E. coli strains are E. coli SCS 110 [Genotype: rpsl, (Str'), thr, leu, enda, thi-1, lacy, galk, galt, ara tona, tsx, dam, dcm, supE44, Δ (lac-proAB), [F, traD36, proA⁺B⁺lacl^qZ Δ M15], which have normal cellular mismatch repair systems (17). This strain type repairs mismatches and unmatches in the heteroduplex with little strand-specific preference. Further, because this strain is dam⁻ and dcm⁻, plasmid isolated from the strain is unmethylated and therefore particularly amenable for further rounds of DNA duplex formation/mismatch repair (see below). Other suitable bacterial cells include gram-negative and gram-positive, such as Bacillus,

Eukarvotic organisms are also able to carry out mismatch repair (43-48). Mismatch repair systems in both prokaryotes and eukaryotes are thought to play an important role in the maintenance of genetic fidelity during DNA replication, 35 Some of the genes that play important roles in mismatch repair in prokaryotes, particularly mutS and mutL, have homologs in eukaryotes. in the outcome of genetic recombinations, and in genome stability. Wild-type or mutant S. cerevisiae has been shown to carry out mismatch repair of heteroduplexes (49-56), as have COS-1 monkey 40 cells (57). Preferred strains of yeast are Picchia and Saccharomyces. Mammalian cells have been shown to have the capacity to repair G-T to G-C base pairs by a short-patch mechanism (38, 58-63). Mammalian cells (e.g., mouse, hamster, primate, human), both cell lines and primary cultures can also be used. Such cells include stem cells, including embryonic stem cells, zygotes, fibroblasts, lymphocytes, Chinese hamster ovary (CHO), mouse fibroblasts (NIH3T3), kidney, liver, muscle, and skin cells. Other eucaryotic cells of interest include plant cells, such as maize, 50 rice, wheat, cotton, soybean, sugarcane, tobacco, and arabidopsis; fish, algae, fungi (aspergillus, podospora, neurospora), insect (e.g., baculo lepidoptera) (see, Winnacker, "From Genes to Clones," VCH Publishers, New York, (1987), which is incorporated herein by reference). 55

In vivo repair occurs in a wide variety of prokaryotic and eukaryotic cells. Use of mammalian cells is advantage in certain application in which substrates encode polypeptides that are expressed only in mammalian cells or which are intended for use in mammalian cells. However, bacterial and yeast cells are advantageous for screening large libraries due to the higher transformation frequencies attainable in these strains.

V. In Vitro DNA Repair Systems

As an alternative to introducing annealed products into host cells, annealed products can be exposed a DNA repair

20

25

30

45

60

system in vitro. The DNA repair system can be obtained as extracts from repair-competent E. coli, yeast or any other cells (64-67). Repair-competent cells are lysed in appropriate buffer and supplemented with nucleotides. DNA is incubated in this cell extract and transformed into competent 5 cells for replication.

VI. Screening and Selection

After introduction of annealed products into host cells, the host cells are typically cultured to allow repair and replication to occur and optionally, for genes encoded by polynucleotides to be expressed. The recombinant polynucleotides can be subject to further rounds of recombination using the heteroduplex procedures described above, or other shuffling methods described below. However, whether after one cycle of recombination or several, recombinant polynucleotides are subjected to screening or selection for a desired property. In some instances, screening or selection in performed in the same host cells that are used for DNA repair. In other instances, recombinant polynucleotides, their expression products or secondary metabolites produced by the expression products are isolated from such cells and screened in vitro. In other instances, recombinant polynucleotides are isolated from the host cells in which recombination occurs and are screened or selected in other host cells. For example, in some methods, it is advantageous to allow DNA repair to occur in a bacterial host strain, but to screen an expression product of recombinant polynucleotides in eucaryotic cells. The recombinant polynucleotides surviving screening or selection are sometimes useful products in themselves. In other instances, such recombinant polynucleotides are subjected to further recombination with each other or other substrates. Such recombination can be effected by the heteroduplex methods described above or any other shuffling methods. Further round(s) of recombination are followed by further rounds of screening or selection on an iterative basis. Optionally, the stringency of selection can be increased at each round.

The nature of screening or selection depends on the desired property sought to be acquired. Desirable properties of enzymes include high catalytic activity, capacity to confer resistance to drugs, high stability, the ability to accept a wider (or narrower) range of substrates, or the ability to function in nonnatural environments such as organic solvents. Other desirable properties of proteins include capacity to bind a selected target, secretion capacity, capacity to generate an immune response to a given target, lack of immunogenicity and toxicity to pathogenic microorganisms. Desirable properties of DNA or RNA polynucleotides sequences include capacity to specifically bind a given protein target, and capacity to regulate expression of operably linked coding sequences. Some of the above properties, such as drug resistance, can be selected by plating cells on the drug. Other properties, such as the influence of a regulatory sequence on expression, can be screened by 55 detecting appearance of the expression product of a reporter gene linked to the regulatory sequence. Other properties, such as capacity of an expressed protein to be secreted, can be screened by FACS[™], using a labelled antibody to the protein. Other properties, such as immunogenicity or lack thereof, can be screened by isolating protein from individual cells or pools of cells, and analyzing the protein in vitro or in a laboratory animal.

VII. Variations

1. Demethylation Most cell types methylate DNA in some manner, with the pattern of methylation differing between cells types. Sites of

methylation include 5-methylcytosine (m^5C) , N4-methylcytosine (m^4C) and N⁶-methyladenine (m^6A), 5-hydroxymethylcytosine $(hm^{\circ}C)$ and 5-hydroxymethyluracil (hm⁵U). In E. coli, methylation is effected by Dam and Dcm enzymes. The methylase specified by the dam gene methylates the N6-position of the adenine residue in the sequence GATC, and the methylase specified by the dcm gene methylates the C5-position of the internal cytosine residue in the sequence CCWGG. DNA from plants and mammal is often subject to CG methylation meaning 10 that CG or CNG sequences are methylated. Possible effects of methylated on cellular repair are discussed by references 18 - 20.

In some methods, DNA substrates for heteroduplex formation are at least partially demethylated on one or both strands, preferably the latter. Demethylation of substrate DNA promotes efficient and random repair of the heteroduplexes. In heteroduplexes formed with one strand dammethylated and one strand unmethylated, repair is biased to the unmethylated strand, with the methylated strand serving as the template for correction. If neither strand is methylated, mismatch repair occurrs, but showes insignificant strand preference (23, 24).

Demethylation can be performed in a variety of ways. In some methods, substrate DNA is demethylated by PCRamplification. In some instances, DNA demethylation is accomplished in one of the PCR steps in the heteroduplex formation procedures described above. In other methods, an additional PCR step is performed to effect demethylation. In other methods, demethylation is effected by passaging substrate DNA through methylation deficient host cells (e.g. an E. coli dam⁻dcm⁻ strain). In other methods, substrate DNA is demethylated in vitro using a demethylating enzymes. Demethylated DNA is used for heteroduplex formation 35 using the same procedures described above. Heteroduplexes are subsequently introduced into DNA-repair-proficient but restriction-enzyme-defective cells to prevent degradation of the unmethylated heteroduplexes.

2. Sealing Nicks

Several of the methods for heteroduplex formation described above result in circular heteroduplexes bearing nicks in each strand. These nicks can be sealed before introducing heteroduplexes into host cells. Sealing can be effected by treatment with DNA ligase under standard ligating conditions. Ligation forms a phosphodiester bond to link two adjacent bases separated by a nick in one strand of double helix of DNA. Sealing of nicks increases the frequency of recombination after introduction of heteroduplexes into host cells.

3. Error Prone PCR Attendant To Amplification 50

Several of the formats described above include a PCR amplification step. Optionally, such a step can be performed under mutagenic conditions to induce additional diversity between substrates.

VIII. Other Shuffling Methods

The methods of heteroduplex formation described above can be used in conjunction with other shuffling methods. For example, one can perform one cycle of heteroduplex shuffling, screening or selection, followed by a cycle of shuffling by another method, followed by a further cycle of screening or selection. Other shuffling formats are described by WO 95/22625; U.S. Pat. No. 5,605,793; U.S. Pat. No. 5,811,238; WO 96/19256; Stemmer, Science 270, 1510 (1995); Stemmer et al., Gene, 164, 49-53 (1995); Stemmer, 65 Bio/Technology, 13, 549-553 (1995); Stemmer, Proc. Natl. Acad. Sci. USA 91, 10747-10751 (1994); Stemmer, Nature

15

20

25

370, 389-391 (1994); Crameri et al., Nature Medicine, 2(1):1-3, (1996); Crameri et al., Nature Biotechnology 14, 315-319 (1996); WO 98/42727; WO 98/41622; WO 98/05764 and WO 98/42728, WO 98/27230 (each of which is incorporated by reference in its entirety for all purposes).

IX. Protein Analogs

Proteins isolated by the methods also serve as lead compounds for the development of derivative compounds. The derivative compounds can include chemical modifications of amino acids or replace amino acids with chemical structures. The analogs should have a stabilized electronic configuration and molecular conformation that allows key functional groups to be presented in substantially the same way as a lead protein. In particular, the non-peptic compounds have spatial electronic properties which are comparable to the polypeptide binding region, but will typically be much smaller molecules than the polypeptides, frequently having a molecular weight below about 2 CHD and preferably below about 1 CHD. Identification of such non-peptic compounds can be performed through several standard methods such as self-consistent field (CSF) analysis, configuration interaction (CHI) analysis, and normal mode dynamics analysis. Computer programs for implementing these techniques are readily available. See Rein et al., Computer-Assisted Modeling of Receptor-Ligand Interactions (Alan Liss, New York, 1989).

IX. Pharmaceutical Compositions

Polynucleotides, their expression products, and secondary metabolites whose formation is catalyzed by expression products, generated by the above methods are optionally formulated as pharmaceutical compositions. Such a compoceutically acceptable carrier. A variety of aqueous carriers can be used, e.g., water, buffered water, phosphate-buffered saline (PBS), 0.4% saline, 0.3% glycine, human albumin solution and the like. These solutions are sterile and generally free of particulate matter. The compositions may contain 40 pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride and sodium is selected 45 primarily based on fluid volumes, viscosities, and so forth, in accordance with the particular mode of administration selected.

EXAMPLES

Example 1

Novel Rhizobium Flaa Genes from Recombination of Rhizobium Lupini Flaa And Rhizobium Meliloti FlaA

Bacterial flagella have a helical filament, a proximal hook and a basal body with the flagellar motor (68). This basic design has been extensively examined in E. coli and S. typhimurium and is broadly applicable to many other bacteria as well as some archaea. The long helical filaments are polymers assembled from flagellin subunits, whose molecular weights range between 20,000 and 65,000, depending on the bacterial species (69). Two types of flagellar filaments, named plain and complex, have been distinguished by their 65 electron microscopically determined surface structures (70). Plain filaments have a smooth surface with faint helical

16

lines, whereas complex filaments exhibit a conspicuous helical pattern of alternating ridges and grooves. These characteristics of complex flagellar filaments are considered to be responsible for the brittle and (by implication) rigid structure that enables them to propel bacteria efficiently in viscous media (71-73). Whereas flagella with plain filaments can alternate between clockwise and counter clockwise rotation (68), all known flagella with complex filaments rotate only clockwise with intermittent stops (74). Since this latter navigation pattern is found throughout bacteria and archaea, it has been suggested that complex flagella may reflect the common background of an ancient, basic motility design (69).

Differing from plain bacterial flagella in the fine structure of their filaments dominated by conspicuous helical bands and in their fragility, the filaments are also resistant against heat decomposition (72). Schmitt et al. (75) showed that bacteriophage 7-7-1 specifically adsorbs to the complex flagella of R. lupini H 13-3 and requires motility for a productive infection of its host. Though the flagellins from R. meliloti and R. lupini are quite similar, bacteriophage 7-7-1 does not infect R.meliloti. Until now complex flagella have been observed in only three species of soil bacteria: Pseudomonas rhodos (73), R.meliloti (76), and R. lupini H13-3 (70, 72). Cells of R.lupini H13-3 posses 5 to 10 peritrichously inserted complex flagella, which were first isolated and analyzed by high resolution electron microscopy and by optical diffraction (70).

Maruyama et al. (77) further found that a higher content of hydrophobic amino acid residues in the complex filament 30 may be one of the main reasons for the unusual properties of complex flagella. By measuring mass per unit length and obtaining three-dimensional reconstruction from electron micrographs, Trachtenberg et al. (73, 78) suggested that the complex filaments of R. lupini are composed of functional sition comprises one or more active agents, and a pharma- 35 dimers. FIG. 6 shows the comparison between the deduced amino acid sequence of the R. lupini H13-3 FlaA and the deduced amino acid sequence of the R. meliloti FlaA. Perfect matches are indicated by vertical lines, and conservative exchanges are indicated by colons. The overall identity is 56%. The R.lupini flaA and R.meliloti flaA were subjected to in vitro heteroduplex formation followed by in vivo repair in order to create novel FlaA molecules and structures.

A. Methods

50

55

60

pRL20 containing R. lupini H-13-3 flaA gene and pRM40 containing R.meliloti flaA gene are shown in FIGS. 6A and 6B. These plasmids were isolated from E. coli SCS110 (free from dam- and dcm-type methylation). About 3.0 pg. of unmethylated pRL20 and pRM40 DNA were digested with Bam HI and Eco RI, respectively, at 37° C. for 1 hour. After agarose gel separation, the linearized DNA was purified with Wizard PCR Prep kit (Promega, Wis., USA). Equimolar concentrations (2.5 nM) of the linearized unmethylated pRL20 and pRM40 were mixed in 1×SSPE buffer (180 mM NaCl, 1 mM EDTA, 10 mM NaH2PO4, pH 7.4). After heating at 96° C. for 10 minutes, the reaction mixture was immediately cooled at 0° C. for 5 minutes. The mixture was incubated at 68° C. for 2 hour for heteroduplexes to form.

One microliter of the reaction mixture was used to transform 50µof E. coli ES 1301 mutS, E. coli SCS110 and E. coli JM109 competent cells. The transformation efficiency with E. coli JM109 competent cells was about seven times higher than that of E. coli SCS110 and ten times higher than that of E. coli ES1301 mutS, although the overall transformation efficiencies were 10-200 times lower than those of control transformations with the close, covalent and circular pUC19 plasmid.

Two clones were selected at random from the E. coli SCS110 transformants and two from E. coli ES1301 mutS transformants, and plasmid DNA was isolated from these four clones for further DNA sequencing analysis. B. Results

FIG. 7 shows (a) the sequence of SCS01 (clone#1 from E. coli SCS110 transformant library), (b) the sequence of SCS02 (clone #2 from E. coli SCS110 transformant library), (c) the sequence of ES01 (clone #1 from E. coli ES1301 transformant library), and (d) the sequence of ES02 (clone 10 #2 from E. coli ES1301 transformant library). All four sequences were different from wild-type R. lupini flaA and R. meliloti flaA sequences. Clones SCS02, ES01 and ES02 all contain a complete open-reading frame, but SCS01 was truncated. FIG. 8 shows that recombination mainly occurred 15 in the loop regions (unmatched regions). The flaA mutant library generated from R. meliloti flaA and R. lupini flaA can be transformed into E. coli SCS110, ES1301, XL10-Gold and JM109, and transformants screened for functional FlaA recombinants.

Example 2

Directed Evolution of ECB Deacylase for Variants with Enhanced Specific Activity

Streptomyces are among the most important industrial microorganisms due to their ability to produce numerous important secondary metabolites (including many antibiotics) as well as large amounts of enzymes. The approach described here can be used with little modification 30 for directed evolution of native Streptomyces enzymes, some or all of the genes in a metabolic pathways, as well as other heterologous enzymes expressed in Streptomyces.

New antifungal agents are critically needed by the large and growing numbers of immune-compromised AIDS, 35 organ transplant and cancer chemotherapy patients who suffer opportunistic infections. Echinocandin B (ECB), a lipopeptide produced by some species of Aspergillus, has been studied extensively as a potential antifungal. Various antifungal agents with significantly reduced toxicity have 40 been generated by replacing the linoleic acid side chain of A. nidulans echinocandin B with different aryl side chains (79-83). The cyclic hexapeptide ECB nucleus precursor for the chemical acylation is obtained by enzymatic hydrolysis of ECB using Actinoplanes utahensis ECB deacylase. To 45 muts were pooled and E. coli SCS110 were pooled. A maximize the conversion of ECB into intact nucleus, this reaction is carried out at pH 5.5 with a small amount of miscible organic solvent to solubilize the ECB substrate. The product cyclic hexapeptide nucleus is unstable at pH above 5.5 during the long incubation required to fully 50 deacylate ECB (84). The pH optimum of ECB deacylase, however, is 8.0-8.5 and its activity is reduced at pH 5.5 and in the presence of more than 2.5% ethanol (84). To improve production of ECB nucleus it is necessary to increase the activity of the ECB deacylase under these process-relevant 55 conditions.

Relatively little is known about ECB deacylase. The enzyme is a heterodimer whose two subunits are derived by processing of a single precursor protein (83). The 19.9 kD α -subunit is separated from the 60.4 kD β -subunit by a 60 15-amino acid spacer peptide that is removed along with a signal peptide and another spacer peptide in the native organism. The polypeptide is also expressed and processed into functional enzyme in Streptomyces lividans, the organism used for large-scale conversion of ECB by recombinant 65 ECB deacylase. The three-dimensional structure of the enzyme has not been determined, and its sequence shows so

little similarity to other possibly related enzymes such as penicillin acylase that a structural model reliable enough to guide a rational effort to engineer the ECB deacylase will be difficult to build. We therefore decided to use directed evolution (85) to improve this important activity.

Protocols suitable for mutagenic PCR and randompriming recombination of the 2.4 kb ECB deacylase gene (73% G+C) have been described recently (86). Here, we further describe the use of heteroduplex recombination to generate new ECB deacylase with enhanced specific activity.

In this case, two Actinoplanes utahensis ECB deacylase mutants, M7-2 and M16, which show higher specific activity at pH 5.5 and in the presence of 10% MeOH were recombined using technique of the in vitro heteroduplex formation and in vivo mismatch repair.

FIG. 12 shows the physical maps of plasmids pM7-2 and pM16 which contain the genes for the M7-2 and M16 ECB deacylase mutants. Mutant M7-2 was obtained through 20 mutagenic PCR performed directly on whole Streptomyces lividans cells containing wild-type ECB deacylase gene, expressed from plasmid pSHP150-2*. Streptomyces with pM7-2 show 1.5 times the specific activity of cells expressing the wild-type ECB deacylase (86). Clone pM16 was obtained using the random-priming recombination technique as described (86, 87). It shows 2.4 times specific activity of the wild-type ECB deacylase clone. A. Methods:

25

M7-2 and M16 plasmid DNA (pM7-2 and pM16) (FIG. 9) were purified from E. coli SCS210 (in separate reactions). About 5.0 µg of unmethylated M7-2 and M16 DNA were digested with Xho I and Psh AI, respectively, at 37° C. for 1 hour (FIG. 10). After agarose gel separation, the linearized DNA was purified using a Wizard PCR Prep Kit (Promega, Wis., USA). Equimolar concentrations (2.0 nM) of the linearized unmethylated pM7-2 and pM16 DNA were mixed in 1×SSPE buffer (1×SSPE: 180 mM NaCl, 1.0 mM EDTA, 10 mM NaH₂PO₄, pH 7.4). After heating at 96° C. for 10 minutes, the reaction mixture is immediately cooled at 0° C. for 5 minutes. The mixture was incubated at 68° C. for 3 hours to promote formation of heteroduplexes.

One microliter of the reaction mixture was used to transform 50 µl of E.coli ES1301 mutS, SCS110 and JM109 competent cells. All transformants from E. coli ES1301 plasmid pool was isolated from each pooled library, and this pool was used to transform S. lividans TK23 protoplasts to form a mutant library for deacylase activity screening. Transformants from the S. lividans TK23 libraries were screened for ECB deacylase activity with an in situ plate assay. Transformed protoplasts were allowed to regenerate on R2YE agar plates for 24 hr at 30° C. and to develop in the presence of thiostrepton for 48 hours. When the colonies grew to the proper size, 6 ml of 0.7% agarose solution containing 0.5 mg/ml ECB in 0.1 M sodium acetate buffer (pH 5.5) was poured on top of each R2YE-agar plate and allowed to develop for 18-24 hr at 30° C. Colonies surrounded by a clearing zone larger than that of a control colony containing wild-type plasmid pSHP150-2*, were selected for further characterization.

Selected transformants were inoculated into 20 ml medium containing thiostrepton and grown aerobically at 30° C. for 48 hours, at which point they were analyzed for ECB deacylase activity using HPLC. 100 μ l of whole broth was used for a reaction at 30° C. for 30 minutes in 0.1 M NaAc buffer (pH 5.5) containing 10% (v/v) MeOH and 200 μ g/ml of ECB substrate. The reactions were stopped by

30

40

adding 2.5 volumes of methanol, and 20 μ l of each sample were analyzed by HPLC on a 100×4.6 mm polyhydroxyethyl aspartamide column (PolyLC Inc., Columbia, Md., USA) at room temperature using a linear acetonitrile gradient starting with 50:50 of A:B (A=93% acetonitrile, 0.1% phosphoric acid; B=70% acetonitrile, 0.1% phosphoric acid) and ending with 30:70 of A:B in 22 min at a flow rate of 2.2 ml/min. The areas of the ECB and ECB nucleus peaks were calculated and subtracted from the areas of the corresponding peaks from a sample culture of S. lividans containing 10 pIJ702* in order to estimate the ECB deacylase activity.

2.0 ml pre-cultures of positive mutants were used to inoculate 50-ml medium and allowed to grow at 30° C. for 96 hr. The supernatants were further concentrated to 1/30 their original volume using an Amicon filtration unit 15 (Beverly, Mass., USA) with molecular weight cutoff of 10 kD. The resulting enzyme samples were diluted with an equal volume of 50 mM KH₂PO4 (pH 6.0) buffer and were applied to Hi-Trap ion exchange column (Pharmacia Biotech, Piscataway, N.J., USA). The binding buffer was 50 20 mM $\rm KH_2PO_4$ (pH 6.0), and the elution buffer was 50 mM KH₂PO₄ (pH 6.0) containing 1.0 M NaCl. A linear gradient from 0 to 1.0 M NaCl was applied in 8 column volumes with a flow rate of 2.7 ml/min. The ECB deacylase fraction eluting at 0.3 M NaCl was concentrated and the buffer was 25 exchanged for 50 MM KH₂PO₄ (pH 6.0) using Centricon-10 units. Enzyme purity was verified by SDS-PAGE using Coomassie Blue stain, and the concentration was determined using the Bio-Rad Protein Assay Reagent (Hercules, Calif., USA).

A modified HPLC assay was used to determine the activities of the ECB deacylase mutants on ECB substrate (84). Four μg of each purified ECB deacylase mutant was used for activity assay reaction at 30° C. for 30 minutes in 0.1 M NaAc buffer (pH 5.5) containing 10% (v/v) MeOH 35 and different concentrations of ECB substrate. Assays were performed in duplicate. The reactions were stopped by adding 2.5 volumes of methanol, and the HPLC assays were carried out as described above. The absorbance values were recorded, and the initial rates were calculated by leastsquares regression of the time progress curves from which the Km and the kcat were calculated.

Activities as a function of pH were measured for the purified ECB deacylases at 30° C. at different pH values: 5, 5.5 and 6 (0.1 M acetate buffer); 7, 7.5, 8 and 8.5 (0.1 M 45 phosphate buffer); 9 and 10 (0.1 M carbonate buffer) using the HPLC assay. Stabilities of purified ECB deacylases were were determined at 30° C. in 0.1 M NaAc buffer (pH 5.5) containing 10% methanol. Samples were withdrawn at different time intervals, and the residual activity was measured 50 in the same buffer with the HPLC assay described above. B. Results

FIG. 11 shows that after one round of applying this heteroduplex repair technique on the mutant M7-2 and M16 genes, one mutant (M15) from about 500 original transfor- 55 mants was found to possess 3.1 times the specific activity of wild-type. Wild type and evolved M15 ECB deacylases were purified and their kinetic parameters for deacylation of ECB were determined by HPLC. The evolved deacylases M15 has an increased catalytic rate constant, k_{cat} by 205%. 60 The catalytic efficiency (k_{cat}/K_m) of M20 is enhanced by a factor of 2.9 over the wild-type enzyme.

Initial rates of deacylation with the wild type and M15 at different pH values from 5 to 10 were determined at 200 μ g/ml of ECB. The recombined M15 is more active than 65 wild type at pH 5-8. Although the pH dependence of the enzyme activity in this assay is not strong, there is a definite

shift of 1.0-1.5 units in the optimum to lower pH, as compared to wild type.

The time courses of deactivation of the purified ECB deacylase mutant M15 was measured in 0.1 M NaAc (pH 5.5) at 30° C. No significant difference in stability was observed between wild type and mutant M15.

The DNA mutations with respect to the wild type ECB deacylase sequence and the positions of the amino acid substitutions in the evolved variants M7-2, M16 and M15 are summarized in FIG. 12.

The heteroduplex recombination technique can recombine parent sequences to create novel progeny. Recombination of the M7-2 and M16 genes yielded M15, whose activity is higher than any of its parents (Fid. 13). Of the six base substitutions in M15, five (at positions α 50, α 71, β 57, β 129 and β 340) were inherited from M7-2, and the other one (β 30) came from M16.

This approach provides an alternative to existing methods of DNA recombination and is particularly useful in recombining large genes or entire operons. This method can be used to create recombinant proteins to improve their properties or to study structure-function relationship.

Example 3

Novel Thermostable Bacillus Subtilis Subtilisin E Variants

This example demonstrates the use in vitro heteroduplex formation followed by in vivo repair for combining sequence information from two different sequences in order to improve the thermostability of Bacillus subtilis subtilisin E.

Genes RC1 and RC2 encode thermostable B. sublilis subtilisin E variants (88). The mutations at base positions 1107 in RC1 and 995 in RC2 (FIG. 14), giving rise to amino acid substitutions Asn218/Ser (N218S) and Asn181/Asp (N181 ID), lead to improvements in subtilisin E thermostability; the remaining mutations, both synonymous and nonsynonymous, have no detectable effects on thermostability. At 65° C., the single variants N181D and N218S have approximately 3-fold and 2-fold longer half-lives, respectively, than wild subtilisin E, and variants containing both mutations have half-lives that are 8-fold longer (88). The different half-lives in a population of subtilisin E variants can therefore be used to estimate the efficiency by which sequence information is combined. In particular, recombination between these two mutations (in the absence of point mutations affecting thermostability) should generate a library in which 25% of the population exhibits the thermos/ability of the double mutant. Similarly, 25% of the population should exhibit wild-type like stability, as N181D and N218S are eliminated at equal frequency. We used the fractions of the recombined population as a diagnostic A. Methods

The strategy underlying this example is shown in FIG. 15. Subtilisin E thermostable mutant genes RC1 and RC2 (FIG. 14) are 986-bp fragments including 45 nt of subtilisin E prosequence, the entire mature sequence and 113 nt after the stop codon. The genes were cloned between Bam HI and Nde I in E. coli/B. subtilis shuttle vector pBE3, resulting in pBE3-1 and pBE3-2, respectively. Plasmid DNA pBE3-1 and pBE3-2 was isolated from E.coli SCS110.

About 5.0 µg of ummethylated pBE3-1 and pBE3-2 DNA were digested with Bam HI and Nde I, respectively, at 37° C. for 1 hour. After agarose gel separation, equimolar concentrations (2.0 nM) of the linearized unmethylated pBE3-1 and pBE3-2 were mixed in 1×SSPE buffer (180 mM

NaCl, 1.0 mM EDTA, 10 mM NaH₂PO₄, pH 7.4). After heating at 96° C. for 10 minutes, the reaction mixture was immediately cooled at 0° C. for 5 min. The mixture was incubated at 68° C. for 2 hr for heteroduplexes to form.

One microliter of the reaction mixture was used to transform 50 μ l of *E. coli* ES 1301 mutS, *E. coli* SCS110 and *E.* coli HB101 competent cells.

The transformation efficiency with E. coli HB101 competent cells was about ten times higher than that of E. coli SCS110 and 15 times higher than that of E. coli ES1301 10 duplexes. mutS. But in all these cases, the transformation efficiencies were 10-250 times lower than that of the transformation with closed, covalent and circular control pUC19 plasmids.

Five clones from E. coli SCS110 mutant library and five from E. coli ES1301 mutS library were randomly chosen, and plasmid DNA was isolated using a QIAprep spin plasmid miniprep kit for further DNA sequencing analysis.

About 2,000 random clones from E. coli HB101 mutant library were pooled and total plasmid DNA was isolated using a QIAGEN-100 column. 0.5–4.0 μ g of the isolated 20 plasmid was used to transform Bacillus subtilis DB428 as described previously (88).

About 400 transformants from the Bacillus subtilis DB428 library were subjected to screening. Screening was performed using the assay described previously (88), on 25 succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. B. subtilis DB428 containing the plasmid library were grown on LB plates containing kanamycin (20 µg/ml) plates. After 18 hours at 37° C. single colonies were picked into 96-well plates containing 200 µl SG/kanamycin medium per well. These 30 E stability. plates were incubated with shaking at 37° C. for 24 hours to let the cells to grow to saturation. The cells were spun down, and the supernatants were sampled for the thermostability assay.

Two replicates of 96-well assay plates were prepared for 35 each growth plate by transferring 10 μ l of supernatant into the replica plates. The subtilisin activities were then measured by adding 100 μ l of activity assay solution (0.2 mM succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, 100 mM Tris-HCl, 10 mM CaCl₂, pH 8.0, 37° C.). Reaction velocities 40 were measured at 405 nm to over 1.0 min in a ThermoMax microplate reader (Molecular Devices, Sunnyvale Calif.). Activity measured at room temperature was used to calculate the fraction of active clones (clones with activity less than 10% of that of wild type were scored as inactive). Initial 45 bination can differ considerably from gene to gene [17,57]. activity (A_i) was measured after incubating one assay plate at 65° C. for 10 minutes by immediately adding 100 μ l of prewarmed (37° C.) assay solution (0.2 mM succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, 100 mM Tris-HCl, pH 8.0, 10 mM CaCl₂, pH 8.0) into each well. Residual activity (Ar) 50 was measured after 40 minute incubation. B. Results

In vitro heteroduplex formation and in vivo repair was carried out as described above. Five clones from E. coli SCS110 mutant library and five from E. coli ES1301 mutS 55 libraries were selected at random and sequenced. FIG. 14 shows that four out of the ten clones were different from the parent genes. The frequency of occurrence of a particular point mutation from parent RC1 or RC2 in the resulting genes ranged from 0% to 50%, and the ten point mutations 60 in the heteroduplex have been repaired without strong strand-specific preference.

Since none of the ten mutations locates within the dcm site, the mismatch repair appears generally done via the E. coli long-patch mismatch repair systems. The system repairs 65 hours at 68° C. different mismatches in a strand-specific manner using the state of N6-methylation of adenine in GATC sequences as

22

the major mechanism for determining the strand to be repaired. With heteroduplexes methylated at GATC sequences on only one DNA strand, repair was shown to be highly biased to the unmethylated strand, with the methylated strand serving as the template for correction. If neither strand was methylated, mismatch repair occurred, but showed little strand preference (23, 24). These results shows that it is preferable to demethylate the DNA to be recombined to promote efficient and random repair of the hetero-

The rates of subtilisin E thermo-inactivation at 65° C. were estimated by analyzing the 400 random clones from the Bacillus subtilis DB428 library. The thermostabilities obtained from one 96-well plate are shown in FIG. 16, plotted in descending order. About 12.9% of the clones exhibited thermostability comparable to the mutant with the N181D and N218S double mutations. Since this rate is only half of that expected for random recombination of these two markers, it indicates that the two mismatches at positions 995 and 1107 within the heteroduplexes have been repaired with lower position randomness.

Sequence analysis of the clone exhibiting the highest thermostability among the screened 400 transformants from the E. coli SCS110 heteroduplex library confirmed the presence of both N181D and N218S mutations. Among the 400 transformants from the B.sublilis DB428 library that were screened, approximately 91% of the clones expressed N18ID- and/or N218S-type enzyme stabilities, while about 8.0% of the transformants showed only wild-type subtilisin

Less than 1.0% inactive clone was found, indicating that few new point mutations were introduced in the recombination process. This is consistent with the fact that no new point mutations were identified in the ten sequenced genes (FIG. 14). While point mutations may provide useful diversity for some in vitro evolution applications, they can also be problematic for recombination of beneficial mutations, especially when the mutation rate is high.

Example 4

Optimizing Conditions for the Heteroduplex Recombination.

We have found that the efficiency of heteroduplex recom-In this example, we investigate and optimize a variety of parameters that improve recombination efficiency. DNA substrates used in this example were site-directed mutants of green fluorescent protein from Aequorea victoria. The GFP mutants had a stop codon(s) introduced at different locations along the sequence that abolished their fluorescence. Fluorescent wild type protein could be only restored by recombination between two or more mutations. Fraction of fluorescent colonies was used as a measure of recombination efficiency.

A. Methods

About 2–4 μ g of each parent plasmid was used in one recombination experiment. One parent plasmid was digested with Pst I endonuclease another parent with EcoRI. Linearized plasmids were mixed together and 20×SSPE buffer was added to the final concentration 1×(180 mM NaCl, 1 mM EDTA, 10 mM NaH₂PO₄, pH 7.4). The reaction mixture was heated at 96° C. for 4 minutes, immediately transferred on ice for 4 minutes and the incubation was continued for 2

Target genes were amplified in a PCR reaction with primers corresponding to the vector sequence of pGFP

40

45

50

60

plasmid. Forward primer: 5'-CCGACTGGAAAGC GGGCAGTG-3', reverse primer 5'-CGGGGCTGGCTT AACTATGCGG-3'. PCR products were mixed together and purified using Qiagen PCR purification kit. Purified products were mixed with 20×SSPE buffer and hybridized as described above. Annealed products were precipitated with ethanol or purified on Qiagen columns and digested with EcoRI and PstI enzymes. Digested products were ligated into PstI and EcoRI digested pGFP vector.

dUTP was added into PCR reaction at final concentrations 10 200 μ M, 40 μ M, 8 μ M, 1.6 μ M, 0.32 μ M. PCR reaction and subsequent cloning procedures were performed as described above.

Recombinant plasmids were transformed into XL10 *E. coli* strain by a modified chemical transformation method. ¹⁵ Cells were plated on ampicillin containing LB agar plates and grown overnight at 37° C., followed by incubation at room temperature or at 4° C. until fluorescence developed. B. Results.

1. Effect of Ligation on Recombination Efficiency.

Two experiments have been performed to test the effect of breaks in the DNA heteroduplex on the efficiency of recombination. In one experiment heteroduplex plasmid was treated with DNA ligase to close all existing single-strand breaks and was transformed in identical conditions as an ²⁵ unligated sample (see Table 1). The ligated samples show up to 7-fold improvement in recombination efficiency over unligated samples.

In another experiment, dUTP was added into PCR reaction to introduce additional breaks into DNA upon repair by ³⁰ uracyl N-glycosylase in the host cells. Table 2 shows that dUMP incorporation significantly suppressed recombination, the extent of suppression increasing with increased dUTP concentration.

2. Effect of Plasmid Size on the Efficiency of Heterodu-³⁵ plex Formation.

Plasmid size was a significant factor affecting recombination efficiency. Two plasmids pGFP (3.3 kb) and a *Bacillus* shuttle vector pCT1 (about 9 kb) were used in preparing circular heteroduplex-like plasmids following traditional heteroduplex protocol. For the purpose of this experiment (to study the effect of plasmid size on duplex formation), both parents had the same sequences. While pGFP formed about 30–40% of circular plasmid, the shuttle vector yielded less than 10% of this form.

Increase in plasmid size decreases concentration of the ends in the vicinity of each and makes annealing of very long (>0.8 kb) ends that are single-stranded more difficult. This difficulty is avoided by the procedure shown in FIG. **3**, in which heteroduplex formation occurs between substrates in vector-free form, and, heteroduplexes are subsequently inserted into a vector.

3. Efficiency of Recombination vs. Distance Between Mutations

A series of GFP variants was recombined pairwise to study the effect of distance between mutations on the efficiency of recombination. Parental genes were amplified by PCR, annealed and ligated back into pGFP vector. Heteroduplexes were transformed into XL10 *E. coli* strain.

The first three columns in Table 3 show the results of three independent experiments and demonstrate the dependence of recombination efficiency on the distance between mutations. As expected recombination becomes less and less efficient for very close mutations.

However, it is still remarkable that long-patch repair has been able to recombine mutations separated by only 27 bp. 24

The last line in Table 3 represents recombination between one single and one double mutants. Wild type GFP could only be restored in the event of double crossover with each individual crossover occurring in the distance of 99 bp only, demonstrating the ability of this method to recombine multiple, closely-spaced mutations.

4. Elimination of the Parental Double Strands From Heteroduplex Preparations.

Annealing of substrates in vector-free form offers sizeadvantages relative to annealing of substrates as components of vectors, but does not allow selection for heteroduplexes relative to homoduplexes simply by transformation into host. Asymmetric PCR reactions with only one primer for each parent seeded with appropriate amount of previously amplified and purified gene fragment were run for 100 cycles, ensuring a 100-fold excess of one strand over another. Products of these asymmetrical reactions were mixed and annealed together producing only a minor amount of nonrecombinant duplexes. The last column in Table 3 shows the recombination efficiency obtained from these enriched heteroduplexes. Comparison of the first three columns with the fourth one demonstrates the improvement achieved by asymmetric synthesis of the parental strands.

While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be clear to one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention. All publications and patent documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication or patent document were so individually denoted.

REFERENCES

1. Shao, Z. and Arnold, F. H. 1996. Engineering new functions and altering existing functions. Curr. Opin. Struct. Biol. 6:513–518.

2. Kuchner, O and Arnold, F. H. 1997. Directed evolution of enzyme catalysts. Trends in Biotechnol. 15:523–530.

3. Abelson, J. N. (ed.) 1996. Combinatorial chemistry. Methods in Enzymol. 267, Academic Press, Inc. San Diego.

4. Joyce, G. F. 1992. Directed molecular evolution. Scientific American 267:90–97.

5. Stemmer, W. P. C. 1994a. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391.

6. Stemmer, W. P. C. 1994b. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Nati. Acad. Sci. USA 91:10747–10751.

7. Moore, J. C. and Arnold, F. H. 1996. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotech. 14:458–467.

8. Holland, J. H. 1975. Adaptation in natural and artificial systems. The University Press, Ann Arbor.

9. Goldberg, D. E. 1989. Genetic algorithms in search, optimization and machine learning. Addison-Wesley. Reading.

10. Eigen, M. 1971. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523.

11. Rechenberg, L. 1973. Evolutions strategie: Optimierung technischer Systeme nach Prinzipien der biologis-65 chen Evolution. Fronimann-Holzboog, Stuttgart.

12. Brady, R. M. 1985. Optimization strategies gleaned from biological evolution. Nature 317:804–806.

20

40

60

13. Muhlenbein, H. 1991. The parallel genetic algorithm as function optimizer. Parallel Computing 17:619-632.

14. Pal, K. F. 1993. Genetic algorithms for the traveling salesman problem-based on a heuristic crossover operation. Bio. Cybem. 69:539-546.

15. Pal, K. F. 1995. Genetic algorithm with local optimization. Bio.Cybem. 73:335-341.

16. Cami, B., P. Chambon, P. Kourilsky. 1984. Correction of complex heteroduplexes made of mouse H-2 gene 10sequences in E. coli K-12. Proc. Natl. Acad. Sci. USA 81:503-507.

17. Westmoreland, J, G. Porter, M. Radman and M. A. Resnick. 1997. Highly mismatched molecules resembling recombination intermediates efficiently transform mismatch repair proficient E. coli. Genetics 145:29-38.

18. Kramer, B., W. Kramer and H.-J. Fritz. 1984. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell 38:879-887.

19. Lu, A.-L., S. Clark and P. Modrich. 1983. Methylaffected repair of DNA base pair mismatches in vitro. Proc. Natl. Acad. Sci. USA 80:4639-4643.

20. Carraway, M. and Marinus, M. G. 1993. Repair of heteroduplex DNA molecules with multibase loops in 25 man M. 1986. GATC sequence and mismatch repair in Escherichia coli. J Bacteriol. 175:3972-3980.

21. Cooper, D. L., Lahue, R. S. and Modrich, P. 1993. Methyl-directed mismatch repair is bidirectional. J. Biol. Chem. 268:11823-11829.

22. Au, K. G., Welsh, K. and Modrich, P. 1992. Initiation 30 of methyl-directed mismatch repair. J. Biol. Chem. 267:12142-12148.

23. Meselson, M. 1988. Methyl-directed repair of DNA mismatches, p. 91-113. In K. B. Low (ed.), Recombination of the Genetic Material. Academic Press, Inc., San Diego, ³⁵ excision repair proteins. Nature 387: 929-31. Calif.

24. Fishel, R. A., Siegel, E. C. and Kolodner, R. 1986. Gene conversion in Escherichia coli. Resolution of heteroallelic mismatched nucleotides by co-repair. J. Mol. Biol. 188:147-157.

25. Pukkila, P. J., J. Peterson, G. Herman, P. Modrich, and M. Meselson. 1983. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics 104:571-582.

26. Radman, M., R. E. Wagner, B. W. Glickman, and M. Meselson. 1980. DNA methylation, mismatch correction and genetic stability, p. 121-130. In M. Alacevic (ed.) Process in Environmental Mutagenesis. Elsevier/North-Holland Biochemical Press, Amsterdam.

27. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

28. Allen, D. J., Makhov, A., Grilley, M., Taylor, J., Thresher, R., Modrich, P. and Griffith, J. D. MutS mediates 55 heteroduplex loop formation by a translocation mechanism. 1997. EMBO J. 16: 4467-4476.

30. Tsai-Wu, J. J. and Lu, A. L. 1994. Escherichia coli mutY-dependent mismatch repair involves DNA polymerase I and a short repair tract. Mol. Gen. Genet. 244:444-450.

31. Worth, L. Jr., Clark, S., Radman, M. and Modrich, P. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Nati. Acad. Sci. USA 91:3238-3241.

Some features of base pair mismatch repair and its role in the formation of genetic recombinants. Experientia 50:253-260.

33. Radicella, J. P., Clark, E. A., Chen, S. and Fox, M. S. 1993. Patch length of localized repair events: role of DNA polymerase I in mutY-dependent mismatch repair. J. Bacteriol. 175: 7732-7736.

34. Kraczkiewicz-Dowjat, A. and Fishel, R. 1990. RecBrecC-dependent processing of heteroduplex DNA stimulates recombination of an adjacent gene in Escherichia coli. J. Bacteriol. 172:172–178.

35. Radman, M. 1989. Mismatch repair and the fidelity of genetic recombination. Genome 31: 68-73.

36. Raposa, S. and Fox, M. S. 1987. Some features of base pair mismatch and heterology repair in Escherichia coli. Genetics 117:381-390.

37. Jones, M., Wagner, R. and Radman, M. 1987. Mismatch repair and recombination in E. coli. Cell 50:621-626.

38. Langle-Rouault, F., Maenhaut-Michel, G. and Radman, M. 1987. GATC sequences, DNA nicks and the MutH function in Escherichia coli mismatch repair. EMBO J. 6:1121-1127

39. Glazer, P. M., Sarkar, S. N., Chisholm, G. E. and Summers, W. C. 1987. DNA mismatch repair detected in human cell extracts. Mol. Cell. Biol. 7:218-224

40. Laengle-Rouault, F., Maenhaut-Michel, G. and Rad-Escherichia coli. EMBO J. 5:2009-2013.

41. Bauer, J., Krammer, G. and Knippers, R. 1981. Asymmetric repair of bacteriophage T7 heteroduplex DNA. Mol. Gen. Genet. 181:541-547.

42. Wildenberg, J. and Meselson, M. 1975. Mismatch repair in heteroduplex DNA. Proc. Natl. Acad. Sci. USA 72:2202-2206.

43. Kirkpatrick, D. T. and Petes, T. D. 1997. Repair of DNA loops involves DNA-mismatch and nucleotide-

44. Leung, W., Malkova, A. and Haber, J. E. 1997. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94: 6851-6856.

45. Hunter, N. and Borts, R. H. 1997. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 11:0890–9369.

46. Alani, E., Lee, S., Kane, M. F., Griffith, J. and Kolodner, R. D. 1997. Saccharomyces cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J. Mol. Biol. 265:289-301.

47. Varlet, I., Canard, B., Brooks, P., Cerovic, G. and Radman, M. 1996. Mismatch repair in Xenopus egg extracts: 50 DNA strand breaks act as signals rather than excision points. Proc. Natl. Acad. Sci. USA 93:10156–10161.

48. Nicolas, A. and Petes, T. D. 1994. Polarity of meiotic gene conversion in fungi: contrasting views. Experientia 50:242-52.

49. Bishop, D. K., J. Andersen, and R. D. Kolodner. 1989. Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc. Natl. Acad. Sci. USA 86:3713-3717.

50. Kramer, B., W. Kramer, M. S. Williamson, and S. Fogel. 1989. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes Mol. Cell. Biol. 9:4432-4440.

51. Baynton, K., Bresson-Roy, A. and Fuchs, R. P. 1998. 32. Fox, M. S., Radicella, J. P. and Yamamoto, K. 1994. 65 Analysis of damage tolerance pathways in Saccharomyces cerevisiae: a requirement for Rev3 DNA polymerase in translation synthesis. Mol. Cell. Biol. 18: 960-966.

10

25

30

60

52. Alani, E., Reenan, R. A. and Kolodner, R. D. 1994. Interaction between mismatch repair and genetic recombination in *Saccharomyces cerevisiae*. Genetics 137:19–39.

54. Bishop, D. K., Williamson, M. S., Fogel, S. and Kolodner, R. D. 1987. The role of heteroduplex correction in gene conversion in *Saccharomyces cerevisiae*. Nature 328:362–364.

55. Bishop, D. K. and Kolodner, R. D. 1986. Repair of heteroduplex plasmid DNA after transformation into *Saccharomyces cerevisiae*. Mol. Cell Biol. 6:3401–3409.

56. White, J. H., Lusnak, K. and Fogel, S. 1985. Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate. Nature 315: 350–352.

57. Abastado, J.-P., B. Cami, T. H. Dinh, J. Igoler and P. Kourilsky. 1984. Processing of complex heteroduplexes in *E. coli* and Cos-1 monkey cells. Proc. Natl. Acad. Sci. USA 81:5792–5796.

58. Brown, T. C. and J. Jiricny. 1987. A specific mismatch $_{20}$ repair event protects mammalian cells from loss of 5-methylcytosine. Cell 50:945–950.

59. Sibghat-Ullah, and R-S, Day. 1993. DNA-substrate sequence specificity of human G:T mismatch repair activity. Nucleic Acids Res. 21:1281–1287.

60. Miller, E. M., Hough, H. L., Cho, J. W. and Nickoloff, J. A. 1997. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells. Genetics 147: 743–753.

61. Deng, W. P. and Nickoloff, J. A. 1994. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol. Cell Biol. 14:400–406.

62. Thomas, D. C., Roberts, J. D. and Kunkel, T. A. 1991. ³⁵ Heteroduplex repair in extracts of human HeLa cells. J. Biol. Chem. 266:3744–51.

63. Folger, K. R., Thomas, K. and Capecchi, M. R. 1985. Efficient correction of mismatched bases in plasmid heteroduplexes injected into cultured mammalian cell nuclei. Mol. ⁴⁰ Cell. Biol. 5:70–74.

64. Fang, W., Wu, J. Y. and Su, M. J. 1997. Methyldirected repair of mismatched small heterologous sequences in cell extracts from *Escherichia coli*. J. Biol. Chem. 272: 22714–22720.

65. Smith, J. and Modrich, P. 1997. Removal of polymerase-produced mutant sequences from PCR products. Proc. Natl. Acad. Sci. U S A 94: 6847–50.

66. Su, S. S., Grilley, M., Thresher, R., Griffith, J. and Modrich, P. 1989. Gap formation is associated with methyldirected mismatch correction under conditions of restricted DNA synthesis. Genome 31:104–11.

67. Muster-Nassal, C. and Kolodner, R. 1986. Mismatch correction catalyzed by cell-free extracts of *Saccharomyces* 55 *cerevisiae*. Proc. Natl. Acad. Sci. USA 83:7618–7622.

68. Macnab, R. M. 1992. Genetic and biogenesis of bacterial flagella. Annul Rev. Genet. 26:131-158.

69. Wilson, D. R. and Beveridge, T. J. 1993. Bacterial flagellar filaments and their component flagellins. Can. J. Microbiol. 39:451–472.

70. Schmitt, R., Raskal, A. and Mayer, F. 1974. Plain and complex flagella of *Pseudomonas rhodos*: analysis of fine structure and composition. J. Bacteriol. 117:844–857.

71. Gotz, R., Limmer, N., Ober, K. and Schmitt, R. 1982. 65 Motility and chemotaxis in two strains of *Rhizobium* with complex flagella. J. Gen. Microbiol. 128:789–798.

72. Schmitt, R., Bambergerl., Acker G. and Mayer, F. 1974. Fine structure analysis of the complex flagella of *Rhizobium lupini* H13-3. Arch. Microbiol. 100:145–162.

73. Trachtenberg, S., DeRosier, D. J. and Macnab, R. M. 1987. Three-dimensional structure of the complex flagellar filament of *Rhizobium lupini* and its relation to the structure of the plain filaments. J. Mol. Biol. 195:603–620,

74. Gotz, R. and Schmitt, R. 1987. *Rhizobium meliloti* swims by unidirectional intennittent rotation of right-handed flagellar helices. J. Bacteriol. 169:3146–3150.

75. Lotz, W., Acker, G. and Schmitt, R. 1977. Bacteriophage 7-7-1 adsorbs to the complex flagella of *Rhizobium lupini* H13-3. J. Gen. Virol. 34:9–17.

76. Krupski, G.,Gotz, F., Ober, K., Pleicr, E. and Schmitt, R. 1985. Structure of complex flagellar filaments in *Rhizobium meliloti*. J. Bacteriol. 162:361–366.

77. Maruyama, M., Lodderstaedt, G. and Schmitt, R. 1978. Purification and, biochemical 15 properties of complex flagella isolated from *Rhizobium lupini* H13-3. Biochem. Biophys. Acta 535:110–124.

78. Trachtenberg, S., DeRosier, D. J., Aizawa, S.-I. and Macnab, R. M. 1986. Pairwise perturbation of flagellin subunits. The structural basis for the differences between plain and complex bacterial flagellar filaments. J. Mol. Biol. 190:569–576.

79. Gordee, R. S., Zeckner, D. J., Ellis, L. F., Thakkar, A. L. and Howard, L. C. 1984. In vitro and in vivo anti-Candida activity and toxicity of LY121019. J. Antibiotics 37:1054–1065.

80. Debono, M., Willard, K. E., Kirst, H. A., Wind, J. A., Crouse, G. D., Tao, E. V., Vicenzi, J. T., Counter, F. T., Ott, J. L., Ose, E. E. and Omura, S. 1989. Synthesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent cilofungin (LY121019). J. Antibiotics 42(3): 389–397.

81. Debono, M. and Gordee, R. S. 1994. Antibiotics that inhibit fungal cell-wall development. Annu. Rev. Microbiol. 48: 471–497.

 Debono, M., Turner, W. W., Lagrandeur, L., Burkhardt, F. J., Nissen, J. S., Nichols, K. K., Rodriguez, M. J., Zweifel, M. J., Zeckner, D. J., Gordee, R. S., Tang. J. and
 Parr, T. R. 1995. Semisynthetic chemical modification of the antifungal lipopeptide echinocandin B (ECB): structureactivity studies of the lipophilic and geometric parameters of polyarylated acyl analogs of ECB. J. Med. Chem. 38(17): 3271–3281.

83. Yeh, W. K. 1997. Evolving enzyme technology for pharmaceutical applications: case studies. J. Ind. Microbiol. Biotechnol. 19(5–6): 334–343.

84. Boeck, L. D., Fukuda, D., Abbott, B. J. and M. Debono. 1989. Deacylation of echinocandin B by *Actinoplanes utahensis*. J. Antibiotics 42(3): 382–388

85. Arnold, F. H. 1998. Design by directed evolution. Accts. Chem. Res. 31:125–131.

86. Shao, Z., Callahan, M. and Arnold, F. H. 1998. Directed enzyme evolution of *Actinoplane utahensis* ECB deacylase in *Streptomyces lividans* for enhanced specific activity. Manuscript submitted.

87. Shao, Z., Zhao, H., Giver, L. and Arnold, F. H. 1998. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 26 (2): 681–683.

88. Zhao, H. and Arnold, FH, 1997. Functional and nonfunctional mutations distinguished by random recombi-

10

SEQUENCE LISTING

nation of homologous genes. Proc. Natl. Acad. Sci. USA 94:7997-8000.

89. Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F. H. 1998. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16: 258–261.

90. Judo, M. S. B., Wedel, A. B. and Wilson, C. 1998. Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res. 26: 1819–1825.

91. Okkels, J. S. 1997. Method for preparing polypeptide variants. PCT application WO 97/07205.

<160> NUMBER OF SEQ ID NOS: 11

<213> ORGANISM: Rhizobium lupini

<210> SEQ ID NO 1 <211> LENGTH: 410 <212> TYPE: PRT

<220> FEATURE:

92. Gray, G. L. 1992. Hybrid prokaryotic polypeptides produced by in vivo homologous recombination. U.S. Pat. No. 5,093,257.

93. Weber, H. and Weissmann, C. 1983. Formation of genes coding for hybrid proteins by recombination between related, cloned genes in *E. coli*. Nucl. Acids Res. 11:5661–5669.

94. Maryon, E. and Carroll, D. 1991. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol. Cell. Biol. 11:3278–3287.

<223> OTHER INFORMATION: flagellin A (FlaA) <400> SEOUENCE: 1 Met Ala Ser Val Leu Thr Asn Ile Asn Ala Met Ser Ala Leu Gln Thr 10 Leu Arg Ser Ile Ser Ser Asn Met Glu Asp Thr Gln Ser Arg Ile Ser 20 25 Ser Gly Met Arg Val Gly Ser Ala Ser Asp Asn Ala Ala Tyr Trp Ser 35 40 Ile Ala Thr Thr Met Arg Ser Asp Asn Ala Ser Leu Ser Ala Val Gln 50 55 60 Asp Ala Ile Gly Leu Gly Ala Ala Lys Val Asp Thr Ala Ser Ala Gly 65 70 75 80 Met Asp Ala Val Ile Asp Val Val Lys Gln Ile Lys Asn Lys Leu Val 85 90 95 Thr Ala Gln Glu Ser Ser Ala Asp Lys Thr Lys Ile Gln Gly Glu Val 100 105 110 Lys Gln Leu Gln Glu Gln Leu Lys Gly Ile Val Asp Ser Ala Ser Phe 120 125 115 Ser Gly Glu Asn Trp Leu Lys Gly Asp Leu Ser Thr Thr Thr Thr Lys 130 135 140 Ser Val Val Gly Ser Phe Val Arg Glu Gly Gly Thr Val Ser Val Lys 155 145 150 Thr Ile Asp Tyr Ala Leu Asn Ala Ser Lys Val Leu Val Asp Thr Arg 165 170 Ala Thr Gly Thr Lys Thr Gly Ile Leu Asp Thr Ala Tyr Thr Gly Leu 180 185 190 Asn Ala Asn Thr Val Thr Val Asp Ile Asn Lys Gly Gly Val Ile Thr 200 205 Gln Ala Ser Val Arg Ala Tyr Ser Thr Asp Glu Met Leu Ser Leu Gly 210 215 220 Ala Lys Val Asp Gly Ala Asn Ser Asn Val Ala Val Gly Gly Ser 230 235 225 240 Ala Ser Ser Arg Ser Thr Ala Ala Gly Leu Arg Val Ala Ser Thr Leu 245 250 Arg Pro Pro Ser Pro His Gln His Gln Ser Leu Ala Ser Leu Pro Pro

-continued

265 270 260 Leu Thr Pro Pro Leu Lys Leu Val Leu Gln Leu Leu Pro Val Thr Pro 280 275 285 Ser Ser Ser Thr Lys Pro Thr Ala Ala Pro Val Gln Val Asn Leu Thr 290 295 300 Gln Ser Val Leu Thr Met Asp Val Ser Ser Met Ser Ser Thr Asp Val 305 310 315 320 Gly Ser Tyr Leu Thr Gly Val Glu Lys Ala Leu Thr Ser Leu Thr Ser 325 330 335 Ala Gly Ala Glu Leu Gly Ser Ile Lys Gln Arg Ile Asp Leu Gln Val 340 345 350 Asp Phe Ala Ser Lys Leu Gly Asp Ala Leu Ala Lys Gly Ile Gly Arg 355 360 365 Leu Val Asp Ala Asp Met Asn Glu Glu Ser Thr Lys Leu Lys Ala Leu 370 375 380 Gln Thr Gln Gln Gln Leu Ala Ile Gln Ser Leu Ser Ile Ala Asn Ser 390 395 385 Asp Ser Gln Asn Ile Leu Ser Leu Phe Arg 405 <210> SEQ ID NO 2 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: Rhizobium meliloti <220> FEATURE: <223> OTHER INFORMATION: flagellin A (FlaA) <400> SEQUENCE: 2 Met Thr Ser Ile Leu Thr Asn Asn Ser Ala Met Ala Ala Leu Ser Thr 10 Leu Arg Ser Ile Ser Ser Ser Met Glu Asp Thr Gln Ser Arg Ile Ser 20 25 30 Ser Gly Leu Arg Val Gly Ser Ala Ser Asp Asn Ala Ala Tyr Trp Ser 35 40 Ile Ala Thr Thr Met Arg Ser Asp Asn Gln Ala Leu Ser Ala Val Gln 50 55 60 Asp Ala Leu Gly Leu Gly Ala Ala Lys Val Asp Thr Ala Tyr Ser Gly 65 70 75 80 Met Glu Ser Ala Ile Glu Val Val Lys Glu Ile Lys Ala Lys Leu Val 90 85 Ala Ala Thr Glu Asp Gly Val Asp Lys Ala Lys Ile Gln Glu Glu Ile 100 105 110 Thr Gln Leu Lys Asp Gln Leu Thr Ser Ile Ala Glu Ala Ala Ser Phe 115 120 125 Ser Gly Glu Asn Trp Leu Gln Ala Asp Leu Ser Gly Gly Pro Val Thr 130 135 140 Lys Ser Val Val Gly Gly Phe Val Arg Asp Ser Ser Gly Ala Val Ser 145 150 155 160 155 Val Lys Lys Val Asp Tyr Ser Leu Asn Thr Asp Thr Val Leu Phe Asp 170 165 Thr Thr Gly Asn Thr Gly Ile Leu Asp Lys Val Tyr Asn Val Ser Gln 185 180 190 Ala Ser Val Thr Leu Pro Val Asn Val Asn Gly Thr Thr Ser Glu Tyr 195 200 205 Thr Val Gly Ala Tyr Asn Val Asp Asp Leu Ile Asp Ala Ser Ala Thr

-continued

	210					215					220						
Phe 225	Asp	Gly	Asp	Tyr	Ala 230	Asn	Val	Gly	Ala	Gly 235	Ala	Leu	Ala	Gly	Asp 240		
Tyr	Val	Lys	Val	Gln 245	Gly	Ser	Trp	Val	Lys 250	Ala	Val	Asp	Val	Ala 255	Ala		
Thr	Gly	Gln	Glu 260	Val	Val	Tyr	Asp	Asp 265	Gly	Thr	Thr	Lys	Trp 270	Gly	Val		
Asp	Thr	Thr 275	Val	Thr	Gly	Ala	Pro 280	Ala	Thr	Asn	Val	Ala 285	Ala	Pro	Ala		
Ser	Ile 290	Ala	Thr	Ile	Asp	Ile 295	Thr	Ile	Ala	Ala	Gln 300	Ala	Gly	Asn	Leu		
Asp 305	Ala	Leu	Ile	Ala	Gly 310	Val	Asp	Glu	Ala	Leu 315	Thr	Asp	Met	Thr	Ser 320		
Ala	Ala	Ala	Ser	Leu 325	Gly	Ser	Ile	Ser	Ser 330	Arg	Ile	Asp	Leu	Gln 335	Ser		
Asp	Phe	Val	Asn 340	Lys	Leu	Ser	Asp	Ser 345	Ile	Asp	Ser	Gly	Val 350	Gly	Arg		
Leu	Val	A sp 355	Ala	Asp	Met	Asn	Glu 360	Glu	Ser	Thr	Arg	Leu 365	Lys	Ala	Leu		
Gln	Thr 370	Gln	Gln	Gln	Leu	Ala 375	Ile	Gln	Ala	Leu	Ser 380	Ile	Ala	Asn	Ser		
Asp 385	Ser	Gln	Asn	Val	Leu 390	Ser	Leu	Phe	Arg								
<211	L> LE	ENGTH	H: 12	201													
<211 <212 <213 <220 <223	 L> LE TY OF FE OT flat fc SE 	ENGTH PE: RGANJ EATUF THER AA ge ormat	H: 12 DNA ISM: RE: INFC ene o tion	201 Arti DRMAT Creat fol: 3	ficia TION: ced h Lowed	al Se Des by in d by	equer scrip n vit in v	nce otion tro h vivo	ı of neter repa	Arti rodup air	ficia	al Se	equer	nce:S	SCS01	mosai	c
<211 <212 <213 <220 <223 <400 atgo	 L> LE 2> TY 3> OF 5> OT flat fc 5 	ENGTH (PE: RGANJ EATUF THER AA ge ormat	H: 12 DNA ISM: RE: INFC ene of tion NCE:	201 Arti DRMAT Creat fol: 3 cacaa	ficia TION: ced h Lowed	al Se Des Dy ir d by attag	equer scrip n vit in v	nce otion tro h vivo	of neter repa	Arti rodup air	ficia plex ttca	al Se	equer	nce:S	CS01	mosaid	60
<211 <212 <213 <220 <223 <400 atgg	1> LE 2> TY 3> OF 3> OF 5> OT fla fc 0> SE gcaac cccaa	ENGTH PE: RGANI EATUF THER aA ge ormat CQUEN GCG f	H: 12 DNA ISM: ESM: E: INFC ene of tion NCE: ttcto	201 Arti DRMAT Creat fol: 3 cacaa	ficia CION: ced h Lowed	al Se Des Dy in d by attaa	equer scrip n vit in v acgca	nce ption tro h vivo a ato	i of neter repa gtctg	Arti rodup air gctc	ficia plex ttca gcat	al Se agaco	equer	ace:S gcgtt	CS01	mosaid	c 60 20
<211 <212 <213 <220 <223 <400 atgo tctt	<pre>L> LE L> TY L> TY L> OF COMPANY C</pre>	ENGTH PE: CGANJ EATUF THER AA ge ormat EQUEN gcg 1 aca 1 acg 0	H: 12 DNA ISM: INFC ene of tion NCE: ttoto	201 Arti DRMAT Creat fol: 3 cacaa agaca	ficia TION: ted h Lowed aa ca ac co	al Se Des by in d by attac cagao	equer scrip in vit acgca gccgt	nce ption tro h vivo a ato t ato	of repa gtcto stcca	Arti rodup air gctc agcg atgc	ficia plex ttca gcat	al Se agaco cgcgo	gct o cgt f	gcgti tggti	CS01	mosaid = = 1 = 1	c 60 20 80
<211 <212 <213 <220 <223 <400 atgo tctt tcco	<pre>L> LE 2> TY 3> OF 3> OF 3> OT fla fla fla fla fla fla fla fla fla fla</pre>	ENGTH (PE: RGANJ EATUF THER AA ge ormat EQUEN gcg 1 aca 1 acg 6 acc 2 acc 4	H: 12 DNA ISM: ISM: INFC Phe of tion NCE: ttcto tggaa tggaa	201 Arti DRMAT Creat fol: 3 cacaa agaca tatt	ficia CION: ced b Lowed aa ca ac co cg gt	al Se Des Dy in d by attac cagao cctat	equer scrip in vit acgca gccgt tcgcg	a ato a ato a ato a ato a ato a aco	of repa gtcto ctcca cacca	Arti rodup air gete ageg atge	ficia plex ttca gcat gcto tcga	al Se agace cgcgo cggao ataco	get g egt f caa f	gcgti tggti tgcci ttcgç	ccs01	mosai - - 1. - 1 - 2	c 60 20 80 40
<pre><211 <212 <213 <220 <223 <400 atgg tctt tccg atgg atgg</pre>	1> LE 2> TY 3> OF 3> OF fla fla fc 0> SE gcaag gcaag gacaa gacaa gacaa	ENGTH (PE: CGANI) EATUF CHER AA ge Dormat CQUEN GQUEN acca t accg d tttc a	H: 12 DNA ISM: RE: INFC PRE O tion NCE: ttctc tggaa ttctc aggat	201 Arti DRMAT Creat fol: 3 cacaa agaca ttatt	ficia FION: ced H Lowed aa ca aa ca cg gt at to gt to	ll Se py ir d by attaa cagag cctat ggcct	equer scrip n vit in v acgca tcgca tcgga	nce btion cro h vivo a ato g aco g aco g ato	n of neter repa gtcto cacca cacca cacca	Arti rodup air gctc agcg atgc aagg aaca	ficia plex ttca gcat gcto tcga aact	agaco cgcgo cggga atacc cggto	ggt (cgt 1 cgt 1 cgc 1 cgc 1	gcgtt tggtt tggct ttgcc ttcgg	CS01	mosaid = 1 = 1 = 2 a 3	c 60 20 80 40 00
<211 <212 <213 <220 <223 <400 atgg tctt tccc atgg gacs	<pre>> LE > TY >> TF >> OT fla fc >> SF fla fc >> C fla fc cccaaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa gccaa</pre>	ENGTH (PE: (CANI) CATUF (PER AA ge ormat CQUEN CQU	<pre>H: 12 DNA ISM: ISM: ISM: INFCC pene of tion NCE: ttctc tggaa ttatc acaaaa</pre>	201 Arti DRMAT Creat fol: 3 cacaa agaca ctatt cgcaa cgcaa cgatg	ficia FION: ced b lowed aa ca ac co cg gi at to gt to gt to	ll Se Des Dy in i by attaa cagag cctat ggcct ggcct atcca	equer scrip i vit in v acgca gccgt tcgcq tcgq agcaq	nce ption privo a ato g acc g acc g ato g ato a gaa	i of neter repa gtctg ttcca cacca cacca caca aatca	Arti codup air gctc agcg atgc aagg aaca aactc	ficia plex ttca gcat tcga act act	agaco cgcgo cggaa ataco cggto cggto	got (cgt caa cac cac	gcgtt tggtt tggct ttcgg tgcca tgcca	CS01 CCS01 CCGGC CCGGC CCGGG CCGGG CCGGG CCGGG CCGGG CCGGG CCGGG CCS01	mosaid = 1 = 2 a 3 g 3	c 60 20 80 40 00 60
<pre><211 <211 <212 <212 <212 <2212 <220 <2222 <400 atgg tctt tccq atgg gacq agca</pre>	<pre>> LE 2> TY >> FF >> FF 3> OF fla fc 0> SF gcaaq gccaaq gccaaq gacaq gacaq gacq gac</pre>	ENGTH (PE: (GANI) EATUF HER AA ge COUEN (QUEN CQUE	I: 12 DNA (SM: ESE: INFC tion NCE: ttoto tggaa ttoto tggaa ttato acgos	201 Arti DRMAT Creat fol: 3 cacaa agaca cgaa cgaa cgaa cgaa cgaa	ficia CION: ced P lowed aa ca ac co cg gi at to gt to gt to	<pre>il Se i Des y in y in i by attaa cagaa cctat ggcct gtaaa tccc </pre>	equer scrip n vit in v acgca gccgd tcgcg tcggd agcag aggag acggd	nce ption croł rivo a ato g ato g ato a gaa a gaa z gaa	n of neter repa gtcto cacca cgcca caaga aatca	Arti rodup air gctc agcg atgc aagg aaca actc	ficia plex ttca gcat gctc tcga aact agct tcaa	al Se agaco cgga ataco cggto ccaas agggo	ggt (cgt (cgt (cgc (cgc (gga (cga (gcgti tggti tggci ttcgg tgcca ccago ccago	ccgat: ccgct: ccgct: ccgct: ccgct: ccgct: ccccc	mosai = 1 = 1 = 2 a 3 g 3 g 4	c 60 20 80 40 00 60 20
<pre><211 <211 <211 <211 <211 <2213 <222 <400 atgg tctt tccc atgg gacg agca acga</pre>	<pre>l> LE 2> TY 2> TY 3> OF 1> FF 3> OT fla fc 0)> SE gccaag gccgd gccgd gcggd acaag gcgdaag gcgdaag</pre>	ENGTH (PE: C (GANJ) CANJ C	I: 12 DNA LSM: LSM: LSM: LINFC ene of tion NCE: ttoto tggaa accept ttato accept aggat ttato accept accept accept accept accept accept accept accept	201 Arti PRMAT Screat fol: 3 cacaa agaca cgaa cgaa cgaa cgaa ggcca ggcca	ficia TION: Ted H Lower aa ca ac co cg gt to to to to to to to to to to to to to	ll Se Des Dy ir l by attaa cagag cctat ggcct atcca atcca	equer scrip i vit in v acgca tcgca tcgca tcgga aagaa ccgga ccgga	tion tion tro h vivo a ato g acc g ato a gaa a gaa c g th	i of ieter repa stoca cac cacac cac cac cac cac cac cac cac cacca cac c c cac c ca c c c c	Arti roduj air gctc agcg atgc aacg aaca actc tggc gaag	ficia plex ttca gcat tcga aact tcga gcgg	agaco cgcgga cggga cggga ccgga ccggt cccaa agggg ggggg gga ggggg gga ggggg	got (cgt 1 caa 1 cac 1 gga (cga 1 cga 1 cga 1	gcgtt tggtt tggct ttcgg tgcca ccago tcttt	ccgat: ccggc: ccgcg accgag cccac cccac cccac	mosaid = 1. = 1 = 2 a 3 y 3 y 4 y 4	60 20 40 60 20 80
<pre><211 <212 <213 <213 <220 <220 <220 <220 <220 <200 atgg tctt tccq atgg gacq agca acga acga acga acga acga ac</pre>	<pre>l> LE 2> TY 2> TY 3> OF file for file for file for for file f</pre>	ENGTH (PE: CARADIA CAANUA CAAN	I: 12 DNA ISM: ISM: ISM: INFC Phene (the construction) NCE: ttete tgggaa ttete agggaa ttete accord acco	201 Arti DRMAT Creat fol: 3 Cacaa agaca cgat cgaa cgaa cgaa cgaa cgaa	ficia TION: Ted b Lower aa ca ac co gt to to gt to to to to to to to to to t	<pre>ll Se py in py in l by attaa cagaa cctat ggcct gtaaa tctctc ggctc ggcttc</pre>	equer scrip n vit in v acgca tcgcq tcgcq tcgcq aagaa aagaa ccgqt ccttc	tion tro l yivo a ato a ato a ato a control a control	i of heter repo gtoto caaga caaga aatca aaact cogto cotgo	Arti codup air gctc agcg atgc aagg aaca actc tggc gaag	ficia plex ttca gcat gcto tcga aact tcaa gcgg atao	agaca cgcgg cggga ataca ccggta ccaag agggg gtaca cccag	got (cgt) cgt) cgc) gga (cga) cga (cga)	nce:S gcgtt tggtt tgcct tcgc ccago tcttt atcgg aacgg	ccgat: ccggc: ccgcc; tcgccac tcgccac tcgccac	mosaid = 1 = 2 a 3 g 4 g 4 g 4 g 4 g 4	60 20 40 00 60 20 80 40
<pre><211 <211 <211 <212 <220 <222 <400 atgg tctt tccq tccq acga acga acga acga acga acga acga</pre>	<pre>l> LE 2> TY 3> OF 2> TY 3> OF file fc fc</pre>	ENGTH (PE: (PE: CACANI CATUF CHER AA ge Drmat CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C C C C C C C C C C C C C C	H: 12 DNA ISM: ISM: INFC Phene of tion NCE: ttoto tggaa cogot aaggat ttato acaaag aaggat ttato	201 Arti DRMAT Creat fol: 3 cacaa agaca cacaa agaca cgaca ggcca aggcca aggcca cctga ggcca	ficia FION: Ted b Lowed aaa ca aac ca c	al se py in py in d by attac cagao cctat ggcct atccc ggctc ggctc ggctc	equer scrip h vit in v acgcc gccgd ccggd agcag aggag acggd cctto ccaac	a ato ro h yivo a ato g aco g ato a gaa a gaa a gaa c g to g g to g g to g g to	ytoto repa stoca cacaa aaaca caggo cacago cacago cocggo coccgo cocgo cocgo c	Arti codup air gctc agcg atgc aacgg aaca actc cggc gaag gtgg cagg	ficia plex ttca gcat gcto tcga acct tcaa gcgg atao caaq	agaco cgcgo cggaa ataco ccaag ggto cccaag gggto	got (cgt cgt gga (cgt) cgt (cgt)	gcgtt tggtt tggtt tgcct tccgg tcttt atcgg aacgg gctgd	ccgat: ccggc: ccgcg ccgcg cccccc cccccc cccccc cccccc	mosaid = 1 = 2 a 3 g 4 g 4 g 4 c 5 c 6	 60 20 80 40 60 20 80 40 00 40 00
<pre><211 <212 <213 <220 <220 <220 <220 <220 <220 <220 <22</pre>	<pre>l> LE 2> TY 2> TY 3> OF fla fla fla fla fla fla fla fla fla fla</pre>	ENGTH (PE: Carrier Constraints) (PE: Carrier	H: 12 DNA ISM: ISM: ISM: INFC Pane of the transmission	201 Arti DRMAT Creat fol: 3 cacaa agaca cacaa agaca cgat ggct agtgg cctga cctga cctga	ficia TION: TI	al Se py in d by attac cagac cctat ggccd ttctc ggctc ggctc gcttc caggo	equer scrip n vit in v acgca geogra coggi agcag aagaa coggi cotto ccaag acaaa ccaag	a ato privo a ato a ato a ato a gao a gao	ytets stees gtets cacea caage aaact aaact cegs cetgg	Arti roduş air gctc agcg atgc aagg aaca actc tggc gaag gtgg gcct	ficia plex ttca gcat agct tcaa gcgg ataa caag ataa	al Se agaco cgcgg cggga ataco ccggto ccaa agggg gcgco cccgg gcgto cgcto	equer gct (cgt cac gga (cgc (cgc) (cgc (gcgtt tggtt tggtt ttcg ccago tcttt atcgg aacgg gctga gtcco	ccgat: ccggc: ccgcg; ccgcg; cccac; yccac; yccac; yccac; yccac; yccac; yccac; yccac; yccac; yccac; yccac; cccac; yccac; cccac; cccac; cc; ycc; y	mosaid = 1. = 1 = 2 a 3 g 4 g 4 g 4 s 5 = 6 = 6	 60 20 80 40 60 20 80 40 60 60
<pre><2111 <2112 <211 <211 <211 <211 <211 <2</pre>	<pre>l> LE 2> TY 3> OF fla fc j> FF fla fc cccaa ggctgt ggctgt ggcgt accaa accaa accaa gccgg gccgg gccgg</pre>	ENGTH (PE: (PE: CGANI) EATUF FHER aA ge CQUEN GQUEN C CQUEN CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C CQUEN	I: 12 DNA ISM: ISM: INFC Phene of tion NCE: INFC INFC Phene of tion NCE: INFC INFC INFC INFC INFC INFC INFC INFC	201 Arti DRMAT Creat Creat fol: 3 Cacaa agaca ctat cgcaa cgcaa ggct agtg cctga ggcca ggcca cctga ggcca cctga ggcca cctga	ficia FION: Ted b Lowed Lowed Comparison Comparison FION: Comparison Comparison Comparison FION: Comparison Compa	al se py in i by attaa cagao cctat ggcct ggctc ggctc ggctc ggctc ggctc ggctc ggcta	equer scrip in vit in v acgcz gccgi tcgci tccc tcc tcc tcc tcc tcc tcc tcc tcc	a ato root ion root ion root ion a ato root ion ato root ion ato root ion ato root ion ato root ion ato root ion ato root ion ato root ion ato root ion ato ato ato ato ato ato ato ato	ytoto ytoto cacca caca aaaca cogto cogto cogto cogto	Arti codup air getc ageg atgc aagg aaca actc gga ggaag gtgg cagg gcct	ficia plex ttca gcat gcto tcga act dcga gcgg atao caag atao gcgg	al Se agaco cgcgo cggaa ataco cggto ccaas agggo cccaas agggo ccccgo gcgto cgcto gcgto	equer gct (cgt cac gga (cgt) cac (cgt) cac (cac) cac (cac) cac (cac)	nce:S gcgtt tggtt tggcd tcgc ccago tcttt atcgg gctga gctga gctga ccaco	ccgat: ccggc: ccgcg: tgcggg; tgccgag tgccaca ggcaca ggcaca ccggtd tcaca ggcac g ggcaca ggca ggcaca ggcaca ggca ggca ggca g ggca g ggca ggca gg	mosaid = 1 = 1 = 2 a 3 g 4 g 4 z 5 = 6 z 6 z 6 z 7	60 20 80 40 60 20 80 40 00 60 20
<pre><211 <211 <211 <212 <213 <220 <223 <400 atgg tctt tccq tcct tccq atgg gacg acca acga acca acga gacg gacg</pre>	<pre>> > Le 2> TY 2> TY 3> OF 6 0)> FF 6 0)> SF 6 0)> SF 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	ENGTH (PE: CARADIA CATURE CHER AA ge Dormation CQUEN COUN CQUEN CQUEN CQUEN CQUEN CQUEN CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C C C CQUEN C C C C C C C C C	I: 12 DNA ISM: ISM: ISM: INFC Paper of the transmission NCE: INFC transmission transmission acquire acquire acquire acquire acquire acquire acquire acquire acquire acquire acquire transmission tran	201 Arti DRMAN Creat fol: 3 cacaa agaca ccaa agaca cgaa cgaa ccaa ggccaa ccaa ggcca ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ggccaa ccaa ggccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ccaa ggccaa ggccaa ccaa ggccaa ggccaa ccaa ggccaa g g ggccaa ggccaa g g ggccaa ggccaa ggccaa g	ficia TION: TI	al Se py in py in i by attaa cagaq gcctat ggcct ggcct ggct caggc ggct ggcaa ggcaa ggctga	equer scrip in vit in v acgce gccgd tcgcg tcggd agcag acaaga cccgd cccaa accaa cccaa accaa cccaa accaa	a ato ro h vivo a ato c ato g aco c g ato a gas c g ato c g ato	ytoto stoca gaca gaca gaata aaact coggo co	Arti roduş air gete ageg atge aagg aaca geet cagg geet cagg acac	ficia plex ttcc gcat act tcga atac caaç attc gcgg atac caaç act	al Se agaco cgogo cggaa ataco ccggto gggto gggto cccgcto gggto cccgcto	equer gct (cgt 1 cgc 1 cgc 1 cgc 1 cgc 1 cgc 1 cgc 1 cgc 2 cgc 2 cgc 2 cgc 2 cgc 3 cgc 4 cgc 4	gegtt tggtt tggtt ttegg ttegg teccagg tectt ategg aaegg getga getga getga getga	ccgat: ccggc: ccgcc; dcgggg cccac cccac dcggac dcccac dcgcac dccac dccac	mosaid = 1 = 2 3 3 4 5 5 6 5 6 5 6 7 7 7	60 20 80 40 60 20 80 40 00 60 20 80
<pre><211 <2112 <2113 <2113 <220 <223 <400 atgg tctt tcccq atgg gaccq acga acga acga acga gaccg gaccq gacq ga</pre>	<pre>l> LE 2> TY 3> OF 3> OF fla fla fla fla fla fla fla fla fla fla</pre>	ENGTH (PE: CECANI) EATUF FHER AA ge COUEN GOUEN CQUEN C CQUEN CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C C CQUEN C C C C C	I: 12 DNA ISM: ISM: INFC Pape of tion NCE: INFC transformer transformer aggant transformer accord accord accord accord transformer transfo	201 Arti DRMAT Creat fol: 3 Cacaa agaca cgaca ggcca ggcca ggcca ggcca ggcca ggcca ggcca ggcca ggcca cctga ggcca cctga cctga cctga ggcca ggcca cctga ccttga cctga cctga cctga cctga cctga cctga cctga cctga cctga c	ficia FION: ced b Lowed Lowed Company fice of the fice of the fice of the fice of the fice	al se Description py in attack cagao cagao gccta gc	equer scrip n vit in v acgca gccgf tcgcg tcggf agcag cctto ccaag accaag accaag accaag accaag accaag cctto cctto ccaag agcag gacag tcgf tcgf tcgf tcgf tcgf tcgf tcgf tcg	a ato ro l ro l rivo a ato a ato g aco a gao a gao	a of neter repa gtoto ctoca caccaca cacca cacca cacca cacca cacca cacca cacca cacca ca	Arti roduş air gotc agog atgo aagg aaca gggg goot cagg goot cagg gacac	ficia plex ttca gcat agct tcaa act tcaa gcgg ataa caag ataa caag	al Se agaco cgcgo cggaa ataco ccggto ccaag ggto ccccgo gcgto ccccgo gcgto ccccgo gtaac ccccgo gtaac	equer gct (cgt caa cga cga cga (cga (cga (cag (ca	gegtt tggtt tggtt tgcct tcgc tcttt atcgg gctga gctga gctga gctga gctga gctga gctga gctga gctga gctga gctga tcttt	ccgat: ccggc: ccgct: ccgccac cccaccac cccaccacac ggcacca cccaccacacaca	mosaid = 1 = 1 = 2 a 3 g 4 g 4 g 4 g 4 s 5 e 6 g 7 e 8	c 60 20 40 60 20 40 60 20 80 40 80 40
<pre><211 <211 <211 <211 <220 <223 <400 atgg tctt tccc tccc atgg gacg acca acca</pre>	<pre>>> >> TY >> >> TY >> >> >> FF fla fc >> = Ff fla fc >> = Ff fla fc >> = Ff fla fc => = Ff fla fc => = Ff fla fc => = Ff fla fc => = Ff fla fc => = Ff fla fc => = Ff fla fc fc fc fc fc fc fc fc fc fc fc fc fc</pre>	ENGTH (PE: (PE: CACANI CATUF CHER AA ge Drmat CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C CQUEN C C C C C C C C C C C C C C	I: 12 DNA ISM: ISM: ISM: INFC Paper of the treat accept	201 Arti DRMAT Creat fol: 3 cacaa agaca cgaca ggct4 agtgg cctga ggct4 agtgg cctga ggct4 agtgg cctga ggct4 ccgaca ccgaca ggct4 ccgaca ccgaca ccgaca	ficia FION: Ted b Lowed aa ca ca ca ca ca ca ca gt ta ca ca ca ca ca ca ca ca ca ca ca ca ca ca ca ca ca ca ca	al se py in py in d by attac cagao cctat ggccd atccc ggctc ggctc ggctc ggctc ggctc ggcta ggcg ggcg	equer scrip in vit in v ceges ceggt ageag ageag ageag accad cecto ceaag accad accad cecto ceaag accad cecto ceaag	a ato roo h vivo a ato a ato ato a ato ato ato ato ato ato ato ato	ytoto stoca good good good good good good good goo	Arti codup air gctc agcg atgc aagg aaca ggg ggg ggg acac gcagg acac gctg cacc	ficia plex ttca gcat act tcga act tcaa gcgg atac caag atac caag cag cag	al Se agaco cgcgg cgga ataco cgga cgga agggg gcgt cccgg gcgt cccgg gcgt cccgg gcgt cccgg gcgt cccgg gcgt cccgg gcgt cccgg gcg cc ccg cg cg cg cg cg cg cg c	equer gct (cgt cgc gga (cgc cgc (cgc (cgc) (cgc (gegti tggti tggti tggei tceag tceag tctti ateg getg getg getg caagi caagi caagi caagi	ccgat: ccggc: ccgcg; ccgcgg cccaca cccaca ytcaaa ygcaca cccaca ytcaaa cccaca ytcaaa cccaca cc	mosaid = 1 = 1 = 2 a 3 g 4 = 3 g 4 g 4 z 5 = 6 = 6 = 6 = 7 = 7 = 7 = 8 a 9	 60 20 80 40 60 20 40 60 20 80 40 60 20 80 40 60 20 80 40 00 60 20 80 40 00

-continued

caccagcctg	acgagcgctg	gcgctgaact	cggctctatc	aaacagcgca	tcgatctgca	1020
ggttgatttt	gcttccaagc	tgggcgacgc	tctcgcaaaa	ggtattggcc	gtctcgttga	1080
tgctgacatg	aatgaagagt	ccactaagct	taaggctctt	cagacgcagc	agcagctggc	1140
tatccagtcg	ctctccatcg	caaacagcga	ctcgcagaac	attctgtcgc	tgttccgtta	1200
a						1201
<210> SEQ <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI flaA form	ID NO 4 H: 1229 : DNA UISM: Artific JRE: R INFORMATIC gene created ation follow	ial Sequence N: Descript d by in vit wed by in vi	e tion of Art: to heteroduy ivo repair	ificial Seque plex	ence:SCS02 m	osaic
<400> SEQUI	ENCE: 4					
atgacgagca	ttctcaccaa	caactccgca	atggccgcgc	tttccggagt	gcgctcgatc	60
tcttccagca	tggaagacac	gcagagccgc	atctcctccg	gccttcgcgt	cggttcggcc	120
tccgacaacg	ccgcctactg	gtcgattgcg	accaccatgc	gctccgacaa	ccaggccctt	180
tcggccgtcc	aggacgccct	cggcctcggc	gccgccaagg	ttgataccgc	ctattccggt	240
atggaatcgg	cgatcgaagt	cgttaaggaa	atcaagaaca	aactggtcac	tgctcaggaa	300
tcttctgccg	acaaaacgaa	gattcagggc	gaagtcaagc	agcttcagga	gcagttgaag	360
ggcatcgttg	attccgcttc	cttctccggt	gagaactggc	tgcaggcgga	cctcagcggc	420
ggcgccgtca	ccaagagcgt	cgtcggctcg	ttcgtccgtg	acggaagcgg	ttccgtagcc	480
gtcaagaagg	tcgattacgc	tctgaatgct	tccaaggttc	tggtggatac	ccgcgcaacg	540
ggcaccaaga	ccggcattct	cgatactgct	tataccggcc	ttaacgcgaa	cacggtgacg	600
gttgatatca	acaagggcgg	cgtgatcacc	caggcctccg	tccgcgccta	ttccacggac	660
gaaatgctct	ccctcggcgc	aaaggtcgat	ggcgcaaaca	gcaacgttgc	tgttggcggc	720
ggctccgctt	cgtcaaggtc	gacggcagct	gggttaaggg	tagcgtcgac	gctgcggcct	780
ccatcaccgc	atcaaccggc	gccaccggtc	aagaaatcgc	cgccaccacg	acggcagctg	840
gtaccatcac	tgcagacagc	tgggtcgtcg	atgtcggcaa	cgctcctgcc	gccaacgttt	900
cggccggcca	gtcggtcgcg	aacatcaaca	tcgtcggaat	gggctcgacg	gatgtcggca	960
gctacctcac	gggcgtggaa	aaggctctca	ccagcatgac	cagcgctgcc	gcctcgctcg	1020
gctccatctc	ctcgcgcatc	gacctgcaga	gcgaattcgt	caacaagctc	tcggactcga	1080
tcgagtcggg	cgtcggccgt	ctcgtcgacg	cggacatgaa	cgaggagtcg	acccgcctca	1140
aggccctgca	gacccagcag	cagctcgcca	tccaggccct	gtcgatcgcc	aactcggact	1200
cgcagaacgt	cctgtcgctc	ttccgctaa				1229
<210> SEQ : <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI flaA form	ID NO 5 FH: 1228 : DNA VISM: Artific RE: RE: INFORMATIC gene created ation follow	ial Sequenc N: Descript d by in vit: wed by in vi	e tion of Arti to heteroduj ivo repair	ficial Seque plex	ence:ES01 mo	saic
<400> SEQU	ENCE: 5					
atgacgagca	ttctcaccaa	caactccgca	atggccgcgc	tttccggagt	gcgctcgatc	60
tcttccagca	tggaagacac	gcagagccgc	atctcctccg	gccttcgcgt	cggttcggcc	120

-continued

tccgacaacg						
	ccgcctactg	gtcgattgcg	accaccatgc	gctccgacaa	ccaggccctt	180
tcggccgtcc	aggacgccct	cggcctcggc	gccgccaagg	ttgataccgc	ctattccggt	240
atggaatcgg	cgatcgaagt	cgttaaggaa	atcaaggcca	agctcgtagc	tgccaccgaa	300
gacggcgtcg	acaaggccaa	gatccaagaa	gaaatcactc	agctcaagga	ccagctgacg	360
agcatcgccg	acgcggcttc	cttctccggt	gagaactggc	tgcaggcgga	cctcagcggc	420
ggcgccgtca	ccaagagcgt	cgtcggctcg	ttcgtccgtg	acggaagcgg	ttccgtagcc	480
gtcaagacca	tcgattacgc	tctgaatgct	tccaaggttc	tggtggatac	ccgcgacacg	540
gtcggcgata	ccggcattct	ggacaaggtc	tacaacgtct	cgcaggcaag	cgtcacgctg	600
acggtcaaca	ccaacggcgt	cgaatcgcag	catacggttg	ctgcctattc	gctggagtcc	660
ctcaccgaag	ccggtgcgga	gttccagggc	aactatgctc	ttcagggcgg	taacagctac	720
gtcaaggtcg	acggcagctg	ggttaagggt	agcgtcgacg	ctgcggcctc	catcaccgca	780
tcaacaccag	tcgctggcaa	gtttgccgcc	gcttacaccg	ccgctgaagc	tggtactgca	840
gctgctgccg	gtgacgccat	catcgtcgac	gaaaccaaca	gcggcgccgg	tgcaggtaaa	900
cctcacccag	tcggtcctga	ccatggatgt	cagctcgatg	agctcgacgg	atgtcggcag	960
ctacctcacg	ggcgtggaaa	aggctctcac	cagcctgacg	agcgctggcg	ctgaactcgg	1020
ctccatctcc	tcgcgcatcg	acctgcagag	cgaattcgtc	aacaagctct	cggactcgat	1080
cgagtcgggc	gtcggccgtc	tcgtcgacgc	ggacatgaac	gaggagtcga	cccgcctcaa	1140
ggccctgcag	acccagcagc	agctcgccat	ccaggccctg	tcgatcgcca	actcggactc	1200
gcagaacgtc	ctgtcgctct	tccgctaa				1228
<pre><210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF</pre>	ED NO 6 EH: 1209 E DNA NISM: Artific JRE: R INFORMATIC	ial Sequenc	e	finini and		
forma	gene created ation follow	d by in vit wed by in v	ion of Arti o heterodug ivo repair	plex	nce:ES02 mo	saic
forma	gene created ation follow ENCE: 6	N: Descript d by in vitu ved by in vi	ion of Arti co heterodup ivo repair	nciai Seque olex	ence:ES02 mos	saic
forma 400> SEQUE atgacgagca	gene created ation follow ENCE: 6 ttctcaccaa	d by in vit wed by in v caactccgca	ion of Arti co heterodup ivo repair atggccgcgc	ncial Seque plex tttccggagt	nce:ES02 mos	saic 60
<pre>data (forma </pre> <pre><400> SEQUE atgacgagca tcttccagca</pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac	d by in vit wed by in v: caactccgca gcagagccgc	ion of Arti co heterodu <u>p</u> ivo repair atggccgcgc atctcctccg	ncial Seque blex tttccggagt gccttcgcgt	nce:ES02 mon gcgctcgatc cggttcggcc	saic 60 120
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg	d by in vit wed by in vit caactccgca gcagagccgc gtcgattgcg	ion of Arti co heterodug ivo repair atggccgcgc atctcctccg accaccatgc	tttccggagt gccttcgcgt gctccgacaa	nce:ES02 mo gcgctcgatc cggttcggcc ccaggccctt	60 60 120 180
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct	d by in viti ved by in viti caactccgca gcagagccgc gtcgattgcg cggcctcggc	ion of Arti co heterodup ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg	tttccggagt gccttcgcgt gctccgacaa ttgataccgc	prce:ES02 mor gcgctcgatc cggttcggcc ccaggccctt ctattccggt	60 60 120 180 240
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt	A: Descript I by in vit ved by in v: caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa	ion of Arti co heterodup ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc	gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa	60 120 180 240 300
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt accaggccaa	A: Descript I by in viti ved by in v: caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa	ion of Arti co heterodu ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc agctcaagga	gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa ccagctgacg	60 120 180 240 300 360
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt acaaggccaa acgcggcttc	A: Descript I by in vit ved by in v: caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa cttctccggt	ion of Arti co heterodup ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc gagaactggc	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc agctcaagga tgcaggcgga	mce:ES02 mor gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa ccagctgacg cctcagcggc	60 120 180 240 300 360 420
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt acaaggccaa acgcggcttc ccaagagcgt	A: Descript d by in vity red by in v: caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa cttctccggt cgtcggctcg	ion of Arti co heterodup ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc gagaactggc ttcgtccgtg	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc agctcaagga tgcaggcgga acggaagcgg	mce:ES02 mos gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa ccagctgacg cctcagcggc ttccgtagcc	60 120 180 240 300 360 420 480
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt accaggccaa acgcggcttc ccaagagcgt tcgattacgc	A: Descript d by in vit ved by in v: caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa cttctccggt cgtcggctcg tctgaatgct	ion of Arti co heteroduy ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc gagaactggc ttcgtccgtg tccaaggttc	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc agctcaagga tgcaggcgga acggaagcgg tggtggatac	mce:ES02 mor gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa ccagctgacg cctcagcggc ttccgtagcc ccgcgcaacg	60 120 180 240 300 360 420 480 540
<pre>// forma // forma // atgacgagca tcttccagca tccgacaacg tcggccgtcc atggaatcgcg gacggcgtcg ggcgccgtca gtcaagacca ggcaccaaga</pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt acaaggccaa acgcggcttc ccaagagcgt tcgattacgc ccggcattct	A: Descript l by in vity red by in v: caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa cttctccggt cgtcggctcg tctgaatgct cgatactgct	ion of Arti co heterodup ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc gagaactggc ttcgtccgtg tccaaggttc tataccggcc	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcaagga tgcaggcgga acggaagcgg tggtggatac ttaacgcgaa	mce:ES02 mor gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa ccagctgacg ctcagcggc ttccgtagcc ccgcgcaacg cacggtgacg	60 120 180 240 300 360 420 480 540 600
<pre></pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt accagggcttc ccaagagcgt tcgattacgc ccggcattct accaggcgggg	A: Descript d by in vit ved by in vit caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa cttctccggt cgtcggctcg tctgaatgct cgatactgct cgtgatcacc	ion of Arti co heteroduy ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc gagaactggc ttcgtccgtg tccaaggttc tataccggcc caggcctccg	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc agctcaagga tgcaggcgga acggaagcgg tggtggatac ttaacgcgaa	mce:ES02 mor gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa ccagctgacg ttccgtagcc ccgcgcaacg cacggtgacg ttccacggac	60 120 240 300 420 420 480 540 600 660
<pre>// forma // forma // forma // forma // forma // atgacgagca // cagacgagca// gacggcgtcg // agcatcgccg ggcgccgtca ggcgccgtca ggcaccaaga gtcaagacca ggtgatatca gaaatgctct</pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt acaaggccaa acgeggcttc ccaagagcgt tcgattacgc ccggcattct acaagggcgg ccctcaccga	A: Descript l by in vit ved by in v: caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa cttctccggt cgtcggctcg tctgaatgct cgatactgct cgtgatcacc agccggtgcg	ion of Arti co heterodup ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc gagaactggc ttcgtccgtg tccaaggttc tataccggcc caggcctccg gagttccagg	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc agctcaagga tgcaggcgga acggaagcgg tggtggatac ttaacgcgaa tccgcgccta gcaactatgc	mce:ES02 mos gcgctcgatc cggttcggcc ccaggccctt ctattccggt tgccaccgaa ccagctgacg ctcagcggc ttccgtagcc ccgcgcaacg cacggtgacg ttccacggac ttccacggac	60 120 180 240 300 360 420 480 540 600 600 720
<pre>claration of the second s</pre>	gene created ation follow ENCE: 6 ttctcaccaa tggaagacac ccgcctactg aggacgccct cgatcgaagt accagggcttc ccaagagcgt tcgattacgc ccggcattct accaagggcgg ccctcaccga acgtcaaggt	A: Descript I by in vit caactccgca gcagagccgc gtcgattgcg cggcctcggc cgttaaggaa gatccaagaa cttctccggt cgtcggctcg tctgaatgct cgatactgct cgtgatcacc agccggtgcg cgaaaacgtc	ion of Arti co heteroduy ivo repair atggccgcgc atctcctccg accaccatgc gccgccaagg atcaaggcca gaaatcactc gagaactggc ttcgtccgtg tccaaggttc tataccggcc caggcctccg gagttccagg	tttccggagt gccttcgcgt gctccgacaa ttgataccgc agctcgtagc agctcaagga tgcaggcgga acggaagcgg tggtggatac ttaacgcgaa tccgcgccta gcaactatgc ctgagaccgc	mce:ES02 mor gcgctcgatc cggttcggcc ccaggccctt tgccaccgaa ccagctgacg ttccgtagcc cccgcgcaacg cacggtgacg ttccacggac ttccacggac ttccacggac	60 120 240 240 300 420 420 480 540 600 660 720 780

-continued

tgggtcgtcg	atgtcggcaa	cgctcctgcc	gccaacgttt	cggccggcca	gtcggtcgcg	900	
aacatcaaca	tcgtcggaat	gggtgcagct	gcgctcgatg	ccctgatcag	cggtgtcgac	960	
gccgctttga	cagacatgac	cagcgctgcc	gcctcgctcg	gctccatctc	ctcgcgcatc	1020	
gacctgcaga	gcgaattcgt	caacaagctc	tcggactcga	tcgagtcggg	cgtcggccgt	1080	
ctcgtcgacg	cggacatgaa	cgaggagtcg	acccgcctca	aggccctgca	gacccagcag	1140	
cagctcgcca	tccaggccct	gtcgatcgcc	aactcggact	cgcagaacgt	cctgtcgctc	1200	
ttccgctaa						1209	
<pre><210> SEQ 1 <211> LENG1 <212> TYPE: <213> ORGAN <220> FEAT0 <220> FEAT0 utaho mutan formm <221> NAME/ <222> LOCAT0</pre>	D NO 7 CH: 4039 DNA IISM: Artifin JRE: A INFORMATIN Section follo (KEY: CDS FION: (1196	cial Sequend ON: Descript ocandin B (: ated by in v wed by in v.)(3559)	ce cion of Arti ECB) deacyla vitro hetero ivo repair	ificial Seque ase gene oduplex	ence:Actinop	lanes	
<400> SEQUE	INCE: 7						
ctgcagcgtg	cccagctgtt	cgtggtggtg	atcgcggccg	cgctggccgc	cgtcgcggtc	60	
gccgccgccg	ggccgatcga	gttcgtcgcc	ttcgtcgtgc	cgcagatcgc	cctgcggctc	120	
tgcggcggca	gccggccgcc	cctgctcgcc	tcggcgatgc	tcggcgcgct	gctggtggtc	180	
ggcgccgacc	tggtcgctca	gatcgtggtg	gcgccgaagg	agctgccggt	cggcctgctc	240	
accgcgatga	tcggcacccc	gtacctgctc	tggctcctgc	ttcggcgatc	aagaaaggtg	300	
agcggatgaa	cgcccgcctg	cgtggcgagg	gcctgcacct	cgcgtacggg	gacctgaccg	360	
tgatcgacgg	cctcgacgtc	gacgtgcacg	acgggctggt	caccaccatc	atcgggccca	420	
acgggtgcgg	caagtcgacg	ctgctcaagg	cgctcggccg	gctgctgcgc	ccgaccggcg	480	
ggcaggtgct	gctggacggc	cgccgcatcg	accggacccc	cacccgtgac	gtggcccggg	540	
tgctcggcgt	gctgccgcag	tcgcccaccg	cgcccgaagg	gctcaccgtc	gccgacctgg	600	
tgatgcgcgg	ccggcacccg	caccagacct	ggttccggca	gtggtcgcgc	gacgacgagg	660	
accaggtcgc	cgacgcgctg	cgctggaccg	acatgctggc	gtacgcggac	cgcccggtgg	720	
acgccctctc	cggcggtcag	cgccagcgcg	cctggatcag	catggcgctg	gcccagggca	780	
ccgacctgct	gctgctggac	gagccgacca	ccttcctcga	cctggcccac	cagatcgacg	840	
tgctggacct	ggtccgccgg	ctgcacgccg	agatgggccg	gaccgtggtg	atggtgctgc	900	
acgacctgag	cctggccgcc	cggtacgccg	accggctgat	cgcgatgaag	gacggccgga	960	
tcgtggcgag	cggggcgccg	gacgaggtgc	tcaccccggc	gctgctggag	tcggtcttcg	1020	
ggctgcgcgc	gatggtggtg	cccgacccgg	cgaccggcac	cccgctggtg	atccccctgc	1080	
cgcgccccgc	cacctcggtg	cgggcctgaa	atcgatgagc	gtggttgctt	catcggcctg	1140	
ccgagcgatg	agagtatgtg	ggcggtagag	cgagtctcga	gggggagatg	ccgcc gtg Val 1	1198	
acg tcc tco Thr Ser Sei	j tac atg c c Tyr Met A 5	gc ctg aaa rg Leu Lys J	gca gca gcg Ala Ala Ala 10	atc gcc tto Ile Ala Phe 15	c ggt gtg e Gly Val 5	1246	
atc gtg gcg Ile Val Ala 20	j acc gca g a Thr Ala A)	cc gtg ccg la Val Pro a 25	tca ccc gct Ser Pro Ala	tcc ggc ago Ser Gly Aro 30	g gaa cat g Glu His	1294	

-continued

gac Asp	ggc Gl y 35	ggc Gl y	tat Tyr	gcg Ala	gcc Ala	ctg Leu 40	atc Ile	cgc Arg	cgg Arg	gcc Ala	tcg Ser 45	tac Tyr	ggc Gl y	gtc Val	ccg Pro	1342		
cac His 50	atc Ile	acc Thr	gcc Ala	gac Asp	gac Asp 55	ttc Phe	djà dàd	agc Ser	ctc Leu	ggt Gly 60	ttc Phe	ggc Gl y	gtc Val	dda dda	tac Tyr 65	1390		
gtg Val	cag Gln	gcc Ala	gag Glu	gac Asp 70	aac Asn	atc Ile	tgc Cys	gtc Val	atc Ile 75	gcc Ala	gag Glu	agc Ser	gta Val	gtg Val 80	acg Thr	1438		
gcc Ala	aac Asn	ggt Gly	gag Glu 85	cgg Arg	tcg Ser	cgg Arg	tgg Trp	ttc Phe 90	ggt Gl y	gcg Ala	acc Thr	GJÀ ddd	ccg Pro 95	gac Asp	gac Asp	1486		
gcc Ala	gat Asp	gtg Val 100	cgc Arg	agc Ser	gac Asp	ctc Leu	ttc Phe 105	cac His	cgc Arg	aag Lys	gcg Ala	atc Ile 110	gac Asp	gac Asp	cgc Arg	1534		
gtc Val	gcc Ala 115	gag Glu	cgg Arg	ctc Leu	ctc Leu	gaa Glu 120	ggg Gl y	ccc Pro	cgc Arg	gac Asp	ggc Gl y 125	gtg Val	cgg Arg	gcg Ala	ccg Pro	1582		
tcg Ser 130	gac Asp	gac Asp	gtc Val	cgg Arg	gac Asp 135	cag Gln	atg Met	cgc Arg	ggc Gl y	ttc Phe 140	gtc Val	gcc Ala	ggc Gl y	tac Tyr	aac Asn 145	1630		
cac His	ttc Phe	cta Leu	cgc Arg	cgc Arg 150	acc Thr	ggc Gl y	gtg Val	cac His	cgc Arg 155	ctg Leu	acc Thr	gac Asp	ccg Pro	gcg Ala 160	tgc Cys	1678		
cgc Arg	ggc Gly	aag Lys	gcc Ala 165	tgg Trp	gtg Val	cgc Arg	ccg Pro	ctc Leu 170	tcc Ser	gag Glu	atc Ile	gat Asp	ctc Leu 175	tgg Trp	cgt Arg	1726		
acg Thr	tcg Ser	tgg Trp 180	gac Asp	agc Ser	atg Met	gtc Val	cgg Arg 185	gcc Ala	ggt Gly	tcc Ser	ddd Gl y	gcg Ala 190	ctg Leu	ctc Leu	gac Asp	1774		
ggc Gl y	atc Ile 195	gtc Val	gcc Ala	gcg Ala	acg Thr	cca Pro 200	cct Pro	aca Thr	gcc Ala	gcc Ala	999 Gl y 205	ccc Pro	gcg Ala	tca Ser	gcc Ala	1822		
ccg Pro 210	gag Glu	gca Ala	ccc Pro	gac Asp	gcc Ala 215	gcc Ala	gcg Ala	atc Ile	gcc Ala	gcc Ala 220	gcc Ala	ctc Leu	gac Asp	ggg Gly	acg Thr 225	1870		
agc Ser	gcg Ala	ggc Gl y	atc Ile	ggc Gl y 230	agc Ser	aac Asn	gcg Ala	tac Tyr	ggc Gl y 235	ctc Leu	ggc Gly	gcg Ala	cag Gln	gcc Ala 240	acc Thr	1918		
gtg Val	aac Asn	ggc Gl y	agc Ser 245	GJÀ ddd	atg Met	gtg Val	ctg Leu	gcc Ala 250	aac Asn	ccg Pro	cac His	ttc Phe	ccg Pro 255	tgg Trp	cag Gln	1966		
ggc Gly	gcc Ala	gca Ala 260	cgc Arg	ttc Phe	tac Tyr	cgg Arg	atg Met 265	cac His	ctc Leu	aag Lys	gtg Val	ccc Pro 270	ggc Gl y	cgc Arg	tac Tyr	2014		
gac Asp	gtc Val 275	gag Glu	ggc Gl y	gcg Ala	gcg Ala	ctg Leu 280	atc Ile	ggc Gl y	gac Asp	ccg Pro	atc Ile 285	atc Ile	GJ À ddd	atc Ile	ggg Gly	2062		
cac His 290	aac Asn	cgc Arg	acg Thr	gtc Val	gcc Ala 295	tgg Trp	agc Ser	cac His	acc Thr	gtc Val 300	tcc Ser	acc Thr	gcc Ala	cgc Arg	cgg Arg 305	2110		
ttc Phe	gtg Val	tgg Trp	cac His	cgc Arg 310	ctg Leu	agc Ser	ctc Leu	gtg Val	ccc Pro 315	ggc Gly	gac Asp	ccc Pro	acc Thr	tcc Ser 320	tat Tyr	2158		
tac Tyr	gtc Val	gac Asp	ggc Gly 325	cgg Arg	ccc Pro	gag Glu	cgg Arg	atg Met 330	cgc Arg	gcc Ala	cgc Arg	acg Thr	gtc Val 335	acg Thr	gtc Val	2206		
cag Gln	acc Thr	ggc Gly 340	agc Ser	ggc Gly	ccg Pro	gtc Val	agc Ser 345	cgc Arg	acc Thr	ttc Phe	cac His	gac Asp 350	acc Thr	cgc Arg	tac Tyr	2254		

ggc Gl y	ccg Pro 355	gtg Val	gcc Ala	gtg Val	atg Met	ccg Pro 360	ggc Gly	acc Thr	ttc Phe	gac Asp	tgg Trp 365	acg Thr	ccg Pro	gcc Ala	acc Thr	2302
gcg Ala 370	tac Tyr	gcc Ala	atc Ile	acc Thr	gac Asp 375	gtc Val	aac Asn	gcg Ala	ggc Gly	aac Asn 380	aac Asn	cgc Arg	gcc Ala	ttc Phe	gac Asp 385	2350
ggg Gl y	tgg Trp	ctg Leu	cgg Arg	atg Met 390	ggc Gl y	cag Gln	gcc Ala	aag Lys	gac Asp 395	gtc Val	cgg Arg	gcg Ala	ctc Leu	aag Lys 400	gcg Ala	2398
gtc Val	ctc Leu	gac Asp	cgg Arg 405	cac His	cag Gln	ttc Phe	ctg Leu	ccc Pro 410	tgg Trp	gtc Val	aac Asn	gtg Val	atc Ile 415	gcc Ala	gcc Ala	2446
gac Asp	gcg Ala	cgg Arg 420	ggc Gly	gag Glu	gcc Ala	ctc Leu	tac Tyr 425	ggc Gly	gat Asp	cat His	tcg Ser	gtc Val 430	gtc Val	ccc Pro	cgg Arg	2494
gtg Val	acc Thr 435	ggc Gl y	gcg Ala	ctc Leu	gct Ala	gcc Ala 440	gcc Ala	tgc Cys	atc Ile	ccg Pro	gcg Ala 445	ccg Pro	ttc Phe	cag Gln	ccg Pro	2542
ctc Leu 450	tac Tyr	gcc Ala	tcc Ser	agc Ser	ggc Gl y 455	cag Gln	gcg Ala	gtc Val	ctg Leu	gac Asp 460	ggt Gl y	tcc Ser	cgg Arg	tcg Ser	gac Asp 465	2590
tgc Cys	gcg Ala	ctc Leu	ggc Gly	gcc Ala 470	gac Asp	ccc Pro	gac Asp	gcc Ala	gcg Ala 475	gtc Val	ccg Pro	ggc Gl y	att Ile	ctc Leu 480	ggc Gly	2638
ccg Pro	gcg Ala	agc Ser	ctg Leu 485	ccg Pro	gtg Val	cgg Arg	ttc Phe	cgc Arg 490	gac Asp	gac Asp	tac Tyr	gtc Val	acc Thr 495	aac Asn	tcc Ser	2686
aac Asn	gac Asp	agt Ser 500	cac His	tgg Trp	ctg Leu	gcc Ala	agc Ser 505	ccg Pro	gcc Ala	gcc Ala	ccg Pro	ctg Leu 510	gaa Glu	ggc Gly	ttc Phe	2734
ccg Pro	cgg Arg 515	atc Ile	ctc Leu	ggc Gl y	aac Asn	gaa Glu 520	cgc Arg	acc Thr	ccg Pro	cgc Arg	agc Ser 525	ctg Leu	cgc Arg	acc Thr	cgg Arg	2782
ctc Leu 530	GJÀ ddd	ctg Leu	gac Asp	cag Gln	atc Ile 535	cag Gln	cag Gln	cgc Arg	ctc Leu	gcc Ala 540	ggc Gly	acg Thr	gac Asp	ggt Gly	ctg Leu 545	2830
ccc Pro	ggc Gl y	aag Lys	ggc Gly	ttc Phe 550	acc Thr	acc Thr	gcc Ala	cgg Arg	ctc Leu 555	tgg Trp	cag Gln	gtc Val	atg Met	ttc Phe 560	ggc Gly	2878
aac Asn	cgg Arg	atg Met	cac His 565	ggc Gl y	gcc Ala	gaa Glu	ctc Leu	gcc Ala 570	cgc Arg	gac Asp	gac Asp	ctg Leu	gtc Val 575	gcg Ala	ctc Leu	2926
tgc Cys	cgc Arg	cgc Arg 580	cag Gln	ccg Pro	acc Thr	gcg Ala	acc Thr 585	gcc Ala	tcg Ser	aac Asn	ggc Gl y	gcg Ala 590	atc Ile	gtc Val	gac Asp	2974
ctc Leu	acc Thr 595	gcg Ala	gcc Ala	tgc C y s	acg Thr	gcg Ala 600	ctg Leu	tcc Ser	cgc Arg	ttc Phe	gat Asp 605	gag Glu	cgt Arg	gcc Ala	gac Asp	3022
ctg Leu 610	gac Asp	agc Ser	cgg Arg	ggc Gl y	gcg Ala 615	cac His	ctg Leu	ttc Phe	acc Thr	gag Glu 620	ttc Phe	gcc Ala	ctc Leu	gcg Ala	ggc Gly 625	3070
gga Gl y	atc Ile	agg Arg	ttc Phe	gcc Ala 630	gac Asp	acc Thr	ttc Phe	gag Glu	gtg Val 635	acc Thr	gat Asp	ccg Pro	gta Val	cgc Arg 640	acc Thr	3118
ccg Pro	cgc Arg	cgt Arg	ctg Leu 645	aac Asn	acc Thr	acg Thr	gat Asp	ccg Pro 650	cgg Arg	gta Val	cgg Arg	acg Thr	gcg Ala 655	ctc Leu	gcc Ala	3166
gac Asp	gcc Ala	gtg Val	caa Gln	cgg Arg	ctc Leu	gcc Ala	ggc Gly	atc Ile	ccc Pro	ctc Leu	gac Asp	gcg Ala	aag Lys	ctg Leu	gga Gly	3214

											-	con	tin	ued		
		660					665					670				
gac Asp	atc Ile 675	cac His	acc Thr	gac Asp	agc Ser	cgc Arg 680	ggc Gl y	gaa Glu	cgg Arg	cgc Arg	atc Ile 685	ccc Pro	atc Ile	cac His	ggt Gl y	3262
ggc Gl y 690	cgc Arg	GJ À ddd	gaa Glu	gca Ala	ggc Gl y 695	acc Thr	ttc Phe	aac Asn	gtg Val	atc Ile 700	acc Thr	aac Asn	ccg Pro	ctc Leu	gtg Val 705	3310
ccg Pro	ggc Gl y	gtg Val	gga Gly	tac Tyr 710	ccg Pro	cag Gln	gtc Val	gtc Val	cac His 715	gga Gl y	aca Thr	tcg Ser	ttc Phe	gtg Val 720	atg Met	3358
gcc Ala	gtc Val	gaa Glu	ctc Leu 725	ggc Gl y	ccg Pro	cac His	ggc Gly	ccg Pro 730	tcg Ser	gga Gly	cgg Arg	cag Gln	atc Ile 735	ctc Leu	acc Thr	3406
tat Tyr	gcg Ala	cag Gln 740	tcg Ser	acg Thr	aac Asn	ccg Pro	aac Asn 745	tca Ser	ccc Pro	tgg Trp	tac Tyr	gcc Ala 750	gac Asp	cag Gln	acc Thr	3454
gtg Val	ctc Leu 755	tac Tyr	tcg Ser	cgg Arg	aag Lys	ggc Gl y 760	tgg Trp	gac Asp	acc Thr	atc Ile	aag Lys 765	tac Tyr	acc Thr	gag Glu	gcg Ala	3502
cag Gln 770	atc Ile	gcg Ala	gcc Ala	gac Asp	ccg Pro 775	aac Asn	ctg Leu	cgc Arg	gtc Val	tac T y r 780	cgg Arg	gtg Val	gca Ala	cag Gln	cgg Arg 785	3550
gga Gl y	cgc Arg	tgad	ccca	cgt d	cacgo	ccggo	ct co	ldcco	cgtgo	c ddd	laaco	gcag	ggcó	geega	atc	3606
gtct	ctgo	at o	cgaaq	ggtca	ag co	adda	gccto	g cgt	cgad	ccgg	cggo	cggco	cgg 1	ccgad	cgcccg	3666
cgto	ccdö	lcd (cage	gacto	gg ct	gaaq	gegee	ago	gegto	cggc	ggco	ccddd	ggc a	aggtt	cgttga	3726
acat	caco	gta d	egeeg	gggco	cg co	cgtco	gagga	ı tgo	ccggo	cgag	gtgt	zgeea	agc 1	cggg	catccg	3786
tgta	acaca	atg d	ccggg	gegeo	cg gt	gate	gccgt	: gca	ageco	ggta	ataç	ggcca	atc o	ggcgt	cagac	3846
tgcc	ldcdo	ag g	gaaco	gggto	cd do	caaco	gtggg	f tca	aggto	ccag	ctco	ctggo	cac a	aagco	ectega	3906
ccad	ctc	gtc d	cggco	cacgo	gg co	cgcgo	cggct	ccc	cacaa	acag	ccgo	gacad	ccd d	geege	lccddc	3966
gaga	tcg	ldc ö	gcaga	aacto	ca co	gcagt	tagag	ı cga	atggo	add	ttc	ggtco	ggc d	cggaa	aactcg	4026
ccg	gcad	etg d	cag													4039
<210 <211 <212 <213 <220 <223)> SE .> LE ?> TY ?> OF ?> FE ?> OT ut ti fo	Q II NGTH PE: GANJ ATUF HER aher canso	NO I: 78 PRT SM: SM: INFC INFC INFC STIDE wed 1	8 37 Arti ORMAT echi ed fi oy in	ficia CION: inoca com co n viv	al Se Des andir Jene 70 re	equen scrip h B (crea epair	ce tion (ECB) ated) of dea by i	Arti acyla in vi	ficia ase p itro	al Se prote hete	equer ein r erodi	nce:A nutar 1plex	Actinopla ht M-15 & format:	anes ion
<400)> SE	QUEN	ICE :	8												
Val 1	Thr	Ser	Ser	Tyr 5	Met	Arg	Leu	Lys	Ala 10	Ala	Ala	Ile	Ala	Phe 15	Gly	
Val	Ile	Val	Ala 20	Thr	Ala	Ala	Val	Pro 25	Ser	Pro	Ala	Ser	Gly 30	Arg	Glu	
His	Asp	Gly 35	Gly	Tyr	Ala	Ala	Leu 40	Ile	Arg	Arg	Ala	Ser 45	Tyr	Gly	Val	
Pro	His 50	Ile	Thr	Ala	Asp	Asp 55	Phe	Gly	Ser	Leu	Gly 60	Phe	Gly	Val	Gly	
T y r 65	Val	Gln	Ala	Glu	Asp 70	Asn	Ile	Cys	Val	Ile 75	Ala	Glu	Ser	Val	Val 80	
Thr	Ala	Asn	Gly	Glu 85	Arg	Ser	Arg	Trp	Phe 90	Gly	Ala	Thr	Gly	Pro 95	Asp	

Asp Ala Asp Val Arg Ser Asp Leu Phe His Arg Lys Ala Ile Asp Asp Arg Val Ala Glu Arg Leu Leu Glu Gly Pro Arg Asp Gly Val Arg Ala Pro Ser Asp Asp Val Arg Asp Gln Met Arg Gly Phe Val Ala Gly Tyr Asn His Phe Leu Arg Arg Thr Gly Val His Arg Leu Thr Asp Pro Ala Cys Arg Gly Lys Ala Trp Val Arg Pro Leu Ser Glu Ile Asp Leu Trp Arg Thr Ser Trp Asp Ser Met Val Arg Ala Gly Ser Gly Ala Leu Leu180185190 Asp Gly Ile Val Ala Ala Thr Pro Pro Thr Ala Ala Gly Pro Ala Ser 195 200 205 Ala Pro Glu Ala Pro Asp Ala Ala Ala Ala Ile Ala Ala Ala Leu Asp Gly 210 215 220 Thr Ser Ala Gly Ile Gly Ser Asn Ala Tyr Gly Leu Gly Ala Gln Ala225230235240 Thr Val Asn Gly Ser Gly Met Val Leu Ala Asn Pro His Phe Pro Trp Gln Gly Ala Ala Arg Phe Tyr Arg Met His Leu Lys Val Pro Gly Arg 260 265 270 Tyr Asp Val Glu Gly Ala Ala Leu Ile Gly Asp Pro Ile Ile Gly Ile Gly His Asn Arg Thr Val Ala Trp Ser His Thr Val Ser Thr Ala Arg Arg Phe Val Trp His Arg Leu Ser Leu Val Pro Gly Asp Pro Thr Ser Tyr Tyr Val Asp Gly Arg Pro Glu Arg Met Arg Ala Arg Thr Val Thr Val Gln Thr Gly Ser Gly Pro Val Ser Arg Thr Phe His Asp Thr Arg Tyr Gly Pro Val Ala Val Met Pro Gly Thr Phe Asp Trp Thr Pro Ala Thr Ala Tyr Ala Ile Thr Asp Val Asn Ala Gly Asn Asn Arg Ala Phe Asp Gly Trp Leu Arg Met Gly Gln Ala Lys Asp Val Arg Ala Leu Lys 385 390 395 400 Ala Val Leu Asp Arg His Gln Phe Leu Pro Trp Val Asn Val Ile Ala Ala Asp Ala Arg Gly Glu Ala Leu Tyr Gly Asp His Ser Val Val Pro 420 425 430 Arg Val Thr Gly Ala Leu Ala Ala Ala Cys Ile Pro Ala Pro Phe Gln 435 440 445 Pro Leu Tyr Ala Ser Ser Gly Gln Ala Val Leu Asp Gly Ser Arg Ser Asp Cys Ala Leu Gly Ala Asp Pro Asp Ala Ala Val Pro Gly Ile Leu 465 470 475 480 Gly Pro Ala Ser Leu Pro Val Arg Phe Arg Asp Asp Tyr Val Thr Asn Ser Asn Asp Ser His Trp Leu Ala Ser Pro Ala Ala Pro Leu Glu Gly 500 505 510

-continued

Phe	Pro	Arg 515	Ile	Leu	Gly	Asn	Glu 520	Arg	Thr	Pro	Arg	Ser 525	Leu	Arg	Thr
Arg	Leu 530	Gly	Leu	Asp	Gln	Ile 535	Gln	Gln	Arg	Leu	Ala 540	Gly	Thr	Asp	Gly
Leu 545	Pro	Gly	Lys	Gly	Phe 550	Thr	Thr	Ala	Arg	Leu 555	Trp	Gln	Val	Met	Phe 560
Gly	Asn	Arg	Met	His 565	Gly	Ala	Glu	Leu	Ala 570	Arg	Asp	Asp	Leu	Val 575	Ala
Leu	Cys	Arg	A rg 580	Gln	Pro	Thr	Ala	Thr 585	Ala	Ser	Asn	Gly	Ala 590	Ile	Val
Asp	Leu	Thr 595	Ala	Ala	Суз	Thr	Ala 600	Leu	Ser	Arg	Phe	Asp 605	Glu	Arg	Ala
Asp	Leu 610	Asp	Ser	Arg	Gly	Ala 615	His	Leu	Phe	Thr	Glu 620	Phe	Ala	Leu	Ala
Gly 625	Gly	Ile	Arg	Phe	Ala 630	Asp	Thr	Phe	Glu	Val 635	Thr	Asp	Pro	Val	Arg 640
Thr	Pro	Arg	Arg	Leu 645	Asn	Thr	Thr	Asp	Pro 650	Arg	Val	Arg	Thr	Ala 655	Leu
Ala	Asp	Ala	Val 660	Gln	Arg	Leu	Ala	Gly 665	Ile	Pro	Leu	Asp	Ala 670	Lys	Leu
Gly	Asp	Ile 675	His	Thr	Asp	Ser	Arg 680	Gly	Glu	Arg	Arg	Ile 685	Pro	Ile	His
Gly	Gly 690	Arg	Gly	Glu	Ala	Gly 695	Thr	Phe	Asn	Val	Ile 700	Thr	Asn	Pro	Leu
Val 705	Pro	Gly	Val	Gly	T y r 710	Pro	Gln	Val	Val	His 715	Gly	Thr	Ser	Phe	Val 720
Met	Ala	Val	Glu	Leu 725	Gly	Pro	His	Gly	Pro 730	Ser	Gly	Arg	Gln	Ile 735	Leu
Thr	Tyr	Ala	Gln 740	Ser	Thr	Asn	Pro	Asn 745	Ser	Pro	Trp	Tyr	Ala 750	Asp	Gln
Thr	Val	Leu 755	Tyr	Ser	Arg	Lys	Gly 760	Trp	Asp	Thr	Ile	L y s 765	Tyr	Thr	Glu
Ala	Gln 770	Ile	Ala	Ala	Asp	Pro 775	Asn	Leu	Arg	Val	T y r 780	Arg	Val	Ala	Gln
Arg 785	Gly	Arg													
<210 <211 <212 <213 <220 <223)> SE .> LE ?> TY 3> OF 0> FE 3> OT pr p1 pr	Q ID NGTH PE: GANI ATUR HER imer asmi	NO I: 21 DNA SM: INFC CO INFC CO INFC CO INFC	9 Arti DRMAT Cresp Aequo	ficia TON: Dondi Drea	Des Des ing t vict	equen ecrip to th coria	ce tion ne ve n gre	of ector	Arti sec luore	ficia quenc escer	l Se se of	equen E pGE	ce:f P	orward
<400)> SE	QUEN	ICE :	9											
ccga	actgo	jaa a	ıdcdö	Jgcao	gt g										
<210 <211 <212 <213 <220 <223)> SE .> LE ?> TY ?> OF ?> FE ?> OT pr p1 p1	Q ID NGTH PE: GANI ATUR HER Timer Lasmi	NO I: 22 DNA SM: E: INFC C COP Ld (<i>I</i> .n)	10 Arti ORMAT Cresp	ficia TON: pondi prea	l Se Des ing t vict	equen ecrip to the coria	ce tion le ve gre	. of ector een f	Arti sec luore	ficia quenc escer	l Se ce of it	equen E pGE	.ce:r P	everse

<400> SEQUENCE: 10 cggggctggc ttaactatgc gg <210> SEO ID NO 11 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (1) <223> OTHER INFORMATION: Xaa = succinyl-Ala <221> NAME/KEY: MOD_RES <222> LOCATION: (4) <223> OTHER INFORMATION: Xaa = Phe-p-nitroanilide <223> OTHER INFORMATION: Description of Artificial Sequence:Bacillus subtilis subtilisin E thermostability assay substrate <400> SEOUENCE: 11 Xaa Ala Pro Xaa 1

What is claimed is:

1. A method for evolving a polynucleotide toward acquisition of a desired functional property, comprising

- (a) incubating a population of parental polynucleotide variants having sufficient diversity that recombination 30 between the parental polynucleotide variants can generate more recombinated-polynucleotides than there are parental polynucleotide variants under conditions to generate annealed polynucleotides comprising heteroduplexes: 35
- (b) exposing the heteroduplexes to one or more enzymes of a DNA repair system in vitro to convert the heteroduplexes to parental polynucleotide variants or recombined polynucleotide variants;
- (c) screening or selecting the recombined polynucleotide $_{40}$ variants for the desired functional property.

2. The method of claim 1, wherein the DNA repair system comprises cellular extracts.

3. The method of claim 1, wherein the cells are bacterial cells.

4. The method of claim 1 further comprising introducing the products of step (b) into cells.

5. The method of claim 4, wherein the introducing step selects for transformed cells receiving recombinant polynucleotides resulting from resolution of heteroduplexes in 50 step (b) relative to transformed cells receiving polynucleotides resulting from resolution of homoduplexes in step (b).

6. A method for evolving a polynucleotide toward acquisition of a desired functional property, comprising

- (a) incubating a population of parental polynucleotide 55 variants having sufficient diversity that recombination between the parental polynucleotide variants can generate more recombined polynucleotides than there are parental polynucleotide variants under conditions to generate annealed polynucleotides comprising heteroduplexes;
- (b) introducing the annealed polynucleotides into cells having a DNA repair system and propagating the cells under conditions to select for cells receiving heteroduconvert the heteroduplexes to parental polynucleotide variants or recombined polynucleotide variants;

(c) screening or selecting the recombined polynucleotide variants for the desired functional property.

7. The method of claim 6, wherein the heteroduplexes are exposed to the cellular DNA repair system in vitro.

- 8. A method for evolving a polynucleotide toward acquisition of a desired functional property, comprising
 - (a) incubating first and second pools of parental polynucleotide variants having sufficient diversity that recombination between the parental polynucleotide variants can generate more recombined polynucleotides than there are parental polynucleotide variants under conditions whereby a strand from any polynucleotide variant in the first pool can anneal with a strand from any polynucleotide in the second pool to generate annealed polynucleotides comprising heteroduplexes;
 - (b) exposing the heteroduplexes to a DNA repair system to convert the heteroduplexes to parental polynucleotide variants or recombined polynucleotide variants;
 - (c) screening or selecting the recombined polynucleotide variants for the desired functional property.

9. The method of claim 8, further comprising introducing the heteroduplexes into cells, whereby the heteroduplexes are exposed to the DNA repair system of the cells in vivo.

10. The method of claim 9, wherein the annealed polynucleotides further comprise homoduplexes and the introducing step selects for transformed cells receiving heteroduplexes relative to transformed cells receiving homoduplexes.

11. The method of claim 10, 6, or 5, wherein a first polynucleotide variant is provided as a component of a first vector, and a second polynucleotide variant is provided as a component of a second vector, and the method further comprises converting the first and second vectors to linearized forms in which the first and second polynucleotide variants occur at opposite ends, whereby in the incubating step single-stranded forms of the first linearized vector reanneal with each other to form linear first vector, singlestranded forms of the second linearized vector reanneal with each other to form linear second vector, and single-stranded plexes relative to cells receiving homoduplexes, and to 65 linearized forms of the first and second vectors anneal with each to form a circular heteroduplex bearing a nick in each strand, and the introducing step selects for transformed cells

22

25

45

45

receiving the circular heteroduplexes or recombinant polynucleotides derived therefrom relative to the linear first and second vector.

12. The method of claim 11, wherein the first and second vectors are converted to linearized forms by PCR.

13. The method of claim 11, wherein the first and second vectors are converted to linearized forms by digestion with first and second restriction enzymes.

14. The method of claim 10, 6 or 5, wherein the population of polynucleotides comprises first and second poly- 10 nucleotides provided in double stranded form, and the method further comprises incorporating the fist and second polynucleotides as components of first and second vectors, whereby the first and second polynucleotides occupy opposite ends of the first and second vectors, whereby in the 15 incubating step single-stranded forms of the first linearized vector reanneal with each other to form linear first vector, single-stranded forms of the second linearized vector reanneal with each other to form linear second vector, and single-stranded linearized forms of the first and second 20 vectors anneal with each to form a circular heteroduplex bearing a nick in each strand, and the introducing step selects for transformed cells receiving the circular heteroduplexes or recombinant polynucleotides derived therefrom relative to the linear first and second vector.

15. The method of claim 10, 6 or 5, further comprising sealing nicks in the heteroduplexes to form covalently-closed circular heteroduplexes before the introducing step.

16. The method of claim 1, 6 or 8, wherein the population of polynucleotide variants are provided in double stranded 30 form, and the method further comprising converting the double stranded polynucleotides to single stranded polynucleotides before the annealing step.

17. The method of claim 1, 6 or 8 wherein the converting step comprises:

conducting asymmetric amplification of the first and second double stranded polynucleotide variants to amplify a first strand of the first polynucleotide variant, and a second strand of the second polynucleotide variant, whereby the first and second strands anneal in ⁴⁰ the incubating step to form a heteroduplex.

18. The method of claim 17, wherein the first and second double-stranded polynucleotide variants are provided in vector-free form, and the method further comprises incorporating the heteroduplex into a vector.

19. The method of claim 18, wherein the first and second polynucleotides are from chromosomal DNA.

20. The method of claim **1**, **6** or **8**, further comprising repeating steps (a)–(c) whereby the incubating step in a subsequent cycle is performed on recombinant variants from 50 a previous cycle.

21. The method of claim 1, 6 or 8, wherein the polynucleotide variants encode a polypeptide.

22. The method of claim 1, 6 or 8, wherein the population of polynucleotide variants comprises at least 20 variants.

23. The method of claim 1, 6 or 8, wherein the population of polynucleotide variants are at least 10 kb in length.

24. The method of claim **1**, **6** or **8**, wherein the population of polynucleotide variants comprises natural variants.

25. The method of claim 1, 6 or 8, wherein the population of polynucleotides comprises variants generated by mutagenic PCR.

26. The method of claim 1, 6 or 8, wherein the population of polynucleotide variants comprises variants generated by site directed mutagenesis.

27. The method of claim 1, 6 or 8, further comprising at least partially demethylating the population of variant polynucleotides.

28. The method of claim **27**, whether the at least partially demethylating step is performed by PCR amplification of the population of variant polynucleotides.

29. The method of claim **27**, wherein the at least partially demethylating step is performed by amplification of the population of variant polynucleotides in host cells.

30. The method of claim **29**, wherein the host cells are defective in a gene encoding a methylase enzyme.

31. The method of claim **27**, wherein the population of variant polynucleotides are double stranded polynucleotides and only one strand of each polynucleotide is at least partially demethylated.

32. The method of claim **1**, **6** or **8**, wherein the population of variant polynucleotide variants comprises at least 5 polynucleotides having at least 90% sequence identity with ²⁵ one another.

33. The method of claim **1**, **6** or **8**, further comprising isolating a screened recombinant variant.

34. The method of claim **33**, further comprising expressing a screened recombinant variant to produce a recombinant protein.

35. The method of claim 34, further comprising formulating the recombinant protein with a carrier to form a pharmaceutical composition.

36. The method of claim **1**, **6** or **8**, wherein the polynucle-³⁵ otide variants encode enzymes selected from the group consisting of proteases, lipases, amylases, cutinases, cellulases, amylases, oxidases, peroxidases and phytases.

37. The method of claim 1, 6 or 8, wherein the polynucleotide variants encode a polypeptide selected from the group consisting of insulin, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erythropoietin, luteinizing hormone, chorionic gonadotropin, hyperthalnic releasing factors, antidiuretic hormones, thyroid stimulating hormone, relaxin, interferon, thrombopoietin (TPO), and prolactin.

38. The method of claim $\mathbf{1}$, $\mathbf{6}$ or $\mathbf{8}$, wherein the polynucleotide variants encode a plurality of enzymes forming a metabolic pathway.

39. The method of claim **1**, **6** or **8**, wherein the polynucleotide variants are in concatemeric form.

40. The method of claim 39, wherein the functional property is an enzymatic activity.

41. The method of claim **1**, **6** or **8**, wherein the at least two polynucleotide variants differ at between 0.1–25% of posi-⁵⁵ tions.

42. The method of claim 1, 6 or 8, wherein the functional property is an enzymatic activity.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,537,746 B2 DATED : March 25, 2003 INVENTOR(S) : Frances Arnold, Zhixin Shao and Alexander Volkov

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

<u>Title page</u>, Item [73], Assignee: should be -- **California Institute of Technology** --

Signed and Sealed this

Sixteenth Day of September, 2003

JAMES E. ROGAN Director of the United States Patent and Trademark Office

Page 1 of 1

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,537,746 B2 DATED : March 25, 2003 INVENTOR(S) : Arnold et al. Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

<u>Column 51,</u> Line 32, replace "recombinated" with -- recombined --.

<u>Column 53,</u> Line 12, replace "fist" with -- first --.

Signed and Sealed this

Sixth Day of April, 2004

JON W. DUDAS Acting Director of the United States Patent and Trademark Office