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Abstract 

The desire to create more complex visual scenes in modern flight simulators 

outpaces recent increases in processor speed. As a result, simulation transport delay 

remains a problem. New approaches for compensating the transport delay in a flight 

simulator have been developed and are presented in this report. The lead/lag filter, the 

McFarland compensator and the Sobiski/Cardullo state space filter are three prominent 

compensators. The lead/lag filter provides some phase lead, while introducing significant 

gain distortion in the same frequency interval. The McFarland predictor can compensate 

for much longer delay and cause smaller gain error in low frequencies than the lead/lag 

filter, but the gain distortion beyond the design frequency interval is still significant, and 

it also causes large spikes in prediction. Though, theoretically, the Sobiski/Cardullo 

predictor, a state space filter, can compensate the longest delay with the least gain 

distortion among the three, it has remained in laboratory use due to several limitations.     

The first novel compensator is an adaptive predictor that makes use of the Kalman 

filter algorithm in a unique manner.  In this manner the predictor can accurately provide 

the desired amount of prediction, while significantly reducing the large spikes caused by 

the McFarland predictor. Among several simplified online adaptive predictors, this report 

illustrates mathematically why the stochastic approximation algorithm achieves the best 

compensation results. A second novel approach employed a reference aircraft dynamics 

model to implement a state space predictor on a flight simulator. The practical 

implementation formed the filter state vector from the operator’s control input and the 

aircraft states. The relationship between the reference model and the compensator 
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performance was investigated in great detail, and the best performing reference model 

was selected for implementation in the final tests. 

Theoretical analyses of data from offline simulations with time delay 

compensation show that both novel predictors effectively suppress the large spikes 

caused by the McFarland compensator. The phase errors of the three predictors are not 

significant. The adaptive predictor yields greater gain errors than the McFarland predictor 

for short delays (96 and 138 ms), but shows smaller errors for long delays (186 and 282 

ms). The advantage of the adaptive predictor becomes more obvious for a longer time 

delay. Conversely, the state space predictor results in substantially smaller gain error than 

the other two predictors for all four delay cases. 
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Preface 

This report is the first of two NASA contractor reports documenting the research 

on flight simulator transport delay compensation, undertaken in the Man-machine 

Systems Research Laboratory at the State University of New York at Binghamton and 

supported by the NASA Langley Research Center, in Hampton, Virginia. Loosely 

speaking, the two reports cover the theoretical research and the experimental testing of 

the research, respectively. 

This report begins with a theoretical investigation of the effects of pure time delay 

on a control system consisting of an aerodynamic model, a pilot model and the Pade 

approximation of time delay. It then summarizes the literature study of transport delay 

causes in, and effects on, a flight simulator. This report continues with the introduction of 

three existing transport delay compensators—the lead/lag filter, the McFarland predictor 

and the Sobiski/Cardullo predictor, including intensive analyses of the strengths and 

limitations of each compensator. After a brief description of an expedient algorithm, 

designed to reduce the large spikes by the McFarland predictor, it presents the main body 

of research, i.e., development of two novel compensators. This report then thoroughly 

develops the adaptive predictor and the state space predictor. The adaptive predictor is a 

special Kalman filter that recursively updates the coefficients so that accurate prediction 

can be achieved. Among several versions of the adaptive algorithms, the Stochastic 

Approximation algorithm is mathematically demonstrated to achieve the best 

compensation results. The state space predictor makes use of the state transition matrix 

and its integral of a reference aircraft model. Several aircraft models were tested and the 

landing model of a large commercial transport in pitch achieved the best compensation 
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results as a reference model. By simplifying the state space predictor, the relationship 

between the compensation quality and the reference model was intensively investigated. 

Offline compensation results are presented to compare the McFarland predictor and the 

two novel predictors. The final part of the first report draws conclusions and suggests 

possible future research.   

The second in the series, i.e., NASA CR 2007-2150961 is presented in three parts: 

transport delay measurement in the NASA Langley Research Center’s Visual Motion 

Simulator (VMS), piloted testing of the time delay compensators, and conclusions. The 

time delay measurement was conducted to verify the actual transport delay prior to the 

application of compensation in the final piloted tests. The average transport delay from 

the pilot control input to the visual display update was measured to be 90 ms. The second 

part of the report treats the final piloted experiment design, added time delay, test 

subjects, compensators, data collection, and evaluation metrics. It then presents the 

results of the final piloted tests in terms of performance errors, task load index, handling 

quality and power spectral density of the pilot controls. The final part of the report draws 

conclusions on the delay measurement and piloted simulation tests, and includes 

suggestions for future research. The appendices of the report include resultant graphs of 

all 13 pilots in terms of the four metrics, and the source code and flowcharts of some of 

the algorithms used in the research.                      
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1. Introduction 

1.1. Transport Delay in Vehicle Simulation 

The transport delay in a vehicle simulator is the time elapsed from an operator’s 

control input until an appropriate stimulus is presented to the operator by the associated 

hardware2. In a real vehicle, the transport delay is negligible because the vehicle responds 

to the operator command almost instaneously. Unfortunately, this is not true for a vehicle 

simulator. As an example, Fig.1.1 shows a motorcycle simulator. Unlike a driver on a 

real moving motorcycle who directly feels the motion of the motorcycle relative to the 

street, the driver on this simulator perceives the motion primarily based on the visual 

display showing the movement of the road and the surroundings. The time it takes for the 

simulator computers to generate a new visual image on the screen based on the operator’s 

control input is the transport delay. To illustrate the sources of the transport delay, Fig.1.2 

shows the architecture of an ordinary vehicle simulator with a visual system.  

The transport delay comes primarily from three sources: sampling delay, 

processing time and data transfer time. Sampling delay results because the simulator 

dynamics computer only samples the operator’s control input at the beginning of each 

computation frame whereas the actual control input arrives stochastically. Therefore the 

change of input between two consecutive sampling events is delayed. It may be as long as 

almost a full frame, or as short as zero, but the average of the sampling uncertainty is a 

half frame. The processing time consists of two parts—the time taken by the dynamics 

computer to calculate the vehicle states from the sampled operator’s control input, and 

the time for the computers in the visual system to prepare the visual image. The 
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processing time usually dominates the total transport delay. Data transfer time is the time 

it takes for the visual system to receive the updated vehicle state computed by the 

dynamics computer. If the update rates of the vehicle dynamics computer and the visual 

system are not equal and the latter is not an integer multiple of the former, 

communication asynchrony occurs which results in additional delay. If the transfers are 

asynchronous, the data transfer delay affects the sampling delay. As long as the transfer 

time is less than the sampling interval (i.e., the frame length), transfer time may be 

considered the same as processing time. Although the simulator time delay consists of 

several components from different subsystems, the origin makes no difference to the 

operator, who only feels the total effect.    

 

Fig. 1.1. A motorcycle simulator 

In Fig. 1.2, the sampling delay occurs between the hand and the plant, the 

processing delay occurs in the plant and between the output and the display, and the delay 
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due to data transfer may arise if there is a difference in update rate between the plant and 

the display system. 
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Fig. 1.2. Architecture of a vehicle simulator with a visual system 

If the overall delay reaches a noticeable level, when the operator tries to perform a 

task, say a left turn, she will see insufficient response from the display relative to her 

expectations; hence the operator’s cognitive control logic causes her to maneuver further 

until the expected display is observed; but because of the delay, the display will show the 

operator that she has already over controlled, resulting in a compensation or a 

modification, and so on. The resulting locus of the motorcycle positions might resemble 

the dashed curve in Fig. 1.3. 

This example demonstrates that one of the immediate effects of long transport 

delay is Pilot Induced Oscillation (PIO). As the time delay gets longer, the oscillation is 

expected to be more severe—with a larger magnitude and a slower decay, which may   

even become unstable. In other words, time delay makes the system’s response slower 

and undermines the system stability. As a result, the virtual vehicle is harder to control 

with time delay, indicating that the operator’s perception of the handling quality becomes 

worse, and the control workload is increased. Using Fig 1.3, it is easy to visualize the 

degradation in performance by comparing the actual trajectory, represented by the dashed 
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curve with the ideal trajectory, represented by the solid curve. In summary, the following 

problems caused by the time delay are expected: 

1) The man-machine system performance is degraded; 

2) The operator’s control workload is increased due to over control and modification; 

3) The operator’s assessment of the handling quality of the system is diminished.  

 

Fig. 1.3. Ideal turn of a real motorcycle versus an actual turn in a simulator 

In the frequency domain, time delay shifts the time-line of the simulated vehicle 

to the right, with respect to the response of the real vehicle, causing a phase lag in the 

simulation system. This phase lag is proportional to the frequency components of the 

operator’s control input. The phase lag at the system crossover frequency decreases the 

system phase margin; it also contributes to the PIO and undermines system stability. To 



5 

restore the system phase margin, the operator tries to increase the control gain or lower 

the system crossover frequency, resulting in an increase in control workload, and 

degrading the handling quality. The frequency analysis agrees with the time domain 

analysis. 

The literature supports the above analyses of the effects of transport delay on a 

man-in-the-loop flight simulator system. Several metrics indicate that transport delay 

degrades the man-machine system performance. Transport delay increases the system 

Root Mean Square Error (RMSE) associated with various tasks (Riccio, et, al, Bailey, et 

al); the Power Spectral Density (PSD) analyses of the operator controls demonstrate that 

the time delay makes the operator’s workload increase, especially in the high frequencies 

(Middendorf, et al, Guo, et al); the Cooper-Harper Rating (CHR) also shows that the 

operator’s handling quality assessment is affected by the delay (Cooper and Harris). 

Large transport delays may also induce simulator sickness (Zaychik, et al). (The literature 

study of the time delay effects is elaborated in Chapter 2.) 

1.2. Delay Compensation 

Because the impact is undesirable in flight simulations, simulator transport delay 

must be minimized in order to reduce its effects. If, after minimization, the transport 

delay still exceeds the tolerable threshold for maintaining desirable simulator 

performance, algorithms to compensate for the delay should be employed. Delay 

compensation usually makes use of prediction of the aircraft states before they are output 

to the cueing channels. This is illustrated in Fig. 1.4, where, in the small plot to the right 

of the predictor block, the black dashed curve is the predicted aircraft state. Images based 

on the predicted aircraft state can be used to offset the transport delay in the visual system. 
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The purpose of prediction is to restore the phase margin, which would be reduced by the 

transport delay.  

Prediction is achieved by making use of past and current system information, 

including the aircraft displacement, velocity and acceleration, the operator control input, 

the dynamic model, and so on. What information is used for the prediction and how to 

use it lead to various ways of designing the compensator. The most prominent three 

compensators are the lead/lag filter, the McFarland predictor and the Sobiski/Cardullo 

predictor.   
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Fig. 1.4. Delay compensation based on prediction 

The lead/lag filter had long been used in industry before Ricard/Harris introduced 

it to the flight simulator to compensate for the transport delay. Having a single pole and a 

single zero, the lead/lag filter provides some phase lead in a certain frequency range 

while introducing gain distortion. In order to properly design a lead/lag filter, the 

designer must determine the pole, the zero and the gain appropriate for the transport 

delay to be compensated such that the phase lead and gain distortion are well balanced. 

Both Ricard/Harris and Crane proposed methods of designing the lead/lag filter, and they 

tested the compensation against the performance of piloted simulations. Though both 

methods show some advantages, the lead/lag compensator has been replaced by other 
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more powerful predictive filters, primarily due to its limited ability to provide phase lead 

and the undesirable introduction of significant gain distortion. McFarland developed a 

discrete filter, which extrapolates the future aircraft displacement, from three consecutive 

iterations of velocity. This special integration algorithm is a type of finite impulse 

response filter because it only has poles at the origin. Because the current prediction does 

not involve the past predictions, the prediction error is not passed to the next iteration, 

and therefore, there is no error accumulation. The large gain distortion, which would be 

present when using the lead/lag filter is significantly reduced while phase lead is 

substantially increased. The challenge in designing this type of filter is to determine the 

three coefficients that multiply the three steps of velocity. McFarland introduced a 

method known as sinusoidal tuning, which makes use of boundary conditions of the so-

called “pass band”. The pass band is defined to be the primary frequency band for most 

pilot operations. While the McFarland filter works well within this pass band, the gain 

distortion and phase lead deficiency are significant, and the gain distortion leads to very 

disturbing spikes in the prediction. The spikes originate from the constant coefficients, 

which were determined using the sinusoidal tuning, and are not adjusted during the 

simulation.      

The Sobiski/Cardullo predictor is the first state space filter used for compensating 

the transport delay in a flight simulation. It was derived from the solution of a linear 

time-invariant (LTI) differential equation in state space format. By using more 

information, in each iteration of prediction, theoretically the full order Sobiski/Cardullo 

filter should achieve better compensation (sufficient phase lead and less gain error) than 

prior techniques, provided that the aerodynamics are also LTI and known.  
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However, there are three practical problems which prevent the widespread 

application of the Sobiski/Cardullo predictor to flight simulators.  First, most modern 

flight simulators include complex, nonlinear, time variant aircraft models. Second, when 

using the Sobiski/Cardullo predictor, the extrapolated state is only valid if the operator’s 

control input is piece-wise constant, sinusoidal, or exponentially decaying, etc. Third, the 

matrix operations used to implement the Sobiski/Cardullo predictor make it 

computationally intensive, and simplifying the algorithm would make it more practical.  

1.3. Scope of Research 

This is a comprehensive study of the transport delay in a vehicle simulator, from 

its sources, to its effects, measurement and compensation. In Chapter 2, a theoretical 

analysis of a pure time delay—its effects on a control system in both the time and 

frequency domain—is presented.  The second part of Chapter 2 is a summary of a 

literature study on the causes and effects of the transport delay in a flight simulator. 

Chapter 3 describes the three prominent compensation techniques, the lead/lag, 

McFarland and Sobiski/Cardullo filters, which were briefly introduced in this chapter 

(Section 1.2), in much more detail. The basic principles, the formulation, and the 

advantages and disadvantages of each filter will be presented in this chapter.  Analyses of 

these filters in both the time and frequency domains are also presented. 

The equation proposed by Crane for positioning the pole of the lead/lag filter has 

been revised, and a filter designed with the revised equation shows obvious improvement 

over those designed using Crane’s original equation. The revision is introduced in 

Chapter 3. 
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Chapter 4 introduces two novel predictors for compensating transport delay. 

Section 4.1 presents a simple spike reduction algorithm to alleviate the gain distortion 

caused by the McFarland compensator. In section 4.2, a new adaptive predictor is 

introduced. The Kalman estimator, which is an online recursive least squares method has 

been adopted to design the coefficients of a predictive compensator, which also uses three 

consecutive velocities to extrapolate, similar to the McFarland compensator. While 

simplifying the Kalman filter algorithm, a forgetting factor, the Kaczmarz algorithm, the 

stochastic approximation algorithm and the Least Mean Squares algorithm are introduced. 

This section also mathematically demonstrates why the stochastic approximation 

algorithm stands out above all the other adaptive algorithms in compensating the 

transport delay. 

A second novel approach employes a reference aircraft dynamic model to 

implement a state space predictor for use on a flight simulator. The practical 

implementation formed the filter state vector from the operator’s control input and the 

aircraft states. Among several reference models tested, the landing model of a large 

commercial transport in the pitch axis achieves the best compensation result, and was 

selected for the final piloted tests. The relationship between the reference model and the 

compensation performance is also investigated in detail in chapter 4. 

Theoretical analysis of the two novel compensators is the main topic of Chapter 5. 

It covers an evaluation and comparison of the errors caused by a compensator with 

different predictors, and includes a sensitivity analysis, which demonstrates how the 

compensation errors change as the time delay increases. The chapter begins by defining 

two error metrics, and then compares the compensation errors in terms of the two error 
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metrics using offline tests (see Chapter 5).  The chapter concludes with a sensitivity 

analysis.  
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2. Background Information 

2.1. Theoretical Description of Time Delay 

A pure time delay simply causes a signal to shift right on the time line. As an 

example, Fig.2.1 shows a sinusoid signal ( ( ) ( )y t sin tω= ) and the resulting signal when it 

is delayed by dt . The delayed signal, ( ) ( )d dy t sin t tω ω= − , has a phase lag of dtω  with 

respect to the initial signal. This example demonstrates that time delay can be described 

in both time domain and frequency domain.  The transform of a time delay dt  between 

the time domain and the frequency domain is given in Eq. (2.1).  
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Fig. 2.1. A sinusoid signal and its delayed result by dt  

 ( ) ( )dj t
d df t t e F tω ω−− ⇔  (2.1) 

If the signal is continuous, the delayed signal is simply given by 
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 ( ) ( )d dy t y t t= −  (2.2) 

And for a continuous signal, the relationship between it and its delayed partner in the 

frequency domain is given by the Laplace transfer function 

 ( )
( )

dd t sY s
e

Y s
−=  (2.3) 

Because dt se−  is nonlinear, it is usually approximated by the 2nd-order Pade approximation 

 
2

2

2
2

6 12

6 12
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s s
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− +
≈

+ +
 (2.4) 

In a discrete system, if the time delay is an integer multiple of the frame time T , 

say d dt n T= , where dn  is an integer, the counterparts of Eq. (2.2) and (2.3) are simply 

given by Eq. (2.5) and (2.6) respectively 

 ( ) ( )d dy k y k n= −  (2.5) 

 ( )
( )

dd nY z
z

Y z
−=  (2.6) 

However, if the ratio dtr T=  is not an integer, these relationships become much 

more complicated. Substituting the trapezoidal integration, 1 1
2 1
T z

s z
+=
−

 into Eq. (2.4), the 

Pade approximation becomes 

 ( )
( )

1 2
0 1

1 2
1 21

dY z z z
Y z z z

β β
α α

− −

− −

+ +
≈

+ +
 (2.7) 

where 
2

2 0 2

3 3 1
3 3 1
r r
r r

α β − += =
+ +

 and 
2

1 1 2

6 2
3 3 1

r
r r

α β −= =
+ +

. And the difference equation 

corresponding to Eq. (2.5) is given by 
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 ( ) ( ) ( ) ( ) ( ) ( )1 2 0 1 21 2 1 2d d dy k y k y k y k y k y kα α β β β= − − − − + + − + −  (2.8) 

It follows from Eq. (2.3) that the transfer function of a pure time delay has unity 

magnitude at all frequencies, but has negative phase angle, calculated by 

 d dtφ ω=  (2.9) 

This can be verified by using the Bode diagram of a time delay as shown in Fig. 2.2, in 

which both the exact calculation and the 2nd-order Pade approximation are plotted. When 

a time delay is added to an open loop system, it only delays the output without causing 

any gain distortion. Take Fig. 2.1, for example, if a time delay of dt  is applied to the solid 

sinusoid signal, it moves the curve to the right and becomes the dashed curve. 
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Fig. 2.2. Bode diagram of a pure delay: exact calculation and Pade approximation 

However, if time delay is introduced in a closed loop system, the system output is 

shifted to the right, and the gain changes, because the system feedback is also delayed.  

Delayed feedback makes the system sluggish so that it becomes more oscillatory and its 

stability is undermined. If the delay is sufficiently large, the system could become 
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unstable. This can be illustrated by modeling a flight simulation task, as shown in Fig. 2.3. 

The pilot model, given by Eq. (2.10), matches a lateral control task performed with a rate 

controller cascading a delay term representing the neuromuscular and cognitive time 

delay, which were lumped into the predictor. The aircraft model, given by Eq. (2.11) 

represents the change in the roll angle per unit of deflection of the control stick, at a flight 

condition of 430 knots airspeed and 30,000 feet altitude.   The time delay block refers to 

the artificially inserted transport delay (denoted by dt ) represented by the 2nd-order Pade 

approximation (Eq. (2.12)). Three values of the artificial delay were tested: 0, 200, or 400 

ms, and the closed-loop step responses and the open loop frequency responses of these 

three cases are given in Fig. 2.4 and Fig. 2.5. 
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Fig. 2.3. Block diagram of a simulation with a man-in-the-loop control 
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Fig. 2.4. Bode Diagrams of a closed loop system with different delays 
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Fig. 2.5. Step responses of a closed loop system with different delays 

From the Bode diagrams of the open loop system, it is appearent that the 

magnitude is not changed by the time delay, but the phase angle is decreased, which 

agrees with the unity magnitude and negative phase angle properties of the delay. 

According to Eq. (2.9), the phase margin decrease at the crossover frequency is 

proportional to the amount of time delay 

 PM d ctφ ω=  (2.12) 

For a 200 ms delay, the phase margin is reduced considerably but is still positive, 

which means the system is still stable, yet becomes more oscillatory. When the delay is 

400 ms, the phase margin is negative, which indicates an unstable system. The step 

responses of the closed-loop system confirm the frequency domain analysis (Fig. 2.5). 

Note that although for 200 ms delay the step response has more oscillations, it still 

converges to the same steady state value.  
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The impact of time delay on the man-machine system is not only dependent upon 

the amount of the delay, but also the system dynamics. Specifically, the system 

bandwidth or crossover frequency impacts the effects of time delay on the system. To 

illustrate, a second system is created by varying the real part of the dominant poles of the 

aircraft model given in Eq. (2.11) (i.e., by changing the natural frequency from 1.8788 

rad/s to 1.95 rad/s) with the operator model unchanged.  The bandwidth of the new 

system (System II) is larger than that of the original system (System I). For comparison, 

some properties of the systems are listed in Table 2.1. The table shows that time delay 

decreases the system closed-loop bandwidth, and the longer the time delay, the larger the 

decrease in close-loop bandwidth. In addition, the system with higher bandwidth tends to 

suffer faster closed-loop bandwidth reduction with time delay. 

Table 2.1. Properties of two dynamic systems 

Properties System I System II 
Damping ratio 0.2376 0.2376 

Natural frequency (rad/s) 1.8788 1.9500 

Crossover frequency (rad/s) 2.19 2.54 

Closed-loop bandwidth (rad/s) 4.3238 4.4864 
Closed-loop bandwidth (rad/s) 

with 150 ms delay 3.9131 4.0338 

Closed-loop bandwidth (rad/s) 
with 300 ms delay 3.4760 3.5801 

Phase margin (deg) 44.1922 34.4364 

Maximal tolerable delay (s) 0.352 0.237 
 

Fig. 2.6 shows the closed-loop step responses of these two systems with 0, 150 

and 300 ms added delay. With zero added delay, system I (upper figure) has slower 

responsiveness than system II because its bandwidth is lower. However, with a 150 ms 

delay, system I responds faster than system II, showing that a dynamic system with 
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higher bandwidth tends to be impacted more by the same amount of delay. With a delay 

of 300 ms, system I becomes more oscillatory but is still stable, whereas system II is no 

longer stable. Further analysis shows that although the two systems have the same phase 

margin, system I can tolerate much longer maximal time delay than system II (344 ms vs. 

238 ms). This can be interpreted using Eq. (2.12). Usually, the system with higher 

bandwidth tends to have higher crossover frequency ( cω ). It follows from Eq. (2.12) that 

the system with the higher crossover frequency suffers a larger phase lag dφ  with the 

same time delay. And because d PM ct φ ω= , given the same phase margin ( PMφ ), the system 

with lower crossover frequency tolerates longer delay. 
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Fig. 2.6. Step responses of the two dynamic systems to different delay 

2.2. Sources of Transport Delay   

This section is a summary of the sources of transport delay in a flight simulator, 

and some proposed methods to reduce the delay from each source. 
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Fig. 2.7 is a view of part of a flight simulator cockpit. The out-of-the-window 

display, i.e., the sea, the aircraft carrier and the lead helicopter, provides the visual cue to 

the pilot; the gauges, dials and photodiodes on the panel in front of the pilot provide the 

instrument cues, such as the airspeed, altitude and attitude; and the dynamic seat and the 

motion of the cockpit (if any) provide the motion cues. These are the three primary 

cueing channels, which serve as feedback to the operator in response to his input. There 

may be other cues available, e.g., the sound system may indicate the aural environment 

surrounding the pilot. 

 

Fig. 2.7. Cockpit view of a flight simulator 

When the pilot issues a command, the basic cues provide feedbacks to the 

operator, who continues to make control inputs based on these cues. The operator loop 

closes the man-machine system—the flight simulation. Because the simulator computers 

need time to generate the cues, they do not respond to the operator’s command 

instantaneously. The time it takes for the simulator to generate the basic cues is called 
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transport delay. Although the processing speed of computers has been improving, the 

increasing complexity of the simulator display negates the potiential to lessen the 

transport delay. As a result, transport delay still exists on state-of-the-art-flight simulators. 

This transport delay has a number of sources: 

1) Sampling delay—the time the simulation computer takes to sense a control input; 

2) Plant delay—the time the simulation computer uses to calculate the aircraft states; 

3) Data transfer delay—the time lapse from when the aircraft states are available to 

the point when the motion system, the visual system and/or the instrument system 

receives the signal; 

4) Cueing delay—the time it takes each individual system to respond to aircraft 

states. 

All these systems are likely to contribute transport delays, though these delays are 

not always present in concert, and more than likely, they will all be different from each 

other. 

2.2.1. Sampling Delay   

In a digital simulation, sampling delay arises from the fact that the simulator 

regularly senses the control input at the beginning of each frame, whereas the input 

arrives stochastically. For the zero-order hold (ZOH*) system, the sampled value is held 

till the next sampling. Therefore, an input change in the middle of a frame is either lost or 

                                                 

 

* Though the accuracy of the first-order hold is higher than that of the ZOH, ZOH is used in the flight 

simulator because the first-order hold introduces an extra frame of delay. 
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delayed until the beginning of the next frame. The amount of delay varies in each frame, 

resulting in a sampling uncertainty. Fig. 2.8 illustrates the cause of sampling uncertainty.  

Mainframe time line
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Input
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C D

 

Fig. 2.8. Illustration of sampling delay 

The input change at point A coincides with the first sampling by chance, and thus 

the sampling delay is zero, representing the best-case scenario; the input at point B is not 

sensed by the computer until the second sampling, and the sampling delay is half a frame; 

point C is right after the 3rd sampling, and it will be sensed in the 4th sampling with a 

delay of almost a full frame, representing the worst-case scenario; for input at point D, 

the sampling delay is just a small part of a frame. With the exception of the best-case 

scenario, the sampled value represents the past input. Because the input may arrive at any 

time point during a frame, some sampling uncertainty results. As the number of frames 

becomes sufficiently large, the statistical average of the sampling delay is a half frame. 

Although the sampling delay can be reduced by using shorter frames, the frame 

length is driven primarily by the aerodynamics computation, rather than the sampling. 

Another way to reduce the average sampling delay is the multi-rate sampling proposed by 

R. M. Howe3, but this results in higher hardware and software costs. 
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2.2.2. Plant Delay 

The plant in a flight simulator refers to the process of sampling the pilot control 

inputs, and then calculating the updated aircraft state using a specific aerodynamic model. 

The model first calculates the aircraft accelerations in all six degrees of freedom (DOF) 

in the body frame, then integrates the accelerations to get the velocities and 

displacements, and finally transforms the updated aircraft states (displacements, 

velocities and accelerations) to other frames, such as the world frame and the topodetic 

frame, for use by the individual cueing systems. Usually the process of calculating the 

accelerations, using the non-linear acceleration functions, is computationally intensive. 

 

Fig. 2.9. Bode diagrams of several numerical integration algorithms 

Although the two numerical integration processes themselves take little time to 

perform, they introduce phase lag and latency. Different integration methods have 

different characteristics in introducing phase lag, which is a function of the working 
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frequencies. Fig. 2.9 presents a comparison of some numerical integration methods in 

terms of both phase lag and gain distortion4. 

When two numerical integration methods are carried out one after another, they 

may cause latency due to the dependency of the latter on the outputs of the former for 

several iterations. For example, two 2nd-order Adams-Bashforth integrations cause an 

extra frame of latency. If the second integration (from velocity to displacement) is 

replaced with the trapezoidal integration, this extra frame of latency could be removed. 

Therefore, the aerodynamics processing delay can be reduced by judiciously choosing the 

integration combination, and by rearranging the order of computation within each 

integration frame.     

2.2.3. Data Transfer Delay 

Data transfer time is the time it takes for the visual system (or the motion or 

instrument systems) to get the output signals computed by the simulation computer5. If 

the update rate of the simulation computer and the visual system are not the same and the 

latter is not an integer multiple of the former, communication asynchrony occurs which 

results in delay. Asynchronous delay occurs when the vehicle states are available from 

the host computer but the image processor is not ready to receive them until the 

beginning of the next frame. According to Richard McFarland6, the asynchronous delay 

between an image processor and a simulation computer appears to be random, but it is 

actually periodic. The periodicity can be demonstrated with the time lines shown in Fig. 

2.10. The periodic component of the asynchronous delay may be given as 

 ( )d
M Mt m T m m
N N

⎧ ⎫⎢ ⎥= −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 (2.13) 
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where m  is the iteration index of the visual computer, T  is the update period of the host 

computer, and M
N

 is the minimal fraction equal to the ratio of 
'T

T
 ( 'T  is the update period 

of the visual computer), or M  and N  must be relatively prime. For the above example 

 ( ) ( ) ( ) ( ) ( )1 30 2 20 3 10 4 0 5 30d d d d dt , t , t , t , t ,= = = = = ⋅⋅⋅  

And the average asynchronous delay is 

 ( )
1

1 N

d d
m

t t m
N =

= ∑  (2.14) 

For the above example,  

( ) ( )1 30 20 10 0 17 5
4dt . ms= + + + =  

( )1dt ( )2dt ( )3dt ( )5dt
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Fig. 2.10. Illustration of periodical asynchronous time delay 

If the transfers are asynchronous, the data transfer delay affects the sampling 

delay. As long as the transfer time is less than the sampling interval (i. e., the frame 

length), transfer time may be considered the same as processing time7. To reduce or even 

eliminate the asynchronous time delay, the update rates of the subsystems must be equal 

to each other, or at least the update rate of the down stream subsystems should be an 

integer multiple of that of the upstream one. 
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2.2.4. Cueing Delay 

When the aircraft states are available from the simulation computer, the three 

basic visual, motion and instrument systems use them to generate the individual cues in 

the hardware systems, as depicted in Fig. 2.11.  Each of the three cueing systems requires 

a different amount of time to generate and execute the hardware commands, which leads 

to cueing mismatches.  

A. Instrument Delay    

The quantities to be displayed on the cockpit instruments, such as the position and 

orientation of the aircraft, are available from the simulation computer, and hence there 

are very few time-consuming computations in the instrument system. The calculations 

necessary to transform the variables into the positions of dials of the indicators, and the 

digital-to-analog conversion contribute no more than one frame of transport delay. 

Instrument
System

Aerodynamics Motion
System

Visual
System

 

Fig. 2.11. Three basic cueing channels 

B. Motion Delay 

The purpose of the motion system of a flight simulator is to impart motion cues to 

the pilot, which are very similar to those he would experience in an actual aircraft. 

Because of the physical limits of any ground based simulator motion system, (i.e., it can 

not reproduce the large motions of a real aircraft), the simulator motion commands 

(attitude and rate) must be calculated from the aircraft states. This process is the core of 
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the motion cueing algorithm, which makes use of an operator motion sensation model 

and control theory. Various combinations of operator motion models and control theories 

lead to different types of motion cueing algorithms. The more advanced motion cueing 

algorithms may need to solve a Riccati equation that is computationally intensive. Telban 

and Cardullo have developed a neuro-computing approach to solve the Riccati equation 

in real time. After the motion base trajectory is computed, the simulator motion 

commands are then transformed from the degree-of-freedom space to actuator space 

(kinematic transformation), and the desired commands to the six actuators are generated. 

A block diagram illustrating the function of the motion system is given in Fig. 2.128.      
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Fig. 2.12. Block diagram of a motion cueing system  (courtesy of Telban) 

The motion cueing algorithm and the kinematic transformation may take as long 

as one frame to complete, and the D/A conversion takes half a frame on average. 

Therefore, the motion system can cause as much as one and half frames of transport delay, 

although, usually the motion cueing algorithm is executed in the same frame as the flight 

dynamics.   



27 

C. Visual Delay 

The visual system consists of four parts in series: the front-end computer (FEC), 

the geometry processor (GP), the display processor (DP) and the display. The FEC takes 

care of the scene management and retrieving the image from the database; the geometry 

processor calculates the geometric transformations and the perspective transformation; 

and the display processor pixelates the data. Each of these three may consume one full 

frame. The fourth part (display) consumes a half frame on average, with the worst case 

being a full frame. Fig. 2.13 illustrates two scenarios of how these four steps in the 

pipeline may be implemented. In the worst case they work serially without overlap, 

causing 4 frames of transport delay; in the best case, parallel computation is employed 

between the FEC, GP and the DP, reducing the visual delay by one frame.    

 

Fig. 2.13. Two scenarios for delay in the visual system 
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D. Cueing Mismatches 

The previous analysis shows that the instrument system causes the shortest 

transport delay, the motion system the medium, and visual system the longest. The 

discrepancy in the delay between the cueing systems is referred to as cueing mismatch. 

Fig. 2.14 illustrates the cueing mismatch between the motion and the visual systems. 

Frame 1 is the initial state; in frame 2, the pilot initiates a control input, but neither the 

motion nor the display changes; in frame 3, the response of the dynamic seat begins, but 

the display still remains unchanged; and finally, in the 4th frame, the response of visual 

display begins. Though the research is not clear on the maximum mismatch a human can 

tolerate in a flight simulator, the cueing mismatch is believed to be the main cause of 

simulator sickness. Therefore, steps to sufficiently reduce the mismatch are necessary. 

 

Fig. 2.14. Cueing mismatch between the motion and the visual systems 
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2.2.5. Summary 

Therefore, a typical flight simulator may incur, on average, 1.5 frames of 

transport delay in the simulation computer, and 3.5 frames of delay in the visual system. 

Assuming the two subsystems have the same frame length, and assuming an average 0.5 

frames of data transfer delay, the average total transport delay is then 5.5 frames, and 

may vary from 4 to 7 frames. 

If the transfers are asynchronous, the data transfer delay affects the sampling 

delay. As long as the transfer time is less than the sampling interval (i. e., the frame 

length), transfer time may be considered to be  the same as processing time. Although the 

simulator time delay consists of several components from different subsystems, they 

make no difference to the operator, who only feels the total effect.     

2.3.  Effects of Transport Delay 

It follows from the theoretical analyses on time delay in section 2.1 that time 

delay introduces oscillation to the closed-loop control system. In a man-machine system 

such as a flight simulator, this causes pilot induced oscillation (PIO). Increased 

oscillation means more and larger swings in response, which also mean larger variance of 

system output and degraded simulation performance. Conversely, the system output is the 

feedback on which the operator action is based. Increased output variance makes the 

operator compensate for the error, and this compensation causes the operator workload to 

go up. And for this reason, the operator’s perception of handling quality is degraded. 

Therefore, three effects of time delay on the flight simulation are expected: 

1) The system performance is degraded; 

2) The operator’s workload is increased; 
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3) The operator’s perception of handling quality is decreased. 

The three effects of transport delay are usually evaluated with three different 

metrics: namely, the Root Mean Square Error (RMSE) for the system performance, the 

Power Spectral Density (PSD) for the pilot workload, and the Cooper-Harper Rating 

(CHR) for the handling quality.  

The RMSE is a measure of variance of the simulator output, and is used as an 

objective metric of the system performance. Larger RMSE means poorer performance. 

The RSME is usually applied to simulation tracking tasks, such as compensatory tracking, 

pursuit tracking, or a gliding task.  

The power spectrum or power spectral density (PSD) of a digital signal is the 

discrete Fourier transform (DFT) of the autocorrelation sequence of a signal. In 

mathematical terms, the PSD is proportional to the square of the magnitude of the process. 

Hence, it is closely related to the energy of a signal as a function of the frequency, or it 

represents the frequency distribution of energy of a signal. The PSD of the pilot control 

input deflection (the pitch stick, roll stick, rudder pedal or throttle) is related to the energy 

the pilot put into the simulator, often referred to as the workload. It is also an objective 

metric. 

The Cooper-Harper rating scale 9  includes ten values, listed in Table 2.2, in 

ascending order corresponding to decreasing handling qualities, i.e., a scale value of one 

represents the best handling quality, and a value of 10 represents the worst deficiency. 

Ratings of 1, 2 and 3 fall in level I, ratings of 4, 5 and 6 are in level II, and ratings of 7, 8, 

9 and 10 are in level III. Jumping from one level to another is considered to be a 

significant change of handling quality. A CHR is a quasi-objective evaluation because the 
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operator is required to make a series of decisions concerning the difficulty of controlling 

the aircraft. The Cooper-Harper rating is an evaluation of the overall system, rather than a 

single factor such as responsiveness; hence two simulations with close CHRs may have 

quite different dynamic responses.  

In summary, the RMSE is an objective metric of the simulator output, the CHR is 

a quasi-objective metric from the operator’s cognitive judgment, and the PSD is an 

objective metric of the simulator input  (or the operator output).  

Many researchers have extensively explored the effects of time delay on a flight 

simulation using these three metrics. A study of the available literature is summarized as 

follows. 

Table 2.2. The Cooper-Harper scale 

 

By analyzing the altitude errors in different delay conditions, Crane10 reported 

that pilot dynamic response and system performance change as the pilot attempts to 
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compensate for the decrease in system stability caused by the transport delay. More 

importantly, the changes in pilot dynamic response and the system performance can bias 

the results of a simulation by influencing the pilot’s rating of handling qualities of the 

simulated aircraft. 

Bailey, et al 11 , conducted some experiments on a simulator including four 

simplified aircraft models—fighter, small cargo, medium cargo and large cargo, with 

pilots flying some demanding tasks in both ground based and in-flight modes. 0-240 ms 

artificial delay was added over the 100 ms baseline delay. Bailey noted: 

1) Except for the fighter in the in-flight mode, the time delay significantly increases 

the RMSE, or degrades the performance. 

2) The time delay causes the regression line of the Cooper-Harper rating to cross the 

Level I and Level II boundary, indicating significant handling quality degradation.  

3) The difference in the effects of time delay among the four aircraft models is small. 

4) In the in-flight mode, the negative effects of time delay are not as serious as in the 

ground-based mode. Because the in-flight mode could be thought of including the 

motion cue, it suggests that the motion cue makes the operator less sensitive to the 

time delay. 

Similar simulation experiments were conducted by Riccio, et, al12, in which 0-350 

ms time delay was added in addition to a baseline delay of 50 ms, with the pilot 

controlling a fighter or a large transport aircraft to maintain a constant heading and 100 ft 

altitude over flat terrain, and with turbulence. In this experiment only the RMSE 

evaluation was carried out. Both heading RMSE and altitude RMSE increased 

significantly with the time delay. There was no statistically significant difference between 
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the two aircraft models, however, the RMSE curve of the transport appeared to have a 

larger curvature. 

Middendorf, et al 13 , on the other hand, used the power spectral analysis to 

investigate the effects of the simulator time delay on flight control activities. The 

simulation was conducted on a fix-base (no motion cue) simulator. Time delays of 90, 

200 and 300 ms were inserted in addition to the 90 ms baseline delay. The lateral stick 

movement was recorded for a spectral analysis while the pilot was completing an offset 

approach. For this task, the aircraft was initially lined up with one runway, then 

transitions to an adjacent parallel runway within a certain distance. They reported the 

following findings: 

1) There was a peak in the power spectrum at approximately 0.08 Hz, which is, as 

they stated, related to the inverse of the period of the sidestep maneuver. 

2) There was another peak at approximately 0.25 Hz, appearing to be a direct result 

of the maneuver itself. 

3) The reduced damping ratio resulting from the time delay made the closed-loop 

system less stable at high delay conditions. 

 

Cardullo conducted two phases of simulator experiments with his graduate 

students, Telban and Guo14, and some colleagues at the NASA Langley Research Center.  

The experiments were conducted on the Visual Motion Simulator, and they were 

designed to test novel motion cueing algorithms as well as the effects of time delay and 

the McFarland compensation algorithm. Artificial delays of 0, 50, 100, and 200 ms were 

added to the simulation. These delays, combined with the three motion cueing algorithms 
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—the adaptive, optimal and nonlinear algorithms, generated 16 different conditions. Each 

pilot was assigned three tasks —a straight-in approach, an offset approach and a takeoff. 

Half of the takeoff test runs included an engine failure. Three pilots took part in the first 

phase of the experiment (also referred to as the preliminary experiment), and eleven took 

part in the second phase. Cooper-Harper ratings were logged only in the preliminary 

experiments. In both phases of the experiment, the time domain data of the pilot’s control 

deflections and some other simulator state variables were recorded for power spectrum 

analysis. Although most of the results are outside the scope of this section, the results on 

the effects of time delay and compensation are summarized here. 

1) The time delay slightly increased the overall integrated PSD of the roll control, 

pitch control and rudder pedal control, and significantly increased the integrated 

PSD of the roll and pitch controls in the frequency range of [0.17 0.4] Hz.  

2) The time delay moved the highest peak of the PSD plot to higher frequency area. 

The effects of the engine failure in the takeoff maneuver dominated the total PSD 

of the pilot control inputs, obscuring the effects of the time delay on PSD. 

3) The Cooper-Harper ratings did not increase with time delays of up to 100 ms, in 

the two approach maneuvers. 

Transport delay may also cause simulation sickness. The term “Simulation 

Sickness” is usually reserved for situations that are nauseogenic in the simulator but not 

in the corresponding aircraft. Simulation Sickness shares many symptoms, such as 

drowsiness, dizziness nausea, vomiting, etc, with the motion sickness that occurrs in the 

real systems. It is difficult to conduct simulator sickness research because it is difficult to 

objectively evaluate it. Literature research suggests that cue mismatch is the primary 
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cause of simulator sickness. Duh, et al, recently proposed a visual-vestibular crossover 

frequency concept, and hypothesized that conflicting visual and inertial self-motion cues 

at the frequency of maximum crossover would be more likely to evoke simulator sickness 

than conflicting cues at a high frequency. This hypothesis is supported by experiments.  

Sobiski states, “Temporal cue mismatch can contribute to a malaise known as ‘simulator 

sickness’ and it may be due to the frantic efforts of the brain to resolve two conflicting 

sources of motion related information.” Because the cue mismatch is caused by the 

difference in time delay, and simulator sickness is induced by the cue mismatch, it may 

be inferred that simulator sickness is indirectly caused by the difference in time delay. It 

seems logical that time delay may cause simulator sickness. Long time exposure to PIO 

caused by time delay is expected to make the operator feel tired and to induce some 

instantaneous or simulator sickness. However, to date, the direct relationship between 

time delay and simulator sickness is not completely understood, probably because there 

has been insufficient research on this issue. Zaychik 15  reported that Nelson et al, 

investigated the influence of time delay, time on task and task complexity on subjective 

ratings of simulator sickness. It was shown that the subjective ratings varied directly with 

duration of task. The delay variance affected the performance and workload of a subject 

but had no effect on the simulator sickness questionnaire (SSQ) ratings. Zaychik suggests 

that this interesting observation can be attributed to the subjective nature of the simulator 

sickness assessing technique used by the researchers. 

Likewise, Uliano, et al16, reported that visual lag had no effect on illness in their 

experiments. Although longer lags were somewhat disruptive of performance, there was 

no evidence that they contributed to illness. These results are surprising because the range 
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of asynchrony studied was fairly large (126 ± 17 ms to 215 ±  70 ms). Based on these 

results, Uliano et al suggested that within the range of operationally useful simulators, 

visual asynchrony does not appreciably contribute to simulator sickness. Lags 

approaching 300 ms in flight simulators become too unrealistic and/or too difficult to fly. 
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3. Current Techniques of Compensating Transport Delay 

As stated in Chapter 2 (section 2.3), transport delay in a flight simulator reduces 

the system phase margin, and can cause pilot-induced oscillation (PIO), which in turn 

leads to poorer system performance and handling quality, higher control workload, and 

even simulator sickness. Transport delay may be reduced, by rearranging the order of the 

calculations, choosing more efficient algorithms, increasing the sampling rate, or 

synchronizing the communications. If the delay is still exceeds the tolerable level, for 

maintaining desirable simulator performance, algorithms to compensate for the delay 

may be employed. The purpose of compensation of time delay, from a time-domain 

perspective, is to provide prediction to counteract the system latency; and in terms of the 

frequency-domain, is to create phase lead to offset the reduction in system phase margin.  

When transport delay exists in a visual system, the image that is displayed is 

actually the delayed image representing a past aircraft state. Since one cannot generate an 

undelayed image from a delayed one, compensation must be applied to the aircraft state. 

Therefore, the idea of compensation is to predict the future aircraft state using the 

currently available state information. Therefore, an image, based on the predicted aircraft 

states, can be used to offset the transport delay in the visual system. This idea is 

illustrated in Fig. 1.4, where the dashed line in the small plot to the right of the predictor 

block, illustrates the prediction. 

The dashed predicted curve in Fig. 1.4 is an ideal prediction, i.e., it has exactly the 

same shape as the original solid one, with only a pure phase shift. Unfortunately, an ideal 

predictor does not exist in the real world. A practical predictor generally introduces error, 
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and the longer the time delay, the greater the error. Mathematical analysis illustrates that 

pure time delay brings phase lag to the system without changing the magnitude (Section 

2.1). Therefore, a good predictor must satisfy two basic criteria:  

1) It must be able to provide sufficient phase lead to offset the phase lag caused by 

the time delay.  

2) It must introduce minimum gain distortion. 

In addition, the compensation must be simple enough that it does not introduce 

extra time delay due to computation. Therefore, a third criterion is:  

      3)  The computation workload of the predictor must be minimal.  

To date, many compensation techniques have been developed to mitigate the 

transport delay in the flight simulator. The lead/lag filter, the McFarland compensator and 

the Sobiski/Cardullo state space predictor are the three most prominent current 

techniques, and will be considered here. 

3.1. Lead/lag Filter 

The transfer function of the lead/lag filter is given by 
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where ( )pY s  and ( )Y s  are the Laplace transforms of the predicted aircraft state and the 

undelayed aircraft state, respectively; and ωn and ωd  are the two corner frequencies of 

the filter. If <n dω ω , the Bode asymptotes of both the magnitude and the phase of the 

filter given by Eq. (3.1) are illustrated in Fig.3.1. 
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Fig. 3.1. Bode asymptotes of the lead/lag filter 

The hump of phase asymptote in [ ]ω ωn d  provides the phase lead to the system, 

and the maximal phase lead occurs at a frequency mω called the medium frequency, 

which is the geometric mean of the two corner frequencies as given by 

 m n dω ω ω=  (3.3) 

and the maximal phase lead is 

 1sin
1

αφ
α

−=
+

 (3.4) 

This phase lead is obtained at the expense of gain distortion because the 

magnitude ( )H jω  is not unity. And, since the high-frequency gains are increased, any 

system using phase lead compensation may be subjected to high-frequency noise 

problems. Nevertheless, as Crane10 states, the resulting increase in system gain at 

frequencies greater than the crossover frequency ( cω ) is not normally a problem, because 

the system amplitude ratio and the power of the input and disturbance signal usually 

decrease rapidly at frequencies greater than cω . 

Designing a lead/lag filter involves choosing the gain k  and the two corner 

frequencies nω  and dω (or the two time constants nτ  and dτ ). The lead/lag filter had long 

been used in other control systems to provide phase modification before it was first 
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applied in a flight simulator. Using the classical frequency-domain design method can 

meet the design specifications accurately. However, because the classical method 

assumes linearity, and the aerodynamic models of a flight simulator are usually non-

linear, the classical approach does not lend itself to the design of a lead/lag filter for 

compensating the transport delay in the flight simulator. 

Because the pilot crossover frequency region has been shown to be the most 

critical for pilot control, and for pilot ratings (Fig. 3.217) of the fidelity of a dynamic 

simulation, an ideal design would be to make the medium frequency mω , the frequency at 

which the maximal phase lead occurs, at the pilot crossover frequency cω . Unfortunately, 

cω  is usually unknown. One approach would be to assume an estimated ˆcω , and let 

ˆm cω ω= . Then calculate the maximal phase lead necessary to counteract the phase lag 

caused by the delay dt   

 d ctφ ω= ˆ  (3.5) 

Then calculate the ratio α  according to Eq. (3.4), and finally determine the two time 

constants. Though simple, this design approach has two problems. First, the estimated ˆcω  

is not the real crossover frequency cω , which varies in a simulation due to many factors. 

The further ˆcω  (i.e., mω ) departs from cω , the less phase lead at cω  compared to the 

maximal lead at mω . In other words, the phase compensation at the crossover frequency 

is not sufficient. Second, since 0 1α< < , it follows from Eq. (3.4), that φ  must be less 

than π 2 . Then, according to Eq. (3.5), for a long delay dt , the estimated ˆcω  must be 

very small, and hence it also diverges from cω , resulting in insufficient phase 
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compensation. This explains why the lead/lag filter cannot be used to compensate long 

time delay.   

 

Fig. 3.2. Pilot sensitivity envelops in the frequency domain 

Therefore, the design of a lead/lag filter to compensate the time delay in a flight 

simulator with unknown or nonlinear aerodynamic model cannot be exact, and therefore 

approximate methods are usually used. Two such approximate methods were introduced: 

one by Crane, and the other by Ricard and Harris18. In both methods, the numerator time 

constant nτ  is set to be equal to the time delay dt , whereas the denominator time constant 

dτ  is chosen in a different manner. In Crane’s approach, dτ  is the solution of the 

following equation 

 ( ) ( )1 1

c
f c d c d c dtan t tan t

ω ω
ω ω τ ω− −

=
Φ = − =  (3.6) 

The gain k  can be chosen so that the filter gain is unity at the crossover frequency. Eq. 

(3.6) then becomes problematic because, for the widely-accepted value of cω  of 2-3 Hz 
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and dt  up to 800 ms, the term ( )1
c dttan ω−  is always less than c dtω .  Hence the term 

( )1
c dtan ω τ−  is negative. Any dτ  that makes ( )1

c dtan ω τ−  negative is either negative 

(meaningless) or greater than nτ  (in this case, the filter becomes a phase lag filter).  As 

stated previously, the actual phase lead of the filter is usually less than the maximum, and 

one way to resolve this difficulty is to multiply the right side of Eq. (3.6) by a coefficient, 

thereby changing it to 

 ( ) ( ) ( )1 1 0 1
c

f c d c d c dtan t tan t ,
ω ω

ω ω τ ηω η− −

=
Φ = − = < <  (3.7) 

where η  is dependent upon the crossover frequency and the time delay. For example, for 

a crossover frequency of 2 rad/s and time delay up to 800 ms, η =0.5 produces very good 

results. Table 3.1 gives the design results obtained using the modified Crane method for 

time delays of 200, 400 and 800 ms and an estimated crossover frequency of 2 rad/s.  

Table 3.1. The lead/lag filter coefficients designed with Crane’s method 

dt (ms) nτ  dτ  mω (rad/s) mΦ (deg) 
200 0.2 0.0912 7.4044 21.94 

400 0.4 0.1410 4.2108 28.60 

800 0.8 0.1080 3.4021 49.65 

  

In Ricard’s approach, dτ  is chosen such that the best pilot flight control 

performance is achieved. Using Ricard’s method, the two time constants for lead/lag 

filters used to compensate for delays of 200, 400 and 800 ms are listed in Table 3.2 

(obtained from Sobiski19). Column 4 gives the frequencies at which these filters provide 

the maximal phase lead.  The maximal phase lead is listed in column 5. Assuming the 

crossover frequency of the flight simulator system is 2 rad/s, the decrease in phase 
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margin caused by time delays of 200, 400 and 800 ms are 22.9 o , 45.8 o  and 91.7 o , 

respectively. These values are greater than the corresponding maximal phase lead of the 

lead/lag filter (column 5 in Table 3.1). This shows that none of these filters provide 

sufficient compensation. Although other design methods may yield better compensation, 

the improvement is limited. The lead/lag filter simply lacks the ability to provide large 

phase lead. 

Table 3.2. The lead/lag filter coefficients designed with Ricard’s method 

dt (ms) nτ  (s) dτ  (s) mω (rad/s) mφ (deg) 

200 0.2 0.1859 5.2 2 

400 0.4 0.2105 3.5 18 

800 0.8 0.1695 2.5 40 

 

Reguarding the effects of the lead/lag compensation, Crane reported, “The 

compensation is effective; improvements in pilot performance and workload or HQR 

were observed. The delay compensation approach attempts to minimize changes in pilot-

aircraft dynamics in the region of the crossover frequency.” 

Ricard and Harris reported that there were effects due to the presence of the 

lead/lag filter, and the error score indicated that varying dτ  was significant, but not 

significant for the crossover power. However, Ricard and Harris did not reveal whether 

the pilot performance, similar to that in the undelayed system, was achieved when using 

lead/lag compensation.          

To test the effectiveness of the lead/lag filter in compensating the transport delay, 

a lead/lag compensator was added to the control system shown in Fig. 2.3 in front of the 

added time delay.  The new system block diagram is given as Fig. 3.3, where y  is the 
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undelayed aircraft state, py  is the predicted aircraft state and cy  is the delayed prediction, 

or the compensated state. The added time delay is 200, 400 or 800 ms, and for each delay 

case, both the lead/lag filters designed with the modified Crane method and the Ricard 

method (see Table 3.1 and Table 3.2) were applied. The frequency responses and step 

responses are given in Fig. 3.4 and Fig. 3.5.            
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Fig. 3.3. Block diagram of a delayed control system with a compensator  
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Fig. 3.4.  Bode diagrams with delay (400 ms) and with/without lead/lag 

compensation of different gains 

Fig 3.4 shows the 400 ms delay compensation using the modified Crane design. 

When the filter gain is unity (dashed curve), it provides 20 o phase lead at 2 rad/s. But 

because of the gain distortion, the crossover frequency is shifted to 3 rad/s, corresponding 
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to a phase margin of –38.44 o , which is even lower than the delayed system without 

compensation. To move the crossover frequency back to 2 rad/s, the pilot can decrease 

his gain, or the filter designer can decrease the lead/lag filter gain from unity to 0.833 

(dotted curve). The resulting lead/lag filter provides a phase lead of 12.43 o , which is 

equivalent to a 108 ms delay, and much less than desired 400 ms.      
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Fig. 3.5. Step responses of the undelayed, delayed and compensated systems 

From the step responses, a lead/lag filter designed using Crane’s method achieves 

better results than one designed with Ricard’s method in all delay cases. The results are 

greatly improved for a delay of 200 ms, in which Ricard’s filter provides little phase lead. 



46 

In all cases, a lead/lag filter cannot compensate the entire delay: no matter how long the 

delay is.   The lead/lag filter is only beneficial when used to compensate for delays of less 

than approximately 100 ms. This should be considered the upper limit of the lead/lag 

filter. 

In short, although the lead/lag compensator does meet the third criterion of a good 

compensator, it does not meet the first two criteria..   

The pulse transfer function and the difference equation of the lead/lag filter are 

given by Eq. (3.8) and (3.9), respectively 
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 ( ) ( ) ( ) ( )1 1p d p ny k c y k y k c y k+ = − + + +  (3.9) 

As an Infinite Impulse Response (IIR) filter (since 0dc ≠ ), the lead/lag 

compensator makes use of the previous prediction to calculate the current prediction, thus 

the error from one iteration is passed on to the next iteration, resulting in error 

accumulation. This error accumulation is the primary cause of the gain distortion. 

3.2. McFarland Filter 

Richard McFarland20 developed a Finite Impulse Response (FIR) filter to avoid 

the weaknesses of the lead/lag filter that cause the prediction error to accumulate. Its 

pulse transfer function and difference equations are given by 

 ( ) ( ) ( ) ( )1 2
0 1 2pY z Y z b b z b z V z− −= + + +  (3.10) 

 ( ) ( ) ( ) ( ) ( )0 1 21 2py k y k b v k b v k b v k= + + − + −  (3.11) 
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where y  is the aircraft state to be predicted, v  is the corresponding velocity, py  is the 

predicted aircraft state, k  is the iteration index, and ( )pY z , ( )Y z  and ( )V z  are the z-

transforms of py , y  and v , respectively. Clearly, the McFarland compensator is a 

special integrator making use of three consecutive steps of velocity. The three 

coefficients 0b , 1b  and 2b  determine its ability to compensate the time delay. McFarland 

uses a method known as sinusoidal tuning to determine these three coefficients, which are 

the solutions to three equations derived from the boundary conditions of the pass band 

[0 0ω ] by assuming a sinusoidal input to the filter. The pass band comes from the 

assumption that the pilot operates primarily within this frequency interval and the 

operation beyond 0ω , about 6-20 rad/s, is insignificant. At the zero frequency condition, 

the velocity is constant, and Eq. (3.11) becomes ( ) ( ) ( ) ( )0 1 2py k y k b b b v k= + + + . For 

an ideal prediction of ( )py k  that is dt  ahead of ( )y k , the relation 

( ) ( ) ( )p dy k y k v k t= +  holds. Comparing this with the previous equation, and the first 

equation from the boundary conditions is obtained 

 0 1 2 db b b t+ + =  (3.12) 

In addition, by substituting the relations ( ) ( )
dt
T

pY z z Y z=  and ( ) ( )
1

1

1
2 1
T zY z V z

z

−

−

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 

(trapezoidal integration) into Eq. (3.10), the relationship becomes 

 ( )
( ) ( )

1
1 2

0 1 21

1
2 1

dt
T

Y z T zz b b z b z
V z z

−− − −
−

⎧ ⎫⎛ ⎞+⎪ ⎪= + + +⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
 (3.13) 
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Let ( ) ( )Y z / V z  be equal to the ideal integration ( )1/ jω  at the other boundary frequency 

0ω , and the magnitude and phase angle equalities give the remaining two equations. 

Combining these with Eq. (3.13), and the three coefficients are given as follows, where 

0 0Tθ ω=  and 0 0 dtψ ω= . 

 ( ) ( ) ( )
( )

0 0 0 0 0 0 0 0 0

0
0 0 0

11 2 1 1 22
2 1

sin cos sin sin cos cos cos
b

sin cos

ψ ψ θ θ θ θ ψ θ θ

ω θ θ

⎡ ⎤+ − + − − +⎡ ⎤⎣ ⎦ ⎣ ⎦=
−

 (3.14) 

 ( ) ( )
( )

0 0 0 0 0 0
1

0 0

2sin 2 cos 1 cos
2 1 cos

b
θ ψ ψ θ θ θ

ω θ
+ − − +

=
−

 (3.15) 

 ( )
( )

0 0 0 0 0 0

2
0 0 0

1sin sin cos 1 cos2
2 sin 1 cos

b
ψ ψ θ θ ψ θ

ω θ θ

⎡ ⎤− + − −⎣ ⎦=
−

 (3.16) 

McFarland states that “the algorithm delivers high-fidelity, compensated CGI 

drive signals over the human-factors bandwidth, and can dramatically improve the pilot 

control for high gain tasks such as precision hovering and station keeping.” However, he 

does not show experimental results to substantiate it. A system similar to the one depicted 

in Fig. 3.3 was used to test the McFarland compensator. In this test, the lead/lag filter was 

replaced with the McFarland filter. The system was then transformed into a discrete form 

before the compensator was applied because the McFarland filter was in discrete format. 

The frequency responses and step responses are given in Fig. 3.6 and Fig. 3.7, 

respectively. 
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Fig. 3.6. Bode diagram of McFarland compensation for delay of 200 ms 

The Bode diagram shows that for time delay of 200 ms, the McFarland filter 

provides satisfactory phase compensation when the frequency is below 5 rad/s, but the 

phase lead is not sufficient in higher frequencies. The gain distortion is small when the 

frequency is within the pass band, but the gain distortion escalates when the frequency is 

beyond the pass band. For comparison, the compensation by the lead/lag filter designed 

with the modified Crane’s method is also plotted in Fig. 3.7. This plot shows that the 

McFarland compensator can provide more phase lead than the lead/lag filter, however, 

the McFarland filter still cannot provide 100 percent compensation.      
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Fig. 3.7. Undelayed, delayed by 0.2s and compensated responses 

The McFarland predictor can also be applied to simulation data. Fig. 3.8 shows a 

time history of roll angle and roll velocity recorded on the Visual Motion Simulator at the 

NASA Langley Research Center. By using the roll angle as y  and the velocity as v , and 

with a prediction time of 192 ms, the McFarland compensator described by Eq. (3.11) 

produced the dashed curve shown in Fig. 3.9, this is the signal py  in Fig. 3.3. The 

prediction is then delayed by the same amount for ease of comparision with   the 

uncompensated roll angle. For ideal compensation, the delayed, compensated curve 

(dashed line) should be exactly the same as the undelayed uncompensated curve (solid 

line). However, this plot shows that the McFarland prediction has two problems: the 

actual prediction is only 176 ms, less than the design prediction by almost a frame (16.5 

ms), and more seriously, it causes very large spikes.   
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Fig. 3.8. Roll angle and velocity of a real simulation 

The gain distortion and insufficient phase lead at high frequencies, demonstrated 

here, were verified by the performance of the pilots in the simulations conducted in the 

VMS at the NASA Langley Research Center in 2002. Fig. 3.10 shows the power spectral 

densities of the roll control averaged across the pilots for both delayed and compensated 

(McFarland compensation) cases in an offset landing maneuver with 200 ms artificial 

delay added to the visual system. The McFarland compensator significantly reduces the 

PSD in the frequency range of [0.5 2.3] rad/s, whereas it increases the PSD in the range 

of [2.3 4.4] rad/s. In addition, the Cooper-Harper ratings indicate that for long added 

delay (200 ms), the pilot handling qualities tend to be degraded by the McFarland 

compensation. 
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Fig. 3.9. Prediction by the McFarland filter of the simulation data 
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Fig. 3.10. PSD of the roll stick with and without McFarland compensation 

Apparently, the biggest problem with the McFarland filter is the annoying spikes 

it causes. The longer the delay is, the larger the magnitude of the spikes. The McFarland 
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algorithm is a special integrator or an extrapolator. The simplest extrapolator to provide a 

prediction of dt  is   

 ( ) ( ) ( )p dy k y k t v k= +  (3.17) 

If the velocity changes slowly (low frequency), this works well, but if the velocity 

changes quickly, the prediction introduces error because the velocity may be quite 

different dt  later. The McFarland filter is superior to the extrapolator given by Eq. (3.17) 

because it uses three consecutive steps of velocities that can extrapolate the future 

velocity better than a single velocity. For moderate frequencies (around 1 Hz), let the 

average of these three velocities be v , then (3.11) reduces to ( ) ( ) ( )p dy k y k t v k= + , 

which is similar to Eq. (3.17), but the average velocity is used, resulting in a better 

prediction. Therefore, its working frequency range is wider than the pure extrapolator. 

However, if the velocity changes abruptly (the frequency is even higher), such as the 

velocity plotted in Fig. 3.8 near time = 60 seconds, spikes occur. No matter what the 

delay is, the three coefficients 0b , 1b  and 2b  are always positive, negative and positive, 

respectively, and the absolute value of 1b  is always the largest, e.g., for dt =0.2s, 

0b =2.9979, 1b =-5.5197 and 2b =2.7219. The absolute values of the coefficients are at 

least 10 times greater than dt . If the velocity changes by more than 10 percent in several 

iterations, spikes are likely to occur. Table 3.3 gives an example, where the two spikes 

are highlighted. From this example, it can be shown that the spikes from the McFarland 

compensation are caused by: first, the three coefficients change sign alternatively, and 

second, they do not change value in relation to changing simulation conditions. A better 

choice for the three coefficients would be 0b = 1b = 2b = dt /3, however, if the coefficients 
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could be made to change with the simulation conditions, the prediction could be even 

better. 

Table 3.3. Several iterations of McFarland prediction with spikes 

t  (s) 0v  (rad/s) 1v  (rad/s) 2v  (rad/s) py (rad) 

59.776 0.1000 0.1015 0.1029 0.0115 

59.792 0.0877 0.1000 0.1015 -0.02 

59.808 0.0754 0.0877 0.1000 0.0085 

59.824 0.0630 0.0754 0.0877 0.0072 

59.840 0.0507 0.0630 0.0754 0.0056 

59.856 0.0504 0.0507 0.0630 0.0402 

59.872 0.0502 0.0504 0.0507 0.0080 

 

3.3. Sobiski/Cardullo Filter 

In 1987, Sobiski and Cardullo21 proposed a state space predictor for compensating 

the transport delay. It is based on the equation 

 ( ) ( ) ( ) ( )
0

d dd
t tt

dt t e t e u t dτ τ τ−+ = + +∫ AAx x B  (3.18) 

which is derived from the solution of the state space differential equation u+x = Ax B& . 

This equation shows that the predicted state vector ( )dt t+x  may be calculated from the 

current state vector ( )tx  provided that the future input u  is known between t  and dt t+ . 

Unfortunately, this is an obviously impossible condition with stochastic operator’s 

control input u . Therefore, Sobiski made some assumptions about the form that the input 

might take, i.e., piece-wise constant, sinusoidal, exponentially decaying, etc, so that the 

future input may be approximated by the current input. Then the prediction is given by 
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 ( ) ( ) ( ) ( )
0

d dd
t tt

dt t e t e d u tτ τ−⎡ ⎤⎡ ⎤+ = +⎣ ⎦ ⎢ ⎥⎣ ⎦∫ AAx x B  (3.19) 

By denoting  

 dte= AΦ  (3.20) 

and 

 ( )
0

d d
t te dτ τ−= ∫ AΨ  (3.21) 

Eq. (3.19) is simplified to 

 p u= +x Φx ΨB  (3.22) 

Φ  and Ψ  are called the state transition matrix and the convolution integral matrix, 

respectively. Assuming the matrix D  is zero (this is true for most control systems), then 

the predicted output is calculated by 

 ( ) ( )py u= +CΦ x CΨB  (3.23) 

Because 0≠CΨB , the matrix D  of the compensated system is usually not zero even 

though the matrix D  of the undelayed system is zero. The problem caused by the non-

zero D  matrix of the compensated system will be addressed later in this section. Directly 

from Eq. (3.19), the structure of the Sobiski/Cardullo filter is illustrated in Fig. 3.11. The 

Sobiski/Cardullo state space predictive filter is an original approach for compensating the 

time delay. Theoretically it can compensate longer delay than the McFarland 

compensator because it uses more system information, i.e., the full state vector, though it 

requires complicated calculations. 

The state space filter may be expressed in discrete form. Let the discrete state 

equation be ( ) ( ) ( )1k k u k+ +x = Gx H , where Te= AG  and ( )0

T
e dτ τ= ∫ AH B , where T  
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is the sampling period. The discrete state space filter that predicts l  iterations in the 

future is then given by Eq. (3.24) 

 

A

∫
+

+ 

pxxx&
dteA

( )
0

d d
t te dτ τ−∫ A

+
CB

u +

 

Fig. 3.11. Sobiski/Cardullo compensator 

 ( ) ( ) ( )
1

0

l
l j

j
k l k u k

−

=

⎡ ⎤
⎡ ⎤+ = + ⎢ ⎥⎣ ⎦

⎣ ⎦
∑x G x G H  (3.24) 

In deriving Eq. (3.24), the same assumptions used by Sobiski reguarding 

continuous system input u  are also held, so that the future inputs ( )u k j+  can be 

approximated by the current input ( )u k . Define 

 ( ) l
d l =Φ G  (3.25) 

and  

 ( ) ( )
1

0

l

d d
j

l j
−

=

=∑Ψ Φ H  (3.26) 

These are the discrete state transition matrix and convolution integral matrix, respectively. 

The drawback of the discrete state space filter (Eq. (3.24)) is that it can only predict delay 

in integer multiples of the frame time T . If the time delay dt  cannot be divided exactly 

by T , say ( ), 0dt lT Tτ τ= + < < , the exact amount of prediction may be calculated with 

the interpolation method 

 ( )( ) ( )( ) ( )
0

k l T e k l T e d u k
ττ λτ λ⎡ ⎤⎡ ⎤+ + = + +⎣ ⎦ ⎢ ⎥⎣ ⎦∫A Ax x B  (3.27) 
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Comparing Eq. (3.17) and (3.19), one can see that the Sobiski/Cardullo algorithm 

is a type of extrapolator in state space format. The primary difference is that the 

Sobiski/Cardullo filter uses more system information, including the control input 

information. In the continuous state space predictor, more derivative or integration 

information is used. In the discrete state space predictor, more past information is used. 

Inclusion of the control input is a distinguishing characteristic of the Sobiski/Cardullo 

filter when compared to the lead/lag or the McFarland filter. 

To test the Sobiski/Cardullo compensator, the same system as depicted in Fig. 3.3 

is used, except the lead/lag filter is replaced with the Sobiski/Cardullo filter. Because it is 

in the state space format, the system is redrawn as in Fig. 3.12. The pilot model and the 

aircraft model are cascaded together to form the matrices A , B , C  and D , and to 

calculate Φ  and Ψ . As was done for the other two filters, 200, 400 or 800 ms delay and 

compensation are tested, and the frequency responses and step responses are shown in 

Fig. 3.13 and Fig. 3.14. 

 

Pilot
Model

Aircraft
Model

+

_

e Time
Delay

cy

Cascaded State Space Form
py u= +CΦx CΨB

py
Compensator

u= +x Ax B

 

Fig. 3.12. Block diagram of a control system with a state space compensator 

 

The Bode diagrams show that the Sobiski/Cardullo filter can compensate a 200 

ms delay with unnoticeable gain distortion and phase error up to 30 rad/s. In 
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compensating a 400 ms delay, the gain distortion is very slight, and the phase error is 

unnoticeable for frequencies lower than 10 rad/s, but the compensation displays slight 

phase lead that increases with frequency above 10 rad/s. In the 800 ms delay 

compensation case, gain distortion is significant in high frequency area, and the phase 

lead is insufficient for frequencies above 5 rad/s, causing the system to be unstable. For 

this reason, the step response of the 800 ms delay case is not presented.   
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Fig. 3.13. Bode Diagrams of the Compensated Systems (Sobiski/Cardullo) 

The step responses shown in Fig. 3.14 verify the frequency response analysis. The 

“compensated” response (thick dashed curve) refers to cy  in Fig. 3.12, and the result 

obtained by delaying the prediction by dt  is illustrated by the dashed dot curve. For good 

compensation, the compensated response must be as close to the response of the 

undelayed system (solid curve) as possible. The Sobiski/Cardullo filter achieves perfect 

compensation for 200 ms delay in this system, and for delay of 400 ms, the compensation 
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error is insignificant. Since these are all closed-loop step responses, they illustrate the 

change in responsiveness caused by the prediction and delay. Fig. 3.15 directly compares 

the lead/lag filter, the McFarland filter and the Sobiski/Cardullo filter to step responses. 

The superiority of the Sobiski/Cardullo filter is obvious in terms of both gain distortion 

and phase compensation. 
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Fig. 3.14. Step responses of the Compensated Systems (Sobiski/Cardullo) 

However, the Sobiski/Cardullo filter has several problems. First, since the state 

space equations are derived from linear differential equations, and they are constant in 

Sobiski’s implementation, the filter can only be applied to linear time-invariant (LTI) 

system. As previously stated, the aerodynamics of a flight simulator are usually nonlinear 

and time variant, and thus the matrices A , Φ  and Ψ  are not available. This is the 

primary reason the Sobiski/Cardullo filter has remained in laboratory use since its advent 

almost 20 years ago. Second, Sobiski’s implementation has some limitations. In his 
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implementation, the Pade approximation of the time delay is added before the 

compensator, as is shown in Fig. 3.11., (where Pade approximation of the time delay is 

necessary and the time delay model is cascaded with the operator model and the aircraft 

model so that the matrices Φ  and Ψ  carry the information of the time delay)  in contrast,  

the author’s approach is shown in Fig. 3.12.  In Sobiski’s system, the delayed variable to 

be compensated must have the same dimension as the undelayed one. In a flight 

simulator, the transport delay appears to be the delayed image displayed on the screen. 

Because the image and the corresponding aircraft state do not have the same dimension, 

the real transport delay is not linear. In the author’s implementation  (shown in Fig. 3.12) 

the delay occurs after the prediction which more closely represents the compensation in a 

real flight simulator. In a real system, the “Time Delay” may be a pure transport delay in 

the visual system, and may not necessarily match the Pade approximation of the time 

delay. Therefore, Sobiski’s implementation has more theoretical significance than 

practical usefulness. Third, the assumptions for approximating the future control input 

with the current one, such as piece-wise constant, sinusoidal, exponentially decaying, etc, 

do not apply to the real simulation conditions. As given by Eq. (3.23), the matrix D  for 

the compensated system is not zero, and hence the high frequency components of the 

stochastic pilot control input u  will be added to the compensation py . Finally, the state 

space filter involves a large computation burden because of the matrix operations, 

especially the power series operations in the calculations of the state transition matrix Φ  

and the convolution integral matrixΨ . Because of these limitations it would be desirable 

to develop a more practical state space predictor that can compensate longer delay than 
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currently available time delay compensators, and simplify the algorithm to provide 

minimal computation cost. 
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Fig. 3.15. Comparison of the Three Prominent Compensators 
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4. Novel Approaches to Compensation of Time Delay 

As stated in Chapter 3 (section 3.2), there are numerous problems with the 

currently available compensators.  The McFarland predictor offers insufficient phase lead 

and large gain distortion at high frequencies due to the constant coefficients that do not 

change with the simulation conditions. The Sobiski/Cardullo filter requires a linear time-

invariant system model, whereas the aerodynamic models used in modern flight 

simulators are usually non-linear, time-variant and are frequently not readily available. 

Another major problem with the Sobiski/Cardullo filter is its computational burden. This 

chapter presents some new techniques to address these problems. First, a simple spike-

reduction algorithm for the McFarland filter is introduced. Next, this chapter discusses 

using least squares methods in both frequency and time domains to design a three-

velocity predictor. After that, the author will present two novel compensation algorithms 

that have been developed—an adaptive predictor which uses a Kalman filter and a state 

space predictor which uses a linear model of the aircraft dynamics to predict future states. 

The well-known Kalman filter technique is used in a unique manner so that the predictor 

can accurately provide the desired amount of prediction. From five different 

implementations of the Kalman estimator, the best option was selected based on the 

results of theoretical analyses. The state space filter with a linear reference model is the 

first practical model referenced state space predictor applied in a flight simulator to 

compensate the time delay. Several currently available linear aircraft dynamic models 

were tested, and the one that achieved the best prediction, based on the offline tests (see 

Chapter 5, p106), was chosen. The relationship between the reference model and the 
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quality of prediction was also investigated. By simplifying the state predictor to an 

ordinary predictor in a transfer function format, the computational workload is reduced 

significantly. The two new compensators are described below. 

4.1. Reduction of Spikes in the McFarland Compensator 

Close examination of the spikes caused by the McFarland compensation shows 

that wherever the spike occurs, the absolute value of the difference in the prediction of 

the aircraft state between two adjacent iterations is abnormally large (Fig. 4.1), much 

greater than the maximum of the corresponding absolute difference of the undelayed 

aircraft state. This fact leads to the definition of a criterion to decide if a spike will occur. 

If y  and py  are the undelayed and predicted aircraft states, let  

[ ] [ ]( )1 1k
imd Max y i y i== − − , 

where k  indicates the current iteration, and let [ ] [ ]1p p pd y k y k= − − , then, if 

 p
d

d
r

md
= >= μ                                                  (4.1)   

a noticeable spike will occur (μ  varys with the time delay). For a delay up to 200 ms, 

2 5.μ =  works well. If there is a noticeable spike, recalculate the prediction using 

 [ ] [ ]1 p
p p

d

dy k y k ,r= − +  (4.2) 

and the spike will be  reduced. Fig. 4.2 shows an example. 

Pilots flying the VMS at the NASA Langley Research Center commented that 

their performance was much better with this algorithm. Nonetheless, it is worth 

mentioning that this simple spike-reduction algorithm is only an expedient measure. 

From Fig. 4.2, it’s obvious that the algorithm still causes prediction error, and more 
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importantly, the spike reduction algorithm reduces the phase lead in the spike-

concentrated area. 
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Fig. 4.1. Spikes caused by the McFarland compensation 
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Fig. 4.2. Spikes are reduced 

4.2. Frequency Domain Least Squares Method to Design McFarland Predictor† 

In deriving the three coefficients of his predictor with sinusoidal tuning, 

McFarland used the system bandwidth, but he did not include a system dynamics model. 

For this reason, the McFarland compensator may work well for some systems with 

certain types of input, but it may not yield satisfactory results for other systems. The 

problem can be minimized if the three coefficients are designed by taking a system 

dynamics model into account. One way to achieve this is to make sure the frequency 

                                                 

 

† If the coefficients are not determined with the sinusoidal tuning, the predictor is no longer technically a 

McFarland predictor, however, it is still referred to as a McFarland predictor for convenience in this 

discussion. 
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characteristics of the compensated system are as close to that of the undelayed system as 

possible, based on some defined criterion. The least squares method can be used for this 

purpose. As an example, a McFarland filter, designed with the frequency least squares 

method for the system depicted in Fig. 3.3, is presented. The design criterion is to 

minimize the cost function 

 ( ) ( ) ( ) 2
0

1

1
2

N

d i McF i i
i

I H z H z H z
=

= −∑  (4.3) 

where ( )dH z ,  ( )McFH z  and ( )0H z  are, respectively, the pulse transfer functions of the 

delayed system, the McFarland filter and the undelayed system, given by 

 ( ) ( ) ( ) ( )1 Ts

d ac op td
eH z sH s H s H s
s

−⎧ ⎫− ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎨ ⎬⎣ ⎦ ⎣ ⎦⎣ ⎦
⎩ ⎭

Z  (4.4) 

 ( ) ( )
1

1 2
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1
2 1McF
T zH z b b z b z

z

−
− −

−

⎛ ⎞−= + + +⎜ ⎟+⎝ ⎠
 (4.5) 

 ( ) ( ) ( )0
1 Ts

ac op
eH z H s H s
s

−⎧ ⎫− ⎡ ⎤⎡ ⎤= ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭

Z  (4.6) 

where jTz e ω−= . The pulse transfer functions are used because the McFarland filter is 

discrete. In Eq. (4.4) and (4.6), the operation [ ]1 Tse ...
s

−⎧ ⎫−
⎨ ⎬
⎩ ⎭

Z  is used to obtain the 

discrete transfer function using a zero-order hold (ZOH), with a sampling period T. 

( )acH s , ( )opH s  and ( )tdH s  are given in Eq. (2.11), (2.10)  and (2.4), respectively. 

Because the output of ( )acH s  is the displacement (roll angle), and the McFarland filter 

uses the velocities, the differentiator s  is pre-multiplied to change the output of ( )dH z  

to velocity. By choosing a suitable number N of frequency points iω within the pilot 
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working frequency range, the cost function (4.3) is minimized, and satisfactory results 

can be achieved. The final result is 

 [ ] ( ) 1

0 1 2
T T Tb b b

−
= A A A b  (4.7) 

with 

 ( ) ( ) 1 2
2 2 2
1 2

1 1 1 T

V V V N

N

real imag , z z z
z z z

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥= + = ⋅⋅⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅⎣ ⎦

A Z Z Z  (4.8) 

 ( ) ( ) ( ) ( ) ( )1 2
T

T T T T T T Nreal imag , H z H z H z⎡ ⎤= + = ⋅⋅⋅⎣ ⎦b D D D  (4.9) 

where ( ) ( ) ( )
1

0 1

1
2 1T d
T zH z H z H z

z

−

−

⎛ ⎞−= − ⎜ ⎟+⎝ ⎠
. 

Although the cost function (4.3) seems to put constraints on the magnitude only, it 

actually minimizes the errors in both the real part and the imaginary part, so that the 

phase error is minimized also. The Bode diagram (Fig. 4.3) and step response (Fig. 4.4) 

of the compensated system with the McFarland filter designed with this method also 

shows that both the gain distortion and phase error are decreased compared with the 

ordinary McFarland filter. 
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Fig. 4.3. Frequency responses of compensated systems with McFarland filters 
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Fig. 4.4. Step responses of compensated systems with McFarland filters 
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4.3. Time Domain Least Squares Method to Design McFarland Predictor 

The frequency domain least squares method introduced in the previous section is 

suitable for designing a McFarland predictor in a simple simulation system similar to Fig. 

3.3. However, in a high fidelity, piloted flight simulator, ( )opH s  is replaced with a 

human pilot, and the flight dynamics are much more complicated than ( )acH s  and may 

not be expressed as a simple transfer function. The frequency least squares method does 

not apply in this situation. Nevertheless, because the McFarland filter involves only the 

displacement and its velocity, which are available in the flight simulator, they can be used 

to design the McFarland filter coefficients that best fit the simulation condition according 

to similar quadratic criteria. A sample of roll axis displacement and velocity data 

recorded during an offset approach flown in the VMS at the NASA Langley Research 

Center, is plotted in Fig. 3.8, and is reused here to derive this predictor. Defining the roll 

angle and its velocity as y  and v , respectively, the time domain quadratic cost function is 

given by 

 ( ) ( ) ( ) ( ) ( )
2

0 1 2
1

1 1 2
2

N

d
k

I y k b v k b v k b v k y k
=

⎡ ⎤= + + − + − −⎣ ⎦∑  (4.10) 

with k  being the iteration index,  and dy  the roll angle y  delayed by dt , which may be 

obtained from y  using the Pade approximation. Minimization of the cost function I  in 

the last equation results in a left pseudo-inverse as given in Eq. (4.7), with different 

matrices A  and b .   

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0 1 2 3
0 0 1 2 1
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v v v v v N
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v v v N

⎡ ⎤⋅ ⋅ ⋅
⎢ ⎥= ⋅⋅⋅ −⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ −⎣ ⎦

A  (4.11) 
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Fig. 4.5. Roll angle, velocity and roll stick of a simulation 

After the three coefficients 0b , 1b  and 2b  are designed, calculate the predicted 

displacement with Eq. (3.11).  A comparison of the McFarland compensators designed 

with the sinusoidal tuning and the least squares method, on the recorded data plotted in 

Fig. 3.8 is shown in Fig. 4.5. (In this case 192 ms prediction was applied.) With the least 

squares design, the spikes are significantly reduced, and the high frequency artifacts in 

the roll angle peak areas caused by the sinusoidally-tuned McFarland compensator are 

also removed. However, the calculation workload is substantially increased, and another 

serious drawback of the least squares methods is the three coefficients are not available 
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until the end of the simulation. Thus, this method is referred to as an offline least squares 

method. 

4.4. Adaptive Predictor 

The time domain least squares method discussed in the previous section can be 

implemented, for each iteration, so that the predictor coefficients are updated instantly. 

This involves calculating the pseudo-inversion (Eq. (4.7)) in each iteration, requiring 

intensive computation and storage. However, these calculations can be carried out in a 

recursive manner such that the current update uses only the current data and the results of 

the previous calculation. In this manner both redundant calculation and the storage of 

large quantaties of data are avoided. The coefficients are updated with the process so that 

the large prediction error caused by the constant filter coefficients is reduced. A 

schematic diagram of the adaptive predictor is illustrated in Fig. 4.6. 

 

Adaptive
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Delay 

Kalman Estimator
New Coefficients 

Aircraft  
States +

-

Error e 
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Fig. 4.6. Structure of the adaptive predictor with the Kalman estimator 

To conveniently compare the adaptive predictor with the McFarland predictor, 

three consecutive steps of velocity will be used as an example. Therefore, using Fig. 4.6, 

the compensated aircraft state cy  is given by 0 1 1 2 2c dy y b v b v b v− −= + + + , where dy  is the 
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delayed aircraft state, and v , 1v−  and 2v−  are the velocities of y  in three consecutive 

iterations.  Minimizing the quadratic loss function given by either Eq. (4.10) or  

 [ ]21
2 cI E y y= −  (4.13) 

where operator “ E ” refers to the expectation. (Dividing Eq. (4.10) by N  yields Eq. 

(4.13). The same results are obtained by setting the derivatives to zero.  Eq. (4.13) was 

designed to conveniently introduce the ODE given in Eq. (4.30)). By making use of the 

Kalman matrix inversion theorem, the final recursive least squares method is given as 

 ( ) ( ) ( ) ( )3 3 1Tk k k k×⎡ ⎤= −⎣ ⎦P I - K j P  (4.14) 

 ( ) ( ) ( ) ( ) ( ) ( ) 1
1 1 1T Tk k k k k k

−
⎡ ⎤= − + −⎣ ⎦K P j j P j  (4.15) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1T
dk k k y k y k k k⎡ ⎤= − + − −⎣ ⎦θ θ K - j θ% % %  (4.16) 

where 

 ( ) ( ) ( ) ( )0 1 2
T

k b k b k b k⎡ ⎤= ⎣ ⎦θ%  (4.17) 

which gives the three coefficients of the adaptive predictor, and 

 ( ) ( ) ( ) ( )1 2T k v k v k v k⎡ ⎤= − −⎣ ⎦j  (4.18) 

is a vector consisting of the three consecutive velocities. The algorithm starts with 

( ) ( ) ( )( ) 1

0 0 0
Tk k k

−
=P j j  and ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0

T
dk k k y k y k= −θ P j% , where 0k  

corresponds to the first time when the quantity ( ) ( )0 0
T k kj j  is nonsingular. Notice that 

since the quantity inside the brackets is a scalar, a matrix inversion is avoided, and the 

algorithm is considerably simplier than the original left pseudo inverse given by Eq. (4.7). 

This is the widely used Kalman filter algorithm. Because the coefficients are updated 
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each iteration, the prediction error is also reduced significantly. Simulations show that the 

new adaptive predictor substantially reduces the high frequency gain distortion and 

spikes caused by the McFarland filter. The three-step recursive least squares algorithm 

(Eq. (4.14) - (4.16)) can be formulated in a compact form as: 

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

0

1 1T
dk

T

i k

k
k k y k y k k k

k k
=

⎡ ⎤= − + − −⎣ ⎦
∑

j
θ θ - j θ

j j
% % %  (4.19) 

with ( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1
k

T T

i k
i i k k k k− −

=

= = − +∑ j j P P j j . 

The algorithm given by Eqs. (4.14)-(4.16) allocates even weight to the data 

available no matter how old they are in the data history.  A forgetting factor ( )0 1λ < λ ≤  

would allow the designer to assign larger weight to the more recent data so that they 

contribute more than the older data in the least squares algorithm. The new cost function 

with the forgetting factor becomes ( ) ( )( )
0

21
2

k
k i

c
i k

I y i y iλ −

=

= −∑ , and the update formulas 

of the matrices P  and K  are changed to 

 ( ) ( ) ( ) ( )3 3 1 /Tk k k k λ×⎡ ⎤= −⎣ ⎦P I - K j P  (4.20) 

 ( ) ( ) ( ) ( ) ( ) ( ) 1
1 1T Tk k k k k kλ

−
⎡ ⎤= − + −⎣ ⎦K P j j P j  (4.21) 

The recursive formula for updating θ%  is unchanged (the same as Eq. (4.16). An optimal 

forgetting factor range has been determined by trial-and-error and an algorithm with a 

forgetting factor in this range demonstrated a reduction of the predicting error.     

The recursive least squares method can be simplified for different approximation 

algorithms. The simplification comes from avoiding updating the matrix P , since 
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updating the matrix P  dominates the computing effort for a large number of iterations. 

The first approximation considered was the Kaczmarz’s algorithm. But because the 

recursive least-square algorithm updates the current estimate ( )T kθ  based on the previous 

estimate ( )1k −θ%  and the new measurement ( ) ( ) ( )Ty k k k= j θ , which contains 

information only in the direction of ( )T kj  in the parameter space, Kaczmarz proposed the 

normalized projection algorithm that minimizes ( ) ( ) 2
k k−θ θ% % subject to the constraints, 

( ) ( ) ( )Ty k k k= j θ% . The cost function for the Kaczmarz’s algorithm (the normalized 

projection) is ( ) ( ) ( ) ( ) ( )2 TI k k y k k kα ⎡ ⎤= − + −⎣ ⎦θ θ j θ% % % , which may be considered as a 

function of the vector variable ( )kθ  with α , the Lagrange multiplier, as a parameter. 

Taking derivatives with respect to ( )kθ  and α  and invoking the stationary results in the 

Kaczmarz’s algorithm, also called the normalized projection algorithm, ( )kθ  becomes 

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1T

dT

k
k k y k y k k k

k k
⎡ ⎤= − + − −⎣ ⎦

j
θ θ - j θ

j j
 (4.22) 

Comparing the Kaczmarz’s algorithm with the original least squares algorithm given in 

Eq. (4.19) shows that the denominator of the Kaczmarz’s algorithm is changed from a 

matrix ( ) ( )
0

k
T

i k
i i

=
∑ j j  to a scalar ( ) ( )T k kj j . This is where the simplification comes in. 

Two other similar approximation least squares algorithms, with scalar denominators are 

the Stochastic Approximation algorithm and the Least Mean Square (LSM) algorithm 

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

0

1 1T
dk

T

i k

k
k k y k y k k k

i i
=

⎡ ⎤= − + − −⎣ ⎦
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θ θ - j θ

j j
 (4.23) 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1T
d

k
k k y k y k k k

γ
⎡ ⎤= − + − −⎣ ⎦

j
θ θ - j θ  (4.24) 

The formula of the stochastic approximation (SA) algorithm ((4.23)) looks similar 

to the one-step basic least squares algorithm given in Eq. (4.19), with only the summation 

element being changed from a matrix ( ) ( )Ti ij j  to a scalar ( ) ( )T i ij j . Inspired by the 

similarity, the stochastic approximation algorithm may also be rewritten in three steps: 

first Eq. (4.14) is rewritten as  

 ( ) ( ) ( ) ( )1 1k k k k⎡ ⎤= −⎣ ⎦P - j K P  (4.25) 

and the remaining two steps are exactly the same as Eqs. (4.15) and (4.16). If the 

exponential forgetting factor is applied to the three-step stochastic approximation 

algorithm, Eq. (4.20) becomes 

 ( ) ( ) ( ) ( )1 1 /k k k k λ⎡ ⎤= −⎣ ⎦P - j K P  (4.26) 

and the formulas for the second and third steps are the same as Eqs. (4.21) and (4.16), 

respectively. Finally, the stochastic algorithm with a forgetting factor is formulated as 

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

0

1 1T
dk

k i T

i k

k
k k y k y k k k

i iλ −

=

⎡ ⎤= − + − −⎣ ⎦
∑

j
θ θ - j θ

j j
 (4.27) 

Offline tests of the five adaptive prediction algorithms, namely the Kalman filter 

algorithm, Kalman algorithm with a forgetting factor, the Kaczmarz’s algorithm, the 

stochastic approximation algorithm and the least mean square algorithm, on recorded roll 

angle data are illustrated in Fig. 4.7 and Fig. 4.8 (which is a blowup of Fig. 4.7) 

It is obvious from Fig. 4.8 that the stochastic approximation works best among 

these five adaptive algorithms. The next chapter will show the superiority of the 
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stochastic approximation by using three criteria. The stochastic approximation algorithm 

was chosen to implement the adaptive predictor in the final piloted tests. 
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Fig. 4.7. Adaptive compensations applied to the roll angle using different algorithms 
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Fig. 4.8. Zoom of Figure 4.7 

The recursive least squares methods have long been applied in system 

identification. In the past, the simplified recursive least squares algorithms, such as the 

stochastic approximation algorithm, were favored over the basic Kalman filter algorithm, 

because the former were more useful in real time when the processing speed of the digital 

computer was low. However, the simplified algorithms usually give biased identification, 

and they are vulnerable in the presence of noise. Therefore, as new generations of 

computers appeared with much higher processing speed, the basic algorithm became the 

preferred method once processing time was not a primary concern. Nevertheless, the 

stochastic approximation method is more suitable to application in a fight simulator when 

compensating for transport delay than the Kalman filter algorithm for three reasons. 

First, the application here is not system identification, rather it is a method to 

design a predictor aimed at providing accurate phase lead with small error. The input 

variables (the aircraft state and its velocity) contain little noise because they are results of 
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the aerodynamic computation, rather than measurement, and one is simply the integration 

of the other. 

Second, the processing time is a concern. In order to minimize the transport delay, 

it is required that all the aircraft states in different coordinate systems be calculated in one 

frame after the operator control input is sampled. Unfortunately in the Langley VMS 

these computations consume almost the whole frame, leaving very limited time available 

for implementing the compensation. 

Third, the stochastic approximation algorithm yields the least predicting error 

(most accurate phase lead with least gain distortion) among all these recursive least 

squares algorithms. The explanation is given as follows: 

The basic requirement for a predictor of this type, i.e., using three consecutive 

iterations of velocity to predict, is 0 1 2 db b b t+ + = . This guarantees that the prediction is 

close to the time delay dt  if the velocity change is not abrupt (low frequencies). But as 

analyzed in Chapter 2, if the velocity changes quickly  (which frequently happens in real 

flight simulations), the filter causes a large error when the differences among the three 

coefficients are large. The benefit of using three steps of velocity instead of one is that a 

weighted average of three past values is less likely to cause a spike than just one past 

value.  Another requirement of a three-velocity predictor is that the differences among the 

three coefficients must be small. A first choice might be 0b = 1b = 2b = dt /3, but this is not 

necessary because the velocity changes irregularly. This is why an online recursive 

update of coefficients is employed. The coefficients may vary from simulation to 

simulation, but ideally they are as close to each other as possible. The smaller their 

difference, the better the prediction of the filter at high frequencies. Investigation shows 
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that, of the previously introduced recursive least squares methods, the stochastic 

approximation algorithm always generates the least difference among the coefficients. 

Table 4.1 shows the converged filter coefficients calculated with five different algorithms 

averaged across 16 sets of simulation data in the roll axis. Only the stochastic 

approximation method yields three coefficients that are close to each other. Note that the 

least mean squares algorithm alone gives all-positive coefficients in this case, but it has 

been found in other simulations that the coefficients have alternative sign changes.                          

Table 4.1. Three coefficients calculated with different methods ( dt =0.192s) 

Algorithm 0b  1b  2b  Sum 
McFarland 

Filter 2.8613 -5.2342 2.5650 0.192 

Kalman 
Filter -0.0030 -0.5894 0.7811 0.189 

Stochastic 
Approximation 0.0525 0.0571 0.0789 0.188 

Kaczmarz 
Algorithm -0.2064 0.0503 0.3485 0.192 

Least Mean 
Square 0.0284 0.0700 0.1066 0.205 

 

The algorithm expressed in Eq. (4.23) belongs to a large family called Stochastic 

Approximation Algorithms. Two other prominent versions are the Saridis and Stein’s 

algorithm and the Kwatny’s form22. A general expression of the stochastic approximation 

algorithm is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1T
k dk k k y k y k k kε ⎡ ⎤= − + − −⎣ ⎦θ θ j - j θ  (4.28) 

where the scalar coefficient kε  must be monotonically decreasing. Specifically Robins 

and Monro show that if 
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1 1
0 0k k k kk k k

, lim , , andε ε ε ε
∞ ∞

→∞ = =
> = = ∞ < ∞∑ ∑  (4.29) 

the algorithm Eq. (4.28) converges. For the algorithm given in Eq. (4.23), 

        
( ) ( )
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1
k k

T

i k
i i

ε

=

=
∑ j j

 

where ( ) ( ) ( ) ( )1 2T k v k v k v k⎡ ⎤= − −⎣ ⎦j .  In a flight simulation, the velocity does not 

change exponentially, so the coefficient ( ) ( )
0

k
T

k
i k

i iε
=

=∑ j j  meets the conditions given in 

Eq. (4.29), and hence the algorithm Eq. (4.23) is indeed a stochastic approximation 

algorithm. Conversely, in the Kaczmarz’s algorithm ( ) ( )T
k i iε = j j , and in the least mean 

square algorithm kε  is a constant, both of which do not meet the 0ii
limε
→∞

=  requirement. 

Therefore, these are not stochastic approximation algorithms. 

The ODE that characterizes the asymptotic behavior of the stochastic 

approximation algorithm given in Eq. (4.28) is23 

 
[ ]{ }

( ) ( )

21
2

T
d

T T

E y y

E E y

∂= − − −
∂

= −

θ j θ
θ

jj j θ

&
 (4.30) 

where E  is the mathematical expectation. The right side of the first equality of Eq. (4.30) 

is the negative gradient of the cost function, indicating that the stochastic approximation 

algorithm may be interpreted as a stochastic gradient descent algorithm. Though the 

gradient of the cost function in Eq. (4.13) with respect to θ  is unknown, the gradient at 

the current sample of ( ) ( ) ( ) ( ){ }2T
dy k y k k k⎡ ⎤− − −⎣ ⎦ j θ  is just 

( ) ( ) ( ) ( ) ( )1T
dk y k y k k k⎡ ⎤− −⎣ ⎦j - j θ , which is the dynamic term from Eq. (4.28). Because 
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the quantity inside the brackets ( ) ( ) ( ) ( )1T
dy k y k k k− −- j θ  is a scalar, from the 

asymptotic ODE, ( )kθ&  is in the direction of ( )kj . This means the modifying term of 

( )1k +θ  is in the direction of ( )kj . And since the recursive algorithm starts with an 

initial zero vector, it is logical that θ  is in a direction close to the average of j . Because 

( ) ( ) ( ) ( )1 2T i v i v i v i⎡ ⎤= − −⎣ ⎦j , and the average velocity does not change much within 

two iterations, it follows that the three elements of θ  (or the coefficients of the adaptive 

predictor) do not differ much either. This demonstrates why the stochastic approximation 

algorithm gives the best prediction. 

4.5. A Practical State Space Compensator with a Reference Model 

As stated in section 3.3, although the Sobiski/Cardullo predictor shows some 

desirable advantages, it also has limitations in its implementation that prevent its practical 

application in a flight simulator. The basic state space prediction equation 

p u= +x Φx ΨB  requires a linear time invariant (LTI) system, while the simulator flight 

dynamics are usually nonlinear, time-variant and coupled in different degrees of freedom, 

and are frequently not available.  Instead of being expressed in state space equations, they 

are often expressed in coupled non-linear differential equations. However, employing an 

aircraft reference model in the predictor algorithm can solve this problem. This results in 

the development of a novel practical state space predictor, which is discussed as follows.  

4.5.1. Basic Implementation 

A reference model is an approximate linear aircraft dynamics model that is used 

to form the predictor states from the operator control input and the aircraft states, as well 

as to provide the state transition matrix and the convolution integral. This reference 
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model is used so that the state space prediction equation p u= +x Φx ΨB  may be applied 

in a flight simulator when the aerodynamics are not available. Fig. 4.9 illustrates this 

approach, where ax  is the aircraft state vector (including the aircraft displacement, 

velocity and acceleration, etc), x  is the filter state vector and px  is the predicted filter 

state vector. Because the aircraft state vector ax  includes the aircraft state y  to be 

predicted and its velocity and acceleration, the filter state vector x  is also in terms of y . 

Therefore, the predicted filter state px  calculated with p u= +x Φx ΨB  contains the 

predicted information of y . Then using the matrix C  to retrieve py  from px , the desired 

prediction is achieved. 

Φ

Ψ

+
C

B

+Aircraft 
Model 

Forming 
the Filter 
States 

Predictor 

u ax x px py

 

Fig. 4.9. Structure of the state space compensator using a reference model 

Four 4th-order reference models were tested. The first two models give the 

relationship between the pitch angle and the roll angle, respectively, and the 

corresponding stick deflections of a fixed wing jet flying at an altitude of 30,000ft and an 

airspeed of 430 knots. They will be called Model I and Model II (Eq. (2.11)). The other 

two models are for a large commercial transport, in the pitch mode, one for cruise, and 

one for landing. They will be called Model III and Model IV. These four models share 

the same general form of the transfer function 
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 ( )
2

2 1 0
4 3 2

3 2 1 0
AC

b s b s bH s
s a s a s a s a

+ +=
+ + + +

 (4.31) 

The observable state space matrices of this general model are given in Eq. (4.32).  

Selection of the observable canonical form is made because the output is desired to be the 

first state variable. (In other words, 1y x= ; and after the predicted filter state vector px  is 

obtained, the predicted aircraft state is just the first element of px , i.e., 1p py x= .) The 

expressions of the four state filter variables are directly derived from u
y u

+⎧
⎨ = +⎩

x = Ax B
Cx D

& , and 

the result is given in Eq. (4.33). Note that [ ]1 2 3 4
Tx x x x = x  is the predictor state 

vector. This is an artificial state vector because, aside from the first element 1x , the 

remaining elements do not exist in the simulator and have no physical significance. They 

are formed from the reference model. 

 [ ]
3

2 2

1 1

0 0

1 0 0 0
0 1 0

, , 1 0 0 0 , 0
0 0 1
0 0 0

a
a b
a b
a b

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A B C D  (4.32) 

 

1

2 3

3 3 2 2

4 0 0

T

x y
x y a y
x y a y a y b u

x b udt

=⎧
⎪ = +⎪
⎨ = + + −
⎪
⎪ =⎩ ∫

&

&& &  (4.33) 

Note that, in addition to Eq. (4.33), alternative formulas for calculating the state 

variables 2x , 3x  and 4x  exist. Namely, { }2 2 1 3 20

T
x a x x b u dt= − + +∫ , 

{ }3 1 4 10

T
x a y x b u dt= − + +∫ and 4 3 1 1x x a y b u= + −& . Though the final prediction, when 

using the alternatives is only slightly different, these alternative equations are not used 
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because they require an extra integration, they include the jerk term 3x& , which introduces 

high frequency artifacts. 

In most aircraft simulations, the aerodynamic model is processed first, and then 

the accelerations and velocities of the vehicle are calculated in the body frame.  These 

velocities and accelerations are then transformed to other necessary frames. For the visual 

display, the cueing channel for which the time delay compensation is designed, the 

topodetic coordinate frame is normally used (occasionally the geodetic frame24, or north-

east-up frame is used). In this coordinate frame, the six axes are roll, pitch, yaw, altitude, 

latitude and longitude. Prior to this study, the accelerations in these six axes were not 

normally available. The formulas to calculate these six accelerations are given below 

without their derivations (the derivations are in Appendix F). 

 
1
0
0

tan sin tan cos p
cos sin q

sin / cos cos / cos r

φ θ φ θ φ
θ φ φ
ψ φ θ φ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≈ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&& &

&& &

&& &

 (4.34) 

where φ , θ  and ψ  are the roll, pitch and yaw angles (Euler angles), and p& , q&  and r&  are 

the three angular accelerations in the body frame. The other three accelerations are 

 2
T
B E

u
l v
h w

⎡ ⎤ ⎡ ⎤λ φ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ + θ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ψ⎣ ⎦⎣ ⎦ ⎣ ⎦

= P T

&& &&
&& &&
&& &&

 (4.35) 

where λ , l  and h  are the latitude, longitude and altitude, and u& , v&  and w&  are the three 

translational accelerations in the body frame, and the matrices 2
A

B EP  and T  are 

 
2

T
B E

cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− +⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥− −⎣ ⎦

P  (4.36) 
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11 12 31

21 22 32

31 32 33

α α α
α α α
α α α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T  (4.37) 

with the elements being given in Table 4.2. 

Another problem is on the input u  in the six axes, since there are only four 

control inputs: the roll stick, the pitch stick, the rudder pedal and the throttle. For the roll 

and pitch compensation, the input is the roll stick and pitch stick, respectively. For yaw, 

both the roll stick and the rudder pedal contribute, but the input is chosen to be the rudder 

pedal because its control is more direct.  Altitude is changed indirectly by the pitch angle 

or throttle, thus the pitch stick can be employed as its input.  Longitude is affected by the 

heading, hence the rudder pedal may be used as its input. 

Table 4.2.  Elements of the matrix T  

Element Expression 
11α  ( ) ( )v cos sin cos sin sin w cos sin sin sin cosφ θ ψ φ ψ φ ψ φ θ ψ+ + −  

12α  u sin cos v sin cos cos wcos cos cosθ ψ φ θ ψ φ θ ψ− + +  

13α  ( ) ( )u cos sin v sin sin sin cos cos w sin cos cos sin sinθ ψ φ θ ψ φ ψ φ ψ φ θ ψ− − + + −  

21α  ( ) ( )v cos sin sin sin cos w cos cos sin sin sinφ θ ψ φ ψ φ ψ φ θ ψ− − +  

22α  u sin sin v sin cos sin wcos cos sinθ ψ φ θ ψ φ θ ψ− + +  

23α  ( ) ( )u cos cos v sin sin cos cos sin w sin sin cos sin cosθ ψ φ θ ψ φ ψ φ ψ φ θ ψ+ − + +  

31α  v cos cos w sin cosφ θ φ θ− +  

32α  u cos v sin sin wcos sinθ φ θ φ θ+ +  

33α  0  
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Fig. 4.10. Comparison of the state space predictors with four reference models 

After the filter state vector x  is available from Eq. (4.33), apply the state space 

prediction formula p u= +x Φx ΨB to calculate the predicted filter state vector, and 

finally calculate the predicted aircraft state with p py = Cx  ( 0=D ).  Compensated data, 

from the state space filters using the four formerly introduced reference models on 

recorded roll angle data are illustrated in Figs. 4.10 and 4.11 (an enlargement of Fig. 

4.10). They show that the state space filter with reference Model IV achieves the best 

prediction among the four reference models. The next chapter will present a detailed 

comparison of the effectiveness of the four reference models. Therefore, Model IV, or the 

landing model of a large commercial transport, in pitch has been chosen as the reference 

model for the state space compensation in the final tests. 
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Fig. 4.11. Zoom of Figure 4.10 

The reference models used in the state space compensation are not necessarily 4th-

order. Two 3rd-order models25 were also evaluated. The formulation of the filter state 

vector with the 3rd-order reference model is similar to that with the 4th-order, and hence 

only the result is listed here. The general transfer function and the state space expression 

of the model, and the filter state vector are, respectively 

 ( )
2

2 1 0
3 2

2 1 0
AC

b s b s bH s
s a s a s a

+ +=
+ + +

 (4.38) 

 [ ]
2 2

1 1

0 0

1 0
0 1 1 0 0 0
0 0

a b
a , b , ,
a b

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

A B C D  (4.39) 
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1

2 2 2

3 0 00

T

x y
x y a y b u

x a y b u dt

⎧ =⎪
⎪ = + −⎨
⎪

= − +⎪⎩ ∫

&  (4.40) 

There are also alternative expressions for some elements of the predictor state 

vector, but only the formulation that resulted in better compensation is shown. Although 

compensation achieved by the state space filter with a 3rd-order reference model is not as 

good as with the 4th-order models (the 3rd-order reference model produces greater phase 

error but smaller gain distortion in the prediction), it is still better than the McFarland 

compensation. A detailed comparison among all these reference models will be presented 

in the next chapter. 

4.5.2. Simplification and Essence of the State Space Compensator 

Calculating the four predicted filter states as given by p u=x Φx +ΨB  involves 

many matrix operations. However, what is really needed is the predicted aircraft state py  

given by p py = Cx , and because [ ]1 0 0 0=C , py  is just the first element of px . 

Therefore, calculation of the last three elements of px  is not necessary, and this shows 

that the algorithm can be simplified. The simplification is given in Eq. (4.41), where φij  

and ψ j  are elements of matrices Φ  andΨ  (Eqs. (3.20) and (3.21)). By substituting the 

expressions of the four elements of the filter state vector in Eq. (4.33), the final simplified 

state space compensator is obtained as Eq. (4.42)  
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( ) ( )

[ ]
11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

11 1 12 2 13 3 14 4 1

1 0 0 0

p py u

x
x

u
x
x

x x x x u

φ φ φ φ ψ
φ φ φ φ ψ
φ φ φ φ ψ
φ φ φ φ ψ

φ φ φ φ ψ

= = +

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

= + + + +

Cx CΦ x CΨB

 (4.41) 

 ( ) ( ) ( )11 12 3 13 2 12 13 3 13 1 13 2 14 0 0

T

py a a y a y y b u b udtφ φ φ φ φ φ ψ φ φ= + + + + + + − + ∫& &&  (4.42) 

This is the essence of the state space filter! When compared with the previous 

compensator, this shows that, while the previous compensators use three consecutive 

steps of velocity to predict, the state space filter uses the current velocity, acceleration, 

the control input and its integral to predict. 

Likewise, the state space predictor based on the 3rd-order reference model is 

simplified, and the final result is similar to Eq. (4.42): 

 ( ) ( )11 12 2 12 13 0 1 12 2 13 00 0

T T

py a y y a ydt b u b udtφ φ φ φ ψ φ φ= + + − + − +∫ ∫&  (4.43) 

Eq. (4.43) implies that the state space predictor may also be interpreted as a 

general PID controller with two modification terms on the control input u. 

The prediction of the state space filter depends solely on the five coefficients in 

Eq. (4.42) or (4.43), which are functions of the time delay and the reference model. 

Therefore, an algorithm based on the state transition matrix and convolution integral with 

a reference model can be used as a design tool—to design the coefficients of the 

compensator. Because the reference model is time invariant, these coefficients are 

constants that may be calculated offline.  Therefore, during each iteration of the 

simulation, only five multiplications and four additions are required—computation is 

simplified significantly. Because only the first rows of the matrices Φ  andΨ  are needed 



90 

to calculate the predictor coefficients, calculating the remaining rows is unnecessary. 

This is significant in applications where a time-variant reference model is required, and 

the matrices Φ  andΨ  must be updated every iteration.  The state space filter may be 

implemented as depicted in Fig. 4.12 and Fig. 4.13, where the 90 ms of delay in the 

visual system is the baseline transport delay determined in the VMS at the NASA 

Langley Research Center (artificial delay was also added for the experiments to 

determine the general applicability of the predictor to compensate other delays), and the 

coefficients are given in Table 4.3 and Table 4.4, respectively. 
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Fig. 4.12. Simplified state space compensator using a 4th-order reference model 

If the reference model is of 4th-order, the coefficients of the last two terms of the 

control input u  ( 3c  and 4c ) are so small compared to the first three terms without u  that 

they may be neglected. In other words, a good reference model attenuates the 

contribution of the second term of ( ) ( ) ( ) ( )
0

d dd
t tt

dt t e t e u t dτ τ τ−+ = + +∫ AAx x B , on which the 

state space predictor is based. The trivial contribution of the input u  makes it easier to 

justify approximating the future input with the current input than Sobiski’s assumptions. 

On the other hand, the small contribution of the control input u  is desirable because its 

high frequency jumps are attenuated. As the time delay gets longer, the coefficients 3c  
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and 4c  become larger so that more high frequency content is added to the prediction, 

resulting in a larger predicting error. Note also that the coefficient 0c  of term y  is unity, 

a property the McFarland predictor also possesses ( ( ) ( ) 0 1 1 2 2py k y k b v b v b v− −= + + + ).  

Table 4.3. Coefficients of the state space predictor shown in Fig. 4.12 

Coefficient Expression 
For 4th-order Model I, 

dt =186 ms  

0c  11 12 3 13 2a aφ φ φ+ +  1 

1c  12 13 3aφ φ+  0.1850 

2c  13φ  0.0159 

3c  1 13 2bψ φ−  4.0052e-04 

4c  14 0bφ  3.2020e-05 
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Fig. 4.13. Simplified state space compensator using a 3rd-order reference model 

Conversely, if the reference model is of 3rd-order, the contribution to the 

prediction from the pilot control input u  is greater from the integral term ( 3 2c c> ), and it 

may explain why the 3rd-order reference model cannot achieve as good a prediction as the 

4th-order reference model. The coefficient of y  is no longer unity, and the longer the 

time delay, the farther it deviates from unity. This is a desirable property because as the 

time delay gets longer, the future y  will resemble the current y  less, and therefore the 

current y  should contribute less to the prediction. 
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Table 4.4. Coefficients of the state space predictor shown in Fig. 4.13 

Coefficient Expression 
For 3rd-order model A, 

dt =186 ms  

0c  11 12 2aφ φ+  0.9949 

1c  12φ  0.1750 

2c  13 0aφ−  -7.3938e-004 

3c  1 12 2bψ φ−  0.0036 

4c  13 0bφ  7.3938e-004 
 

4.5.3.  State Space Predictor with a Discrete State Transition Matrix 

Chapter 3 introduced the discrete format of the state space predictor, and the 

discrete state transition matrix and convolution integral matrix (Eqs. (3.24)-(3.26)). A 

prediction algorithm based on the discrete state space filter using a reference aircraft 

model has also been tested in a manner similar to the continuous one. In changing the 

prediction algorithm from Eq. ((3.19) to Eq. (3.24), the formation of the filter state vector 

is also changed—it must be formed with the discrete state space equations:  

( ) ( ) ( )
( ) ( ) ( )

1k k u k

y k k u k

⎧ + +⎪
⎨

= +⎪⎩

x = Gx H

Cx D

&  

The general pulse transfer function corresponding to the continuous transfer 

function Eq. (4.31), its state space matrices and the discrete filter state vector are given as 

follows 

 ( )
3 2

3 2 1 0
4 3 2

3 2 1 0
AC

b z b z b z bH z
z a z a z a z a

+ + +=
+ + + +

 (4.44) 
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1 0 0
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, , 1 0 0 0 , 0
0 0 1
0 0 0

a b
a b
a b
a b

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G H C D  (4.45) 
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x k a x k b u k
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⎨
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⎪ = − − + −⎩

 (4.46) 

Because the integrator in the continuous state space equation becomes the delay 

operator in the discrete equations, the derivative or integral terms are replaced with the 

past values of the aircraft state. Lack of aircraft velocity and acceleration information in 

prediction is the primary drawback of the discrete state space filter.  Inclusion of the 

current and several past values may result in the derivative terms indirectly (due to 

numerical differentiation) introducing errors. Therefore, the discrete state space filter is 

expected to be inferior to a continuous one that makes use of the derivative terms directly. 

Application of the discrete state space predictor to the recorded simulation data has 

proven this. This is more obvious from the simplified algorithm. Corresponding to Eq. 

(4.42), the simplified algorithm with a 4th-order reference model is given by 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
11 2 12 1 13 0 14 12 3

13 4 2 12 1 13 0 14 1

1 1

1 1

y k l g y k a g a g a g y k g x k

g x k b g b g b g u k h u k

+ = − + + − + −

+ − + + + − +
 (4.47) 

where ijg  and ih  are the elements of the matrices G  and H  given in Eqs. (3.25) and 

(3.26). There are more contributions from the control input u , and conversely, the states 

( )3 1x k −  and ( )4 1x k −  have to be calculated recursively with the 3rd and 4th equations of 

Eq. (4.46), which results in error accumulation. Finally, as stated in Chapter 3, the time 

delay to be compensated with the discrete state space filter must be an integer multiple of 

the frame cycle. After considering all these factors, the discrete state space filter was not 

used during the final simulation tests. 
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4.5.4. Relationship Between Prediction and Reference Model 

Section 4.5.3 mentions that the four 4th-order reference models give slightly better 

compensation than the 3rd-order reference model, and the large commercial transport 

landing pitch model achieves the best compensation compared to the other three 4th-order 

reference models. This raises some questions: which factors of the reference model make 

the most difference in compensation? Does the order of the reference model affect the 

compensation? What is the relationship between the prediction quality and the reference 

model? This section is a summary of the research designed to answer these questions. 
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Fig. 4.14. State space compensations with two 3rd-order reference models 

The 3rd-order reference model that achieved the best results is not an aerodynamic 

model, instead it was borrowed from a book on control theory (for convenience call it 3rd-

order Model A). Another 3rd-order model (3rd-order Model B) was also chosen, which 
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takes the same form of transfer function as given in Eq. (4.38). The state space 

compensations ( dt =0.192s) using these two reference models on the same recorded roll 

data that was used for the other compensators are shown Fig. 4.14. 

The 3rd-order model B gives a completely wrong prediction. Checks of the state 

transition matrix Φ  and the convolution matrix Ψ  do not reveal the problem. However, 

if the five coefficients 0 4c c−  of the simplified filter shown in Fig. 4.13 are checked and 

compared with those of Model A, the problem becomes clear. These coefficients 

( dt =0.192s) are listed in Table 4.5.  The coefficients of the 4th-order Model I, and the 

McFarland filter are also included for comparison. 

Table 4.5. Coefficients of different compensators for dt =0.192s 

Proportion Derivative Integral Input Integration 
of input Filter 

0c  1c  2c  3c  4c  

3rd-order model A 0.9946 0.1803 -0.0008 0.0039 0.0008 

3rd-order model B 0.4604 0.0480 -0.5299 0.5659 0.5299 

4th-order model IV 1 0.1909 0.0169 4.3972e-004 3.5149e-005

McFarland 1 
0.192 

( 1 1 2b b b+ + )    

 

In Table 4.5, only the state space predictor with model B does not work. For other 

models, which work well, the coefficient of the proportional term is either unity or very 

close to unity, the coefficient of the derivative term is equal to or very close to the time 

delay, and all other coefficients are much smaller. This shows that the derivative 

extrapolation is either the only compensation or dominates the compensation. But this is 

not true for the 3rd-order model B: its coefficient of the proportional term is far less than 

unity, and the derivative compensation contributes even less than the integral 
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compensation and the terms in the control input. This explains why the prediction quickly 

drifts away from the undelayed aircraft state. 

The values of the coefficients of the simplified state space compensator have 

direct relationships with the reference model.  Table 4.4 shows that the coefficients are 

functions of the elements of the matrices Φ  and Ψ , which are in terms of 'a s , 'b s  and 

dt . Deriving these expressions involves the evaluation of the matrices Φ  and Ψ . The 

definition of the state transition matrix Φ  is an infinite Taylor series 

 ( )
0 !

d

i
dt

i

t
e

i

∞

=
= =∑A A

Φ  (4.48) 

Because this series is always convergent, it is usually approximated by truncating it to a 

finite series. The number of terms required to get satisfactory approximation depends on 

the matrix A . For the five reference models that work well, five terms seem to be 

sufficient. Therefore, 

 ( ) ( ) ( )2 3 41 1 1
2 6 24

dt
d d d de t t t t= ≈ + + + +AΦ I A A A A  (4.49) 

In fact, the last term contributes little to the final result. Another way to compute 

the state transition matrix Φ  is the exact method making use of the Cayley-Hamilton 

theorem26. That algorithm is given by 

 
1

0

d

n
t i

i
i

e α
−

=
= =∑AΦ A  (4.50) 

where n  is the order of the matrix A , and 0 1nα α −−  are the solutions of the following 

linear equations 

 ( )
1

0
, 1...j d

n
ti

i j
i

e j nλα λ
−

=

= =∑  (4.51) 
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with the jλ ’s being the eigenvalues of the matrix A , provided that all the eigenvalues are 

distinct. The analytical expressions of 0 1nα α −−  with/without repeated eigenvalues are 

given in Appendix A. For the five working reference models, it has been found that 

 2 3
0 1 2 3

1 11, , ,
2 6d d dt t tα α α α≈ ≈ ≈ ≈  (4.52) 

Note that only the 4th-order models have 3α . The approximations in Eq. (4.52) 

can be verified by the Taylor expansion of j dteλ : ( ) ( )1 ... / ! ...j d
it

j d j de t t iλ λ λ= + + + +  For 

dt  up to 0.3 seconds, and the absolute values of the real part of the maximal eigenvalue 

around 1, the fifth term ( )4
/ 24j dtλ  is only 3.3750e-004, and the higher order terms are 

even smaller. Therefore, the scalar Taylor series can be truncated to four terms, or  

( ) ( ) ( )2 3
1 / 2 / 6j dt

j d j d j de t t tλ λ λ λ≈ + + + . 

Then Eq. (4.51) becomes 

 ( ) ( ) ( )2 3 2 3
0 1 2 31 / 2 / 6j d j d j d i i it t tλ λ λ α α λ α λ α λ+ + + ≈ + + +  (4.53) 

Comparing the coefficients of both sides gives Eq. (4.52). In this sense, the state space 

compensation may be viewed as a Taylor series extrapolation in the state space form. 

The convolution integral matrix approximated by making use of Eq. (4.49) is 

given in the last equation of Eq. (4.54). Substituting the elements φij  and ψ j  of the 

matrices Φ  and Ψ  calculated with Eq. (4.49) and Eq. (4.54) into the expressions of the 

five coefficients listed in Table 4.4 (for state space predictor based on a 3rd-order 

reference model; application on a 4th-order reference model will be discussed later), the 
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final expressions of 0 1 4, , ,c c cK  are given in Table 4.6. Due to the approximations in Eqs. 

(4.49) and (4.54), these  expressions are also only approximate .       
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Table 4.6. Approximate expressions of the coefficients of the simplified state space 

predictor with a 3rd-order reference model 

Coefficient Expression 

0c  
2 2

2 3 41 2 0 0 2 1 2 111
2 6 24d d d

a a a a a a a aa t t t− − +− + +  

1c  
32

2 3 41 2 2 02 2 1 2
2 6 24d d d d

a a a aa a at t t t− +−− + +  

2c  
2

2 3 40 0 2 0 11 2

2 6 24d d d
a a a a aa at t t−− + +  

3c  
2

2 3 4 3 41 2 1 2
1 0

1 1
2 6 24 6 24d d d d d

a a a at t t b t t b
⎛ ⎞− ⎛ ⎞+ + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

4c  
2

2 3 41 2 1
0

1
2 6 24d d d

a a at t t b
⎛ ⎞−− +⎜ ⎟
⎝ ⎠

 

 
Further examination of the expression of 0c , indicates that the third and fourth 

terms are much smaller than the second term for a time delay shorter than 0.3s. And the 

second term, 1a  must be less than 0.5 for a delay of 0.2s or less than 0.25 for a delay of 

0.3s for 0c  to be unity within 1%. For example, for model A, 1a =0.3050 results in 

0c =0.9946 which would be satisfactory; for model B, 1a =62.1314 results in 0c =0.4406, 

which is much less than unity. With a similar analysis, 2a  must be less than one to make 

1c  fairly close to dt . Thus, the values of 1a  and 2a  are critical to the applicability of a 3rd-
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order model as a reference model. The restrictions on 1a  and 2a  indicate that there must 

also be some restrictions on the eigenvalues of the reference model because, for a 3rd-

order model, the following relationships between the three eigenvalues 1 3λ λ−  and 1a , 2a  

are held 

 1 2 3 2

1 2 2 3 3 1 1

a
a

λ λ λ
λ λ λ λ λ λ

+ + = −⎧
⎨ + + =⎩

 (4.55) 

For a stable model, all eigenvalues must have negative real parts. Then Eq. (4.55) implies 

that 2 1i aλ ≤ ≤  and 1 0 5i j a .λ λ ≤ ≤ . Therefore, the absolute values of all eigenvalues must 

be at least less than unity to make the reference model work. Model A meets this 

requirement, but model B does not. The eigenvalues of model B are located much farther 

from the imaginary axis of the s-plane than model A, and therefore, model B responds 

much faster than model A (Fig. 4.15). In other words, the bandwidth of model B is much 

larger than that of model A.   

Therefore, it appears that a good reference model can be formed by merely 

choosing suitable 'a s  and 'b s  in Table 4.6 so that the five coefficients have desirable 

values. Although it appears that the reference model does not have to match the flight 

dynamics, in actuality this is not true. In fact, the reason the 3rd-order model B does not 

work for the roll angle recorded from the VMS is because it has totally different dynamic 

properties than those of the aircraft model running in the VMS. In other words, the reason 

that Model B does not work as well as Model A does is that Model A has frequency 

characteristics close to the aircraft model used in the simulation from which the data was 

collected, but the Model B does not. Likewise, the four 4th-order reference models and 

the 3rd-order model A work well because their bandwidths are close to the bandwidth of 
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the large commercial transport model running on the VMS. This can be verified by 

simply comparing the bandwidths of the 3rd-order models A and B with those of the four 

4th-order aerodynamic models, as shown in Table 4.7. The bandwidth of the 4th-order 

model II is not available because it has a pure integrator (Type I system, Eq. (2.11)).  

 
Table 4.7. Bandwidths of six reference models 

3rd-order 4th-order 
Model 

A B I II III IV 
Bandwidth 

(rad/s) 0.6069 8.0561 0.6523 NA 0.1036 0.0324 
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Fig. 4.15. Step responses of two 3rd-order reference models 

The bandwidth of the 3rd-order model B is much too high compared to the other 

aircraft models. One way to determine whether the model bandwidth plays an important 

role in compensation quality would be to reduce the bandwidth of model B gradually, and 

apply it to the state space prediction, and see how the compensation changes. The results 

are demonstrated in Fig. 4.16. Investigation shows that satisfactory compensation can be 
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achieved when the bandwidth of the reference model is below 1 rad/s. This proves that 

the bandwidth of the reference model must be close to that of the simulated vehicle  

dynamics. 

Originally, it was assumed that the damping ratio of the reference model made a 

significant difference in compensation. Some of the reference models that do not work 

well are over-damped, whereas the aerodynamics of the large commercial transport are 

under-damped. A study of the impact of varying the damping ratio was conducted,  

similar to the study in which  the bandwidth was varied, and that study shows that the 

damping ratio of the reference model does not make a significant difference in the state 

space compensation. 
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Fig. 4.16. State space compensation using model B with varying bandwidth 

With a derivation similar to that of the 3rd-order reference model, the five 

coefficients of the simplified state space predictor with a 4th-order reference model as 
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depicted in Fig. 4.12 were obtained in terms of the parameters of the model transfer 

function.   These coefficients are listed in Table 4.8.  By comparing Table 4.8 with Table 

4.6, it becomes obvious that there is no term in 2
dt . Because 3

dt  is smaller than 2
dt  for 

dt <1s, the proportional coefficient 0c , when using a 4th-order model, is closer to unity for 

the same value of 1a , and the derivative coefficient 1c  is closer to dt  for the same value 

of 2a . Furthermore, because the coefficients 1a  and 2a  are higher order functions of the 

eigenvalues when using a 4th-order model (compare Eqs. (4.55) with (4.56)), even though 

the eigenvalues of a 4th-order model have magnitudes close to those of a 3rd-order model, 

and the 1a  and 2a  of the 4th-order model are smaller (the absolute values of the aircraft 

model eigenvalues are usually less than 1), this makes 0c  and 1c  closer to unity and dt , 

respectively. Thus, the 4th-order reference model is expected to achieve better prediction 

than the 3rd-order reference model, and the comparison between compensations with the 

3rd-order model A and 4th-order model IV proves this.    

 1 2 1 3 1 4 2 3 2 4 3 4 2

1 2 3 2 3 4 1 2 4 1 3 4 1

a
a

λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ λ

+ + + + + =⎧
⎨ + + + = −⎩

 (4.56) 
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Table 4.8. Approximate expressions of the coefficients of the simplified state space 

predictor with a 4th-order reference model 

Coefficient Expression 

0c  3 41 3 011
6 24d d

a a aa t t−− +  

1c  3 42 3 12

6 24d d d
a a aat t t−− +  

2c  
2

2 3 43 3 21
2 6 24d d d

a a at t t−− +  

3c  3 4 43 01
26 24 24d d d

a ba t t b t⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

4c  3 43
0

1
6 24d d

at t b⎛ ⎞−⎜ ⎟
⎝ ⎠

 
 

The comparison between these two reference models may not be convincing 

because the 3rd-order model A is not an aircraft model. So, a 3rd-order model was formed 

by reducing the 4th-order model, such that the reduced-order model shares similar 

frequency characteristics with the original model. Then this reduced-order model was 

used to carry out the state space compensation. The compensation error was indeed 

considerably greater than that of the original 4th-order model. 

It has been shown that the 4th-order reference model is superior to a 3rd-order one. 

But, what about a 2nd-order model, or a model of order higher than 4? If the reference 

model is of 2nd-order, the simplified state space filter is given as 

 ( )0 1 01py y y uα α α= + + −&  (4.57) 

where 0α  and 1α  are solutions of the coupled equations ( )
1

0
, 1, 2j d
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where 0λ  and 1λ  are the two eigenvalues of the model. Eq. (4.57) is inferior to a reduced 

state space predictor with a 4th-order reference model because less system information is 

used for prediction. On the other hand, if a 5th-order reference model is employed, the 

filter state vector will contain either a high frequency jerk component (derivative of the 

acceleration) or triple integration of the aircraft state, which is likely to introduce 

computational artifacts. In short, the 4th-order reference model is the best choice. 

As stated previously, the bandwidth of the reference model plays a major role in 

the compensation quality of the state space predictor. The bandwidth of a model is 

affected by its poles and zeros, but not by its gain. The gain of the reference model also 

influences the compensation quality. From Tables 4.6 and 4.8, the coefficient 3c  of the 

control input u  is a linear function of the model gain. A large gain of the reference model 

will amplify the high frequency components in the control input u , and distort the 

prediction. However, the sensitivity of a reference model’s compensation quality to the 

variation of its gain depends on the individual model; some models are more sensitive 

than others. The effects of the gain of a reference model are much less significant than 

the effects of its bandwidth.  

The large commercial transport landing model in pitch (4th-order model IV) has 

been found to work successfully on data recorded from the large commercial transport 

simulation runining in the LaRC VMS. If the vehicle dynamics were quite different, e.g., 

a fighter rather than a transport, one possible method of finding a suitable reference 

model with which to apply the state space predictor would be to use system identification 

techniques to get a model that closely matches the aircraft dynamics. During the course 

of a simulation run, the dynamics may change dramatically. For instance, the dynamics 
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before and after an offset maneuver may be quite different. In such cases, fuzzy logic 

may be employed to identify the mode. Unfortunately, applying these algorithms 

increases the computation workload greatly. These issues merit further investigation.  

In summary, the following points are conclusions of the study of the state space 

predictor, and the relationships between the compensation quality and the reference 

model: 

• The state space predictor can be simplified to a general PID filter; 

• The state space compensation may be viewed as a Taylor series extrapolation in 

the state space form; 

• The bandwidth of the reference model must be close to that of the simulated 

vehicle; 

• The damping ratio of the reference model does not make a significant difference 

in the state space compensation; 

• The 4th-order reference model is the best choice; 

• The effects of the gain of a reference model are much less significant than the 

effects of its bandwidth.  

 
 

 

 

 

 

 

 



106 

 

5. Results of Theoretical Analysis 

In Chapter 4, two novel predictors for compensating the transport delay in a flight 

simulator are compared from a theoretical perspective: the adaptive predictor based on 

the Kalman filter algorithm, and the state space predictor using an aircraft dynamic 

reference model. Chapter 4 demonstrated that these two new types of compensators show 

improved performance over the McFarland predictor. It also mentioned that the stochastic 

approximation adaptive predictor achieves the best compensation among the five 

different Kalman filter algorithms, and the large commercial transport landing model in 

pitch works best as a reference model for the state space predictor. All these conclusions 

are made without sufficient verification while focusing only on the principles of the novel 

compensators. In order to give a convincing comparison among all those compensators, 

quantitative approaches are necessary to analyze the respective compensation results. 

Because different predictors of the same type (i.e., the five adaptive predictors, and the 

state space predictors using different reference models) may demonstrate slight 

differences in compensation quality, the quantitative methods must be sensitive enough to 

highlight the differences and give accurate results. 

This chapter starts by defining two metrics, which can be used to evaluate the 

compensation errors caused by different predictors. It then applies these metrics to the 

compensation results from offline tests, and finally quantitatively compares the 

compensation qualities among different predictors in terms of the two metrics. In the 

offline tests, compensations were applied to the aircraft state data recorded during a 

previously completed simulation study, generating predicted aircraft states. Offline tests 
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were implemented on a personal computer running MATLAB rather than the Visual 

Motion Simulator. No visual images were generated and no pilot was involved. The 

predicted aircraft states were used only for analysis. The last section investigates the 

sensitivity of the prediction errors with respect to the amount of time delay.       

5.1.  Error Metrics 

Compensation error may appear as either phase error or magnitude error (gain 

distortion) or both. Fig 5.1 illustrates an example of phase error and magnitude error of a 

compensation applied to an ideal sinusoidal signal.  
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Fig. 5.1. Illustration of phase error and gain distortion of compensation 

The function of a predictor is to generate a phase lead designed to be equal to the 

transport delay in the succeeding subsystem so that the delay can be compensated by the 

phase lead. In offline tests, the transport delay may be simulated by simply delaying the 

state information by the desired amount. In Fig. 5.1, the “compensation” signal is the 
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result of the delayed prediction. The ideal compensation produces no error (either phase 

error or distortion) at all, as depicted in the upper subplot of Fig. 5.1, where the 

compensated signal lines up exactly on top of the undelayed one. In other words, at every 

discrete point, the values of the two signals are exactly the same. Define an error function 

as the sum of square difference between the compensation and the undelayed signal 

 ( ) ( ) 2

1

N

c
i

E y i y i
=

⎡ ⎤= −⎣ ⎦∑  (5.1) 

where y  and cy  are the undelayed and compensated signals. This error function would 

be zero for the ideal compensation. 

Assume that the predictor brings no gain distortion, but the phase lead it provides 

is not exactly equal to the phase lag resulting from the time delay.  This is shown in the 

middle subplot of Fig. 5.1, in which the compensated signal does not match the 

undelayed signal. The phase error causes the predicted value to not match the undelayed 

signal at most time points (except those intersections D and E). For example, when t=1.5s, 

the phase error is AC , and the corresponding magnitude difference is AB . Because there 

is no gain distortion, the greater the phase error, the larger the magnitude discrepancy if 

the phase error is less than π  (A phase lag of π  results in an opposite phase, representing 

the maximal magnitude error E. As the phase changes from 0 to π , E increases, but as 

the phase lag exceeds π , E starts to decrease). Therefore, if there is no gain distortion, 

either the phase error or the error function defined by Eq. (5.1) may be used as a metric to 

evaluate the compensation error. 

A real compensator usually results in both phase error and gain distortion, as 

shown in the dashed dot curve in the bottom subplot in Fig. 5.1.  Evaluating the error 
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index E, as given by Eq. (5.1), between the dashed curve and the dashed dot curve, both 

phase and gain errors are present, but, the error index does not indicate which factor 

contributes more. For the transport delay compensation, the phase error usually is given 

more attention, and therefore it is necessary to define two metrics of error so that the 

effects of the two factors can be separated.  

One way to separate the two is to fit the compensated signal with a smooth curve 

(such as the thick dashed curve in Fig. 5.2). Determine the phase difference between the 

fitted curve and the undelayed curve, and define this phase difference as the phase error 

of compensation. Then calculate the error index E between the actual signal (dashed) and 

the fitted one (dashed dot) using Eq. (5.1). In this example, the undelayed signal is a 

known function. Because the fitted signal is also analytical, it is easy to determine the 

phase difference between these two analytical functions by simply drawing a horizontal 

line intersecting both curves, and the distance between the two intersection points is the 

absolute value of the phase error. 
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Fig. 5.2. Roll angle, prediction and polynomial & sinusoids approximation 

In most situations, the real signal to be compensated is not an analytical function. 

In such situations, the undelayed signal also needs to be fitted with an analytical function. 

Because the actual aircraft state in a flight simulator is much more complicated than a 

sinusoidal signal, the fitting function is a combination of many simple components (a 4th-

order polynomial and 13 sinusoids of various magnitudes, frequencies and initial phases).       

5.2. Comparison of Predictors Based on Offline Tests 

Based on the analyses of the compensator used in the offline tests, in terms of the 

two error metrics defined in the previous section and the magnitudes of spikes on the 

compensations, this section will present a comparison of compensation qualities among:  

1) The McFarland predictor and four adaptive predictors. 

2) Five state space predictors using five different reference models (four 4th-order 

models and one 3rd-order model). 
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3) The McFarland predictor, the adaptive predictor using the stochastic 

approximation algorithm, and the state space predictor using the large commercial 

transport landing model in pitch.  

5.2.1. Comparison of the McFarland Predictor and the Adaptive Predictors 

These five predictors were applied to the aircraft roll angle data recorded from 16 

straight-in approach tests. The predictors were designed to compensate for 48, 96, 192 

and 288 ms (all integer multiples of the update period 16 ms) of transport delay, and in 

each time delay category, the amount of prediction (in ms) was averaged across the 16 

test runs. Table 5.1 gives the average predictions and standard deviations for each case.       

Among the four adaptive predictors, the least mean square algorithm 

demonstrates larger phase prediction error and a larger standard deviation than the other 

three. The basic Kalman filter, Kaczmarz and stochastic approximation algorithms show 

insignificant differences in phase prediction, whereas the stochastic approximation 

algorithm tends to have smaller standard deviation than the previous two when the 

transport delay is long (equal or greater than 192 ms). All four adaptive algorithms 

generate larger phase prediction error than the McFarland compensator, but apart from 

the least mean square algorithm, the differences are not significant. The standard 

deviations of the stochastic approximation algorithm and the McFarland predictor are 

very close, while the mean phase prediction error of the former is about 5 ms larger than 

that of the latter. 
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Table 5.1. Mean values & STD of the predictions with five 3-velocity predictors  

Mean Prediction (LEFT) and Standard Deviation (RIGHT) (ms) 
dt  (ms) 

McFarland 
Predictor 

Basic Kalman
Predictor 

Kaczmarz 
Algorithm 

Stochastic 
Approximation

Least Mean 
Square 

48 48 1 43 1 43 1 43 1 41 5 

96 96 2 93 3 93 2 93 2 90 8 

192 190 5 185 8 191 15 187 6 179 18 

288 283 9 271 14 275 14 278 10 266 24 

          

Table 5.2 lists the compensation gain errors defined in Eq. (5.1) of these five 

predictors averaged across the same 16 test runs. Among the four adaptive algorithms, 

the basic Kalman filter algorithm causes the greatest gain error, and the stochastic 

approximation algorithm causes the least. Apart from the stochastic approximation 

algorithm, all the other adaptive algorithms show larger gain distortion than the 

McFarland predictor. As mentioned in Chapter 4, the McFarland predictor generates 

noticeably larger spikes than all the adaptive predictors, and this indicates the error 

measure in Eq. (5.1) is a more useful metric of gain error than the magnitude of spikes. 

The former is defined for a whole test, whereas the spikes only exist locally. In other 

words, greater total gain error does not mean larger spikes. If the transport delay is short, 

the gain error of compensation by the stochastic approximation algorithm is even greater 

than the McFarland predictor, but as the time delay becomes longer, the former displays 

smaller gain distortion. 
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Table 5.2. Gain error index of the McFarland and four adaptive predictors  

Gain Error Index 

dt  (ms) 
McFarland 
Predictor 

Basic 
Kalman 

Predictor 

Kaczmarz 
Algorithm 

Stochastic 
Approximation 

Least Mean 
Square 

48 0.0416 0.3818 0.3731 0.2705 0.4763 

96 0.7735 2.5586 2.3050 1.0363 1.9108 

192 17.6686 37.2153 33.1492 13.9038 22.8639 

288 74.5940 171.2643 152.5877 59.4277 95.3306 
 

The motive for developing the adaptive predictors is to reduce the large spikes 

and gain distortion of the McFarland predictor. The analyses given above of Table 5.1 

and Table 5.2 demonstrate that the stochastic approximation algorithm is superior to the 

other three adaptive algorithms. Therefore, an adaptive predictor using the stochastic 

algorithm is the best among the five in this group.  

5.2.2.  Comparison of Five State Space Predictors 

In Chapter 4, five aircraft reference models for the state space predictor were 

introduced, i.e., four 4th-order models: the pitch model (Model I) and the roll model 

(Model II) of a fixed wing jet flying at an altitude of 30,000ft and an airspeed of 430 

knots, the cruise model of the large commercial transport in pitch (Model III) and the 

landing model of the large commercial transport in pitch (model IV), and a 3rd-order 

model. The gain errors, phase predictions and standard deviations of compensation by 

these five predictors for the four transport delay cases are listed in Table 5.3 and Table 

5.4, respectively. While Model III introduces the least gain distortion, the difference in 

terms of gain error between Models III and IV (the two large commercial transport 

models) are negligible; the two fixed-wing jet models introduce very similar gain error 
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(the pitch model brings slightly smaller gain error than the roll model), but the gain 

distortion is obviously larger than that of the two large commercial transport models; and 

the 3rd-order model introduces the largest gain distortion. 

Table 5.3. Gain error index of the state space predictors with five reference models 

Gain Error Index 
dt  (ms) 4th-order 

Model I 
4th-order 
Model II 

4th-order 
Model III 

4th-order 
Model IV 

3rd-order 
Model A 

48 0.0071 0.0080 0.0062 0.0062 0.0542 
96 0.1378 0.1573 0.1063 0.1079 0.7374 
192 4.2312 4.5971 2.8558 3.0095 9.9674 
288 28.5543 30.4164 16.1325 17.5617 44.4455 

 

Table 5.4. Mean values & STD of state space prediction with five reference models  

Mean Prediction (LEFT) and Standard Deviation (RIGHT) (ms) 
dt  (ms) 4th-order 

Model I 
4th-order 
Model II 

4th-order 
Model III 

4th-order 
Model IV 

3rd-order 
Model A 

48 48 1 48 1 48 1 48 1 48 1 
96 94 2 95 2 95 2 96 2 95 3 
192 175 5 184 10 188 4 192 4 186 8 
288 236 10 266 31 275 8 287 5 273 16 

 

Model IV yields the least mean phase prediction error and the least standard 

deviation (from 16 test runs). For delay up to 192 ms, the mean phase is zero, and for a 

delay of 288 ms, the phase error is only 1 ms. Models II, III and the 3rd-order model 

introduce very similar mean phase errors (about 1 frame for a delay of 288 ms), though 

the standard deviation of Model II is significantly greater than the other two when time 

delay is 288 ms; Model I introduces the greatest mean phase error among these five 

models. 
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Therefore, in both gain distortion and phase error, the large commercial transport 

landing model in pitch (Model IV) works best compared with the other four reference 

models. In general, the 3rd-order model is inferior to the 4th-order models. 

5.2.3. Comparison of the McFarland, the Adaptive and the State Space Predictors 

 From the comparisons in the previous two sections, the stochastic approximation 

algorithm is the best adaptive predictor, and the large commercial transport landing 

model in pitch is the best candidate as the reference model for the state space predictor 

among the five models. Thus, these two novel predictors were chosen, to be implemented 

along with the McFarland compensator in the final piloted tests, in order to compare them 

in a human-in-the-loop simulation. In this section, the performance of these three 

compensators will be compared with offline tests. Though the data are available in Tables 

5.1 – 5.4, the mean phase prediction and gain error specifically for these three predictors 

were extracted and are listed in Table 5.5. As an example, Table 5.3 illustrates the phase 

compensations of these three.   
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Table 5.5. Mean values & STD of the predictions of three predictors 

Mean Prediction (LEFT, ms) and Gain Error (RIGHT)  
dt  (ms) 

McFarland Predictor Adaptive Predictor State Space Predictor
48 48 0.0416 43 0.2705 48 0.0062 
96 96 0.7736 93 1.0363 96 0.1079 
192 190 17.6686 188 13.9038 192 3.0085 
288 283 74.5940 278 59.4277 287 17.56175 
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Fig. 5.3. Phase lead generated by three types of predictors ( dt =192 ms)  

The state space predictor tends to introduce significantly less gain distortion than 

the other two. It causes less phase prediction error than the adaptive predictor, and 

achieves slightly better phase compensation than the McFarland predictor for long time 

delays. It seems to be superior to the adaptive predictor, but it introduces moderately 

larger spikes than the latter. The phase prediction error of the adaptive predictor is larger 

than that of the McFarland predictor, but not by much. When the delay is longer than 192 
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ms, the adaptive predictor significantly reduces the high frequency artifacts, especially 

the spikes generated by the McFarland compensator, resulting in the reduction of gain 

error. Although the McFarland predictor shows the least phase error, which is determined 

using a smooth fitting curve, the actual phase error in areas of large gain distortion may 

be even larger than that of the other two predictors.      

5.3. Sensitivity Analysis 

As the transport delay to be compensated gets longer, there is no doubt that both 

the gain distortion and phase error increase. But how fast the errors increase for different 

compensators, or in other words, how sensitive they are to changes in time delay, is still 

an interesting problem. This section is an investigation of the sensitivity of three 

compensators: the McFarland predictor, the adaptive predictor and the state space 

predictor. 

In order to complete this analysis, the group of compensators was implemented, 

and tested on the 16 sets of aircraft roll angle data recorded from piloted simulations. For 

this test, the transport delay was varied from 48 ms to 288 ms, and the frame time was 16 

ms. The phase prediction and gain error were calculated, and the results are summarized 

in Table 5.6, which is actually an expansion of Table 5.5.    

The phase prediction of the state space predictor is insensitive to changes in time 

delay, whereas the McFarland predictor and the adaptive predictor are sensitive to 

changes in time delay to a similar degree (from 0 to 5 ms for the former, and from 5 to 10 

ms for the latter, as the delay increases from 48 to 288 ms). In terms of absolute increase 

of the gain error, the state space predictor is the least sensitive to the time delay, and the 

McFarland is the most sensitive (the absolute gain error increases of these three 
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predictors are, in descending order, 74.4524, 59.1572 and 17.5556). But in terms of 

relative gain error increase, the adaptive predictor is least sensitive to the change of time 

delay, while the state space predictor is most sensitive. The relative gain errors increase 

by 1791, 220 and 2833 times respectively for the McFarland predictor, the adaptive 

predictor and the state space predictor. But, the most important metric is the absolute gain 

error increase, and the state space predictor is the least sensitive to the time delay, 

whereas the McFarland predictor is the most sensitive in both the phase and gain errors of 

prediction.  

Table 5.6. Mean predictions and gain error index of the McFarland predictor, an 

adaptive predictor and a state space predictor ( ∈dt [48, 288] ms) 

Mean Prediction (LEFT, ms) and Gain Error (RIGHT)  
dt  (ms) 

McFarland Predictor Adaptive Predictor State Space Predictor
48 48 0.0416 43 0.2705 48 0.0062 
64 64 0.1127 93 0.2786 64 0.0099 
80 80 0.3202 77 0.5211 80 0.0402 
96 96 0.7736 93 1.0363 96 0.1079 
112 112 1.6210 109 1.8812 112 0.2332 
128 128 3.0330 125 3.1277 128 0.4477 
144 144 5.1968 141 4.8614 144 0.7962 
160 160 8.2767 156 7.1684 160 1.3126 
176 175 12.4131 171 10.1465 176 2.0359 
192 191 17.6686 187 13.9038 192 3.0095 
208 206 24.1493 202 18.5569 208 4.2808 
224 222 30.1740 217 20.4700 224 8.6872 
240 237 40.8535 232 31.0103 240 7.9571 
256 253 50.9008 248 39.0578 255 10.5185 
272 268 62.1538 262 48.4900 272 13.6921 
288 283 74.4940 278 59.4277 287 17.5618 
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In addition, as the time delay becomes longer, all three predictors tend to be more 

sensitive to the time delay. For instance, for the McFarland predictor, the gain error index 

increases only 0.0711 as the delay increases 1 frame from 48 ms, but it increases 12.3402 

as the delay increases 1 frame from 272 ms. In other words, the prediction error does not 

increase linearly with the transport delay. 
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6. Conclusions and Future Research 

6.1. Conclusions 

Theoretical analyses in both time domain and frequency domain show that the 

effects of the transport delay depend on the simulation dynamics. Specifically, the higher 

the system bandwidth, the larger the loss of the phase margin, or stability. Meanwhile, the 

system suffers with the same amount of transport delay, and therefore, the system has less 

ability to tolerate the time delay. In a flight simulator system, higher bandwidth means 

the system is more vulnerable to pilot-induced oscillation and instability. 

Measurements were made with a device called SIMES to measure the transport 

delay in the Visual Motion Simulator (VMS) at the NASA Langley Research Center. The 

transport delays in the visual system, the motion system and the instrument system were 

measured to be 58, 56 and 40 ms, respectively, with the frame cycle being 16.7 ms. The 

average total transport delays from the pilot control input to the ends of these three sub-

systems were determined to be 89.7, 87.7 and 71.7 ms, with the frame length of the 

simulation computer being 16 ms. Therefore, the average baseline transport delay of the 

visual cue is 90ms (rounded from 89.7ms) . This forms the basis for the time delay 

compensator designs for the final piloted simulation tests. 

Three basic criteria (phase error, gain distortion and computation complexity) 

were adopted to assess and compare the three prominent, previously developed time 

delay compensators—the lead/lag filter, McFarland predictor and the Sobiski/Cardullo 

predictor. This was done using theoretical simulations with the same aerodynamic model 

and pilot model as used for the analysis of time delay in Chapter 2. For the lead/lag filter, 
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the formula proposed by Crane to design the filter pole was revised, resulting in better 

compensation. By applying the McFarland compensator to the recorded simulation Euler 

angles, large spikes in the compensated output resulting from its gain distortion have 

been found and determined to be the primary cause of the poor compensation observed in 

the preliminary piloted tests. Investigation shows that the excessive gain distortion comes 

from the alternative sign changes of the three coefficients of the McFarland predictor, and 

from the constant coefficients, which do not change with the simulation process. For the 

Sobiski/Cardullo predictor, a discrete version was formulated which yields the same 

compensation results as the former in theoretical simulation. Some limitations in 

Sobiski’s implementation were found. 

A spike-reduction algorithm was proposed as an expedient solution to the 

annoying large spikes in the McFarland compensation. Both time and frequency domain 

least squares methods were formulated to design the coefficients of a three-velocity 

predictor. A novel adaptive predictor was developed using the Kalman filter algorithm 

that updates the predictor coefficients during the course of a simulation. Five versions of 

the adaptive algorithms were tested and compared, the stochastic approximation 

algorithm was chosen for the final piloted tests because it produces the smallest 

compensation errors. A stochastic approximation algorithm with a forgetting factor was 

also formulated. The analysis in Chapter 4 mathematically proves the viability of using 

the asymptotic ODE, and demonstrates why the stochastic approximation algorithm 

achieves the best compensation among all the five adaptive predictors. 

The first practical state space predictor to compensate the transport delay was 

developed by forming a group of predictor states and making use of a linear aerodynamic 
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reference model. This makes it possible to apply a state space compensator to a flight 

simulator in which the aircraft dynamics are nonlinear and time-variant. The state space 

predictor was significantly simplified from the original Sobiski/Cardullo implementation, 

and reduced to a general PID filter. Several 3rd and 4th-order dynamic reference models 

were tested and compared, and the large commercial transport landing model in pitch was 

chosen for the final piloted tests. A mathematical explanation of why this model is the 

best reference model for use in the state space compensation was discussed. While 

exploring the relationships between the state space compensation effectiveness and the 

reference model, the following important points were found: 

1) The state space compensation may be viewed as a Taylor series extrapolation in 

the state space form;  

2) The bandwidth of the reference model must be close to that of the simulation 

dynamics;  

3) The damping ratio of the reference model does not make a significant difference 

in the state space compensation;  

4) The 4th-order reference model is the best choice in this case;  

5) The effects of the gain of a reference model are much less significant than its 

bandwidth.  

Theoretical analyses were conducted by applying the McFarland predictor and the 

two novel predictors to recorded Euler angles from past simulation tests, and evaluating 

their phase and gain errors. The adaptive predictor with the stochastic approximation 

algorithm produces slightly higher phase error than the McFarland predictor, which 

reveals about the same phase error as the state space predictor with the large commercial 
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transport landing dynamics as the reference model. The difference in phase errors of the 

three predictors is not significant, and therefore the gain errors play a more important role 

in deciding their relative effectiveness. The adaptive predictor yields a greater gain error 

than the McFarland predictor for the zero and 48 ms added delays (short delays), but 

shows a smaller error for the 96 and 192 ms added delays (long delays). The advantages 

of the adaptive predictor become more obvious for longer time delay. Conversely, the 

state space predictor results in substantially smaller gain error than the other two 

predictors for all the four delay cases. 

6.2. Suggested Future Research                                       

 It would be worthwhile to study a frequency domain method to measure the 

simulator transport delay and phase lag, and compare the results with those obtained with 

the time domain method. Although some frequency domain data were collected with the 

SIMES while it generated sweep signals as control inputs to the VMS, they did not result 

in satisfactory results because aliasing was included in the aircraft EOM outputs. The 

frequency of the sweep signal was increased too quickly, and the lower frequency input 

did not last long enough. A high percentage of high frequency input signals caused the 

aliasing. This could be avoided by choosing a lower rate of increasing the frequency of 

the sweep signal. 

The effectiveness of the three-velocity adaptive predictor for compensating a 

short time delay may be improved by updating the coefficients in a more “intelligent” 

manner, which is more adaptable to the velocity changes, especially sudden and abrupt 

changes, such as the initiation of a maneuver. An exponential forgetting factor can only 

weigh the past data continuously and gradually, and therefore cannot solve this problem. 
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It would be worthwhile to develop some “intelligent” algorithms that can detect 

significant changes in the flight dynamics. Fuzzy logic and neural network techniques 

may be helpful to achieve the detection of these changes. Maneuver phase detection 

would be of great significance, and may be useful in applications other than transport 

delay compensation. 

The compensation quality of a state space predictor depends on the choice of the 

reference aircraft model. As is stated in Chapter 4 (4.5.4), system identification may be a 

good way to obtain an optimal reference model. To avoid adding extra delay resulting 

from a highly complex aircraft model, techniques to minimize the computational burden 

should be investigated. Because different phases of a maneuver may involve varying-

order dynamics, system identification may also require maneuver phase detection.              
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Appendix A. Calculation of State Transition Matrix and Its Convolution 

Integral 

A.1. State Transition Matrix 

Computation of the state transition matrix Φ  and the convolution integral matrix 

Ψ  of the state matrix A  plays an important role in implementing the Sobiski/Cardullo 

filter and the aerodynamic reference model state space predictor. These matrices can be 

calculated directly or indirectly.  The direct method makes use of the definition of the 

state transition matrix, and the indirect method makes use of the eigenvalues of the 

matrix A , or the inverse Laplace transform. 

A.1.1. Direct Method 

By definition, Eq. (4.49), the state transition matrix Φ  is an infinite Taylor series 

 ( )
0 !

∞

=
= =∑A A

Φ d

i
dt

i

t
e

i
 (A.1) 

Because this series is always convergent, the infinite series can be approximated with a 

finite number of terms. The number of terms required depends on the criterion set for the 

accuracy. If the power of the matrix A  is equal to or higher than its order n , this power 

can be calculated in terms of those lower-order powers by making use of the Cayley-

Hamilton theorem 

 ( )
0

n
i

i
i

aφ
=

= =∑A A 0  (A.2) 

where 0 na a−  are the coefficients of the characteristic equation of A . This shows that the 

nA  can be calculated in terms of 2 1n, , ..., −A A A , i.e., 
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 ( )1
0 1 1

n n
na a ... a −

−= − + + +A I A A  (A.3) 

If the matrix A  is obtained from a transfer function, its characteristic equation is 

known from the denominator of the transfer function. If it is obtained from another 

approach, say system identification for example, the coefficients 0 na a−  of the 

characteristic equation may be given by 

 1 2 2 0 0
1 1
2− − −= − = − = −A AT ATn n na tr , a tr , ..., a tr

n
 (A.4) 

where the matrices 1T - 1n−T  can be given as follows 

 2 1 3 2 2 0 1 1− − − − −= + = + = +T A I T AT I T AT In n n n na , a , ..., a  (A.5) 

High matrix power can also be avoided by a recursive algorithm, which may be 

obtained by rewriting Eq. (A.1) in the form of 

 2 3 4
⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞= + ⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭

Φ I A I + A I + A I + A I + ... + I + Ad d d
d

t t tTt n  (A.6) 

The recursion must be carried out in an inverse order, e.g., from I + A dt
N , to 

1−I + A dt
N , through to I + A dt . Thus the number of retained terms needs to be 

determined before hand, and the criterion for truncation may be that ( ) ( )2 / 1+A dt N N  is 

acceptably small when compared to /A dt N .      

A.1.2. Indirect Method 

The Cayley-Hamilton theorem, Eq. (A.2), says that every square matrix satisfies 

its own characteristic equation. This leads to the indirect calculation of the state transition 

matrix in that the infinite series in Eq. (A.1) can be rewritten as a product of ( )φ A  and a 

polynomial in A  plus a remainder, that is 
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 ( ) ( ) ( )dte P Rφ= = +AΦ A A A  (A.7) 

where the remainder ( )R A  is of lower order than ( )φ A . The counterpart of Eq. (A.7) in 

terms of a scalar variable is given by 

 ( ) ( ) ( )xe P x x R xφ= +  (A.8) 

From the Cayley-Hamilton theorem, ( )φ =A 0 , then 
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0 1 1...

dt

n
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e R
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= =

= + + +
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I A A
 (A.9) 

The coefficients 0 1 1n, , ...,α α α −  can be calculated by noting that every eigenvalue of A  

satisfies ( ) 0iφ λ = , substituting this into Eq. (A.8) gives 

 ( ) 1
0 1 1...i d nt

i i n ie Rλ λ α α λ α λ −
−= = + + +  (A.10) 

If the matrix A  has all identical eigenvalues, the n  equations in (A.10) can be solved for 

the coefficients 0 1 1n, , ...,α α α − . Solving the coupled equation group involves inverting a 

Vandermonte matrix 
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The solution is  
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If there are repeated eigenvalues, with a multiplicity of m  ( m n≤ ), then ( )1m −  

more equations are needed, and they are given by 
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 (A.13) 

If a pair of eigenvalues of complex conjugates exists, the resulting state transition 

matrix is real because the two complex equations can be replaced with two real equations 

obtained from the real and imaginary equalities. For example, for p jqλ = ± , the two 

complex equations ( ) 1
0 1 1...dt n

ne Rλ λ α α λ α λ −
−= = + + +  can be separated into two real 

equations 
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 (A.14) 

Another indirect approach for calculating the state transition matrix is to use the 

inverse Laplace transform,. which is given by  

 [ ]{ }11 −−

=
= =AΦ I - Ad

d

t

t t
e L s  (A.15) 

Inversion of [ ]I - As  can be computed using the expansion of its adjoint as follows 

 [ ] ( )1− =
I - A

I - A
I - A

adj s
s

s
 (A.16) 

where I - As  is the characteristic polynomial:   

 1 2
1 2 1 0...− −

− −= + + + + +I - A n n n
n ns s a s a s a s a  (A.17) 

The coefficients 0 na a−  can be calculated with Eq. (A.4). The adjoint matrix may be given 

as  

 ( ) 1 1 1
2 1 0...− −

−= + + + +I - A I T T Tn n
nadj s s s s  (A.18) 

where the matrices 1T - 1n−T  are given by Eq. (A.5) 
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A.2. Calculation of the State Transition Matrix Integral 

By definition, the integral of the state transition matrix is given by 

 ( )
0

d d
t te dτ τ−= ∫ AΨ  (A.19) 

If the matrix A  is non-singular, it can be calculated by direct integration 

 ( ) ( )1 1dte− −= − = −AΨ A I A Φ I  (A.20) 

But if A  is singular, this method cannot be used because its inverse matrix does not exist. 

Matrix inversion can be avoided by substituting the definition of Φ  into Eq. (A.20), 

which then becomes 
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The repetition of completing the factorial may be avoided by using a recursion algorithm 

 2 3 4
d d d

d
t t tTt n

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭
Ψ I + A I + A I + A I + ... + I + A  (A.22) 

Using the recursion in a manner similar to the implementation of Eq. (A.6). The 

calculation of the matrix Ψ  is very similar to calculation of Φ . The power functions of 

the matrix A  used when forming Φ  with the direct method may be saved for later 

calculation of Ψ . 

If the order of A  is not high, the method given by Eq. (A.20) is simpler than the 

recursive algorithm (A.22) when the matrix Φ  is already available. However, if A  is of 

high order, algorithm (A.20) becomes complicated, because inversion of a high order 

matrix is time consuming. In this case, use of the recursive algorithm is recommended.  
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A.3. Calculation of the Discrete State Transition Matrix 

The calculation of the discrete state transition matrix =Φ G l
d  is straightforward, 

however, it can also be obtained using the inverse Z-transform, as follows 

 [ ]{ }11l
d

k l
Z z z−−

=
= =Φ G I - G  (A.23) 
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Appendix B. Complements to Sobiski/Cardullo Filter 

 Sobiski and Cardullo first introduced the idea of using the state transition matrix 

to compensate the time delay in flight simulation. The state space predictive filter named 

after them bears many unique features for designing and implementing state space 

compensation. This section presents a brief description of the Sobiski/Cardullo predictive 

filter and some additional work done by the author of this report.     

B.1. State Space Compensation: Output Feedback and State Feedback 

Figure 2.3 is a block diagram of the flight simulation system, which includes the 

Sobiski/Cardullo compensator as it was implemented for this study. The transfer 

functions of the operator model, the aircraft dynamics and the Pade approximation of the 

time delay were first transformed to state space equations and output equations, which 

were then concatenated together, resulting in a single-input and single-output (SISO) 

linear time-invariant system, represented by 

⎧
⎨ =⎩

x = Ax + B
Cx

& u
y

 ( 0=D ). 

Because the Pade approximation of the time delay is included, the output y  has 

been delayed, and the state space prediction is to be employed to compensate for the 

delay. The matrices A , Φ  andΨ  all contain information about the time delay, and are of 

10th-order. The state space compensation may be implemented as depicted in Fig. B.1. 

The compensated system is described by the equations 

 
u

y u
⎧
⎨ =⎩

x = Ax + B
CΦx + CΨB

&
 (B.1) 

The matrix D = CΨB , a scalar now (a one-by-one matrix), is not necessarily zero. 
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Fig. B.1. State space compensation in an open loop system 

The unit output feedback closed-loop system with state compensation is shown in 

Fig. B.2, and the state equation and output equation of the closed loop compensated 

system are  

 
( )G Gv

y G Gv
⎧⎪
⎨

=⎪⎩

x = A - B CΦ x + B
CΦ x + CΨB

&
 (B.2) 

where ( ) 11 −= + CΨBG  is, as Sobiski and Cardullo defined, the feed forward gain of the 

closed loop compensated system. 
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Fig. B.2. Output feedback closed loop system with state space compensation 

The state feedback can also be used in a state transition matrix-based 

compensation. Actually the Sobiski/Cardullo predictive filter uses the state feedback, as 

illustrated in Fig. B.3. If the state feedback is used, the feed forward gain matrix becomes 

( ) 11G −= + KΨB . The feedback matrix K  is designed using a pole placement technique 

so that the closed loop poles of the compensated system consist of the closed loop poles 
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of the undelayed system and the real parts of the Pade approximation of the time delay. 

The first step is to obtain fdbkK  using ordinary pole placement so that the homogeneous 

equation ( )fdbk= −x A BK x&  has the desired poles. The second step is to calculate the 

feedback gain K  as follows: comparing ( )fdbk= −x A BK x&  with the first equation of 

(B.2) gives fdbk G=K KΦ , and the equations ( ) 11G −= + KΨB  and fdbk G=K KΦ  

together give  

 ( ) 1

fdbk fdbk

−
= −K K Φ ΨBK  (B.3) 
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Fig. B.3. State feedback closed loop system with state space compensation 

Because the real parts of the 2nd-order Pade approximation are identical, the 

desired closed loop poles for the pole placement have repeated elements, and this 

prevents the MATLAB “place” function from working. A new MATLAB function has 

been written to achieve pole placement with repeated poles (Available in Appendix C.14, 

NASA CR—2007-215096) 

The final Sobiski/Cardullo filter is a little different from Fig. B.3, and is actually 

an equivalent system obtained using the feed forward gain G . The equivalent system is 

shown in Fig. B.4. It can be proved that the systems in Fig. B.3 and Fig. B.4 share the 

same closed loop transfer function 
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Fig. B.4. The Sobiski/Cardullo filter 

One advantage of the equivalent system shown is that the compensated system 

may be easily simplified to canonical form because the matrix Ψ  in the initial state 

feedback system (Fig. B.4) is changed to the feed forward scalar gain G . However, these 

two systems are not exactly equivalent although the feedback cy  is the same, the system 

state x  is different, and hence the system output y  is also different. Comparing the two 

systems shows that they are identical only if the feed forward gain G  is unity. Because G 

is not unity when using the pole placement method, the system states are changed.    In an 

aircraft simulation, the aircraft states may be used by different cueing systems. With the 

equivalent system, although the operator is fed back with the correct, compensated visual 

cue, the instrument cue and motion cue (if any) are not correct. This is a limitation of 

Sobiski/Cardullo compensation. 

When the system is of high order, e.g., above the 10th-order, pole placement may 

sometimes cause problems. The state feedback matrix K  can be designed using other 

approaches. Two frequency domain methods have been used: the five-point method and 

the least squares method. Both methods assume the operator working frequency does not 
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exceed an upper limit 0ω . In the five-point approach, five frequency points are chosen 

evenly from the pass band [ ]00 ω , and the frequency characteristic function of the 

compensated system is forced to equal that of the undelayed system at these points. It is 

given by 

 [ ]{ } ( ) ( )1
0 , 1,...,5i ij H j iω ω− = =K Φ I - A B +ΨB  (B.5) 

where 0H  is the Laplace transfer function of the undelayed system. The five real part 

equalities and five imaginary part equalities can be used to solve the 10 elements of the 

matrix K . 

In the least squares approach, more than five frequency points are chosen, and the 

sum of the Euclidean norm of the difference between the frequency characteristic 

functions of the compensated system and the undelayed system at these points is 

minimized. In mathematical terms, minimize the equation  

 [ ]{ } ( )
21

0
1

*
n

i i
i

S j H jω ω−

=

= −∑ K Φ I - A B +ΨB  (B.6) 

Then, setting the derivatives of S  with respect to each element of the matrix K  to zero 

results in 10 coupled linear algebraic equations that can be used to solve K . Analysis 

shows that the state feedback matrix designed with the least squares methods can achieve 

better compensation than with the five-point method and much better than with the pole 

placement method. Figs. B.5 and B.6 show the Bode diagrams and step responses of the 

state space compensation with the feedback matrix K  designed by the least squares 

fitting (LSF) method for delays of 200, 400 and 800 ms. The compensation is perfect and 

the responses of the compensated system line up exactly on top of the uncompensated 

response.                
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Fig. B.5. Bode diagrams with state space compensation with K  by LFS 
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Fig. B.6. Step responses with state space compensation with K  by LFS 
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Another advantage of the five-point method and the LSF method over the pole 

placement method is that the gain matrix K , designed with them, makes the forward gain 

( ) 11G −= + KΨB  very close to unity, and because of this, the equivalent system is almost 

identical to the original system, without a noticeable change of system states. In the five-

point method and the LSF method, the frequency characteristic function of the 

compensated system is forced to be close to that of the undelayed system. Hence the 

matrix D  of the open loop compensated system ( D = CΨB ) is also forced to be close to 

that of the undelayed system, which is zero. Therefore, 0D = ≈KΨB , and 

( ) 11 1G −= ≈+ KΨB . This explains why the feed forward gain is unity from the two 

frequency design methods. This is significant in the simplification of the compensation.      

B.2. State Observer for the State Space Compensation 

If the state space filter is used in another control system to compensate for time 

delay, and some of the states to be fed back are not measurable, then a state observer can 

be designed to make available those immeasurable states. Fig. B.7 illustrates a state space 

compensation system making use of a full order state observer. The state equations and 

the output equations of the control system and the predictor with the observer are, 

respectively 

 

c

u
y
u v y

⎧
⎪
⎨
⎪
⎩

x = Ax + B
= Cx
= -

&

%

 (B.7) 

 c u y
y u

⎧ = +
⎨

=⎩

x A x + B L
CΦx + CΨB

&% %

% %
 (B.8) 

where cA = A - LC . Define e = x - x%  then it follows from Eqs. (B.7) and (B.8) that 
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c

e = x - x
= A e

&& & %
 (B.9) 

 

Fig. B.7. State space compensation with a full order state observer 

If all eigenvalues of cA  are selected to be negative, Eq. (B.9) is an asymptotically 

stable error equation. The eigenvalues of cA  control the speed of convergence. 

Experience indicates that a good design usually results if the continuous-time observer 

poles are selected to be a little farther to the left in the s-place than the desired closed 

loop state feed back poles (Brogan 1974). This technique is used here. The fact that the 

control system is now completely observable makes it possible to choose any eigenvalues 

for cA  as desired. By eliminating the variable u ( ( )u G v= - CΦx% ), the equations that 

characterize the entire system are obtained as 
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where ( ) 1G −= I + CΨB . The observed states can be fed back with the gain matrix K  

designed with the two frequency methods introduced above in place of the matrix C . The 

poles of the observer and the poles of the feed back controller can be chosen 

independently because the poles of Eq. (B.10) can be separated as follows 
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 (B.11) 

As previously stated, using the feedback matrix K , which was designed with the 

two frequency methods, makes the feed forward gain G  be close to unity and the 

equivalent compensation system identical to the original compensation system. This also 

makes it possible to adopt the equivalent system to the observer system, as illustrated in 

Fig. B.8. The state equation of the observer is changed from Eq. (B.8) to 

 ( )Gu= + + −x Ax B LC x x&% % %  (B.12) 

where the control law is also changed to 

 u v y v= − = − KΦx% %  (B.13) 

From these, the governing differential equation of the error for the new observer 

becomes 

 ( ) ( )1 G u− + −e = x - x = A LC e B&& & %  (B.14) 
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Since 1G ≈ , this equation reduces to Eq. (B.9). Therefore, the design of the observer 

gain matrix L  may be undertaken the same way as for the observer in Fig. B.7. 

If some state variables can be measured, then a minimal order state observer may 

be designed to implement the state space compensation.    

 

Fig. B.8. State space compensation with a full order equivalent state observer 
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Appendix C. State Space Compensation in LTI Systems 

 In the state space compensation, introduced in Appendix B, the Pade 

approximation of the time delay is added first so that the matrices A , Φ  and Ψ  all 

contain the information about the time delay. The filter generates the compensated states 

from the delayed states. In this manner the prediction is not visible. In this section, the 

prediction py  is produced before the time delay is added, and then it is delayed to get the 

compensated output to use as feedback. This approach is illustrated in Fig. C.1, where the 

matrices aA , aΦ  and aΨ  do not carry the information about the time delay. The transfer 

function of the 2nd-order Pade approximation of the time delay is given in Eq. (2.4), and 

the tA , tB , tC  and tD  are given by  

 [ ]
2

6 1 12
1 0 1

12 0 0

d
dt t t t

d

t
t, , ,

t

⎡ ⎤− ⎡ ⎤⎢ ⎥ −⎢ ⎥⎢ ⎥= = = =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

A B C D  (C.1) 

In whichever form is chosen for the state space equations, the matrix tD  is always 

unity because the Pade approximation transfer function is normal and its gain is unity. 

Then the delayed output can be calculated using 
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The prediction is given by 

 a a a a

p a a a a a a

u
y u

⎧
⎨ =⎩

x = A x + B
C Φ x + C Ψ B

&
 (C.3) 
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The predicted state is output to the cueing system to compensate for the time 

delay. The compensated output may be calculated in a manner similar to that used for Eq. 

(C.2) as follows 
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Finally, the output feedback closed loop state equation and output equation are 

given by Eq. (C.5), where ( ) 11 a a aG −= + C Ψ B  is the feed forward gain. The 

compensation results shown in Figs. 4.14 and 4.15 were obtained with this algorithm.  
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Fig. C.1. State space predictor in a linear time-variant system 

The matrix aC  can be replaced with a matrix K  designed with similar frequency 

methods described in Appendix B. With the gain matrix K , the feed forward gain 

becomes ( ) 11 a aG −= + KΨ B . 

As shown in Figs. 3.13 and 3.14, this compensation based on prediction cannot 

compete with the Sobiski/Cardullo filter when compensating for long time delay. For 
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example, the compensation errors, which come from compensation based on prediction, 

are considerably larger then the errors arising from the Sobiski/Cardullo approach as the 

time delay approaches 800ms. In addition, it has been demonstrated that the longer the 

delay is, the farther the feed forward gain G  deviates from unity. Remember that, as the 

time delay gets larger, the greater compensation errors mean the compensated system 

diverges from the undelayed system, and hence the matrix c a a a=D C Ψ B  of the 

compensated system moves away from aD  of the undelayed system, which is zero. This 

also means that ( ) 11 a a aG −= + C Ψ B  deviates further from unity. Nonetheless, the 

prediction is significant. The state space predictor introduced in this section is the first 

step in the evolution from the Sobiski/Cardullo filter to the aircraft reference model state 

space filter applicable to a flight simulator. 
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Appendix D. Discrete State Space Filter and Time-Variant State Space 

Filters 

D.1. Discrete State Space Filter 

The discrete state space control system of the corresponding continuous control 

system ⎧⎨ =⎩

x = Ax + B
Cx

& u
y

 may be expressed as 
( ) ( ) ( )
( ) ( )

1k k u k

y k k

⎧ + +⎪
⎨

=⎪⎩

x = Gx H

Cx
, where Te= AG  

and ( )0

T
e dτ τ= ∫ AH B . The discrete state space predictor comes from the recursive 

formula for calculating the succeeding states in terms of the previously available ones 
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2 1 1 1

3 2 2 1 2

1 1
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l k j
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k k u k k u k u k

k k u k k u k u k u k

k l k l u k l k u k u j
−

− −

=

+ = + + + = + + +

+ = + + + = + + + + +

+ = + − + + − = + +∑

x Gx H G x GH H

x Gx H G x G H GH H

x Gx H G x G H G H

M  (D.1) 

By making the same assumptions on the input u  as for the continuous state space filter, 

the future inputs can be approximated by the current input ( )u k , and the discrete state 

space predictor can be obtained from the last equation of (D.1), as given by 

 ( ) ( ) ( )d dk l k u k+ = +x Φ x Ψ  (D.2) 

where ( ) l
d l =Φ G  and ( ) ( )

1

0

l

d d
j

l j
−

=

=∑Ψ Φ H  are the discrete state transition matrix and 

its integration matrix. The predicted output is  

 ( ) ( ) ( )d dy k l k u k+ = +CΦ x CΨ  (D.3) 

The unit output feedback discrete state space compensation may be implemented 

as shown in Fig. D.1.      
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Fig. D.1. Discrete state space compensation 

D.2. Continuous Time-variant State Space Filter 

The time varying continuous state space filter can be derived from the solution of 

the time varying continuous state equation ( ) ( ) ( ) ( ) ( )t t t t u t+x = A x B& , which is given 

by 

 ( ) ( ) ( ) ( ) ( ) ( )
0

0 0

t

t
t t ,t t t , u dτ τ τ τ= + ∫x Φ x Φ B  (D.4) 

where ( )t ,τΦ  is the general state transition matrix defined as  
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=

Φ I

Φ
A Φ

 (D.5) 

By making some assumptions about the control input u  and the system matrix A , the 

continuous time-variant state space predictor is given by 

 ( ) ( ) ( ) ( )( ) ( ) ( )
0

dd d
tt t t t

dt t e t e d t u tτ τ−⎡ ⎤⎡ ⎤+ = +⎣ ⎦ ⎢ ⎥⎣ ⎦∫A Ax x B  (D.6) 

 



146 

D.3. Discrete Time-variant State Space Filter     

The time-variant discrete state space filter comes from the solution of the time-

variant state equation ( ) ( ) ( ) ( ) ( )1k k k k u k+ +x = G x H , and is given as 

 ( ) ( ) ( ) ( ) ( ) ( )
0

1

0 0 1
k

j k

k k ,k k k , j j u j
−

=

= + +∑x Φ x Φ H  (D.7) 

with ( )0k ,kΦ  being the time-variant state transition matrix, which can be calculated by 

 ( )
( ) ( ) ( ) ( )

0 0

0 01 2

k ,k .

k ,k k k k

=

= − −

Φ I

Φ G G GL
 (D.8) 

By making some assumptions about the control input u  and the system matrix G , the 

discrete time-variant state space predictor is given by 

 ( ) ( ) ( ) ( ) ( ) ( )
1

0

l
l j

j
k l k k k k u k

−

=
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The state transition matrix ( )lkG  and its numerical integral ( ) ( )
1

0

l
j

j

k k
−

=
∑G H  have 

to be calculated for each iteration. 
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Appendix E.  Miscellanea on the Novel State Space Compensator 

E.1. An Example to Show the Compensation Principle of a State Space Filter 

Suppose there is a 2nd-order linear time-invariant system, with a transfer function 

given by 

 ( )
( )

0
2

1 0

Y s a
U s s a s a

=
+ +

 (E.1) 

Its state equation and output equation are given by 
u

y Du
⎧
⎨ = +⎩

x = Ax + B
Cx

&
, and the observable 

matrices are   

 [ ]1

0 0

1 0
1 0 0

0
a

, , , D
a a

−⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

A B C  (E.2) 

Let [ ]1 2
Tx x=x , then the undelayed output is 

 1y x=  (E.3) 

With the state space compensation py u= CΦx + CΨB , the predicted output can be 

calculated by 

 11 1 12 2 12 0py x x a uφ φ ψ= + +  (E.4) 

where 11φ  and 12ψ  are elements of the matrix Φ  and its integration Ψ . Comparing Eqs. 

(E.3) and (E.4) gives 11 12 2 12 0py y x a uφ φ ψ= + + . It indicates that the continuous state space 

filter uses the system states and the control input to predict. The weighting factors of the 

relevant terms are determined by the state transition matrix and its integral.  Because the 

state variable 2x  carries the velocity information, the prediction makes use of the velocity. 

If the system is of 3rd-order, the acceleration will be used to predict, and for higher order 

systems, more system information is required to make a prediction. 
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On the other hand, for a discrete system, say ( )
( )

1 0
2

1 0

Y z n z n
U z z m z m

+
=

+ +
, which is the 

discrete form of the system given by (E.1), the predicted output becomes  

 ( ) ( ) ( ) ( ) ( ) ( )11 12 0 1 1 11 0 12 01 1z z z zy k l y k m x k n n u k n u kφ φ ψ ψ+ = − − + + + −  (E.5) 

Therefore, the discrete state space filter uses the current and past system information 

(states and input) to predict. 

E.2. The Filter Coefficients in Terms of the Eigenvalues 

A 2nd-order system can be characterized by its natural frequency nω  and damping 

ratio ζ . In terms of nω   and ζ , the parameters in the transfer function in (E.1) can be 

written as 

 2
1 02 n na , aω ζ ω= =  (E.6) 

Let the two eigenvalues of this system be denoted by 1λ  and 2λ , and the following 

relationships become straightforward 

 ( )1 1 2 2 1 2a , aλ λ λ λ= − + =  (E.7) 

As stated in Appendix A, the state transition matrix and its integral can be 

obtained in terms of the system eigenvalues. The results are different for three cases with 

regard to the two eigenvalues, i.e., two different real eigenvalues, two repeated real 

eigenvalues, or a pair of complex conjugates. 

Two unequal real eigenvalues 

This case corresponds to an over-damped system, with 1ζ > . The two eigenvalues 

are given by 

 2
1 2 1, n nλ ω ζ ω ζ= − ± −  (E.8) 
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Eq. (A.9) becomes 0 1α α= +Φ A . Without the details of derivation, 0α  and 1α  are 

given as follows 
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where dt  is the time delay. The state transition matrix and its integral are given, 

respectively, by 
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The D  matrix of the compensated system can be calculated by 
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From (E.4), the prediction is given by 
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For formulas (E.10)-(E.13), the last equations are in terms of 0a  and 1a , the 

parameters of the transfer function, and 0α  and 1α , which are given in (E.9). The 

remaining cases use the same convention. 

Two repeated real eigenvalues 

This case corresponds to a marginally damped system, with 1ζ = . The 

equationswhich correspond to Eqs. (E.8) through (E.13) for this case are given as follows 

 1 2, nλ λ ω ζ= = −  (E.14) 
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 ( )1 1dt
dD e tλ λ= = − −CΨB  (E.18) 

 ( ) ( )21 1 1d d dt t t
p d d dy t e y t e x e t uλ λ λλ λ⎡ ⎤= + + + − −⎣ ⎦  (E.19) 

Two complex conjugates 

This case corresponds to an under-damped system, with 1ζ < . The 

equationswhich correspond to Eqs. (E.8) through (E.13) for this case are given as follows 

 2
1 2 1, n nj jλ ω ζ ω ζ α β= − ± − = ±  (E.20) 

The relations given in (E.7) becomes 

 2 2
1 02a , aα α β= − = +  (E.21) 
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For a 3rd-order system ( )
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, its state transition matrix and its 

integral can be calculated by 
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Ψ  (E.28) 

Depending on the eigenvalues of the matrix A , the expressions of 0 1,α α  and 2α  may be 

different. Usually, a 3rd-order aircraft model has one real and two complex conjugate 

eigenvalues. Denote them by 1 2 3,r , m nλ λ= = ± , then the following relations hold 
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 ( ) ( ) ( )2 2 2 2
0 2 32 2a r m n , a rm m n , a r m= − + = + + = − +  (E.29) 

And the expressions of 0 1,α α  and 2α  are given by 
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 (E.30) 

where 2 2 2 2r rα β αΔ = + + − . The matrix D  of the compensated system is 
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Appendix F. Calculation of the Accelerations in the Topodetic Frame 

The topodetic frame is also called the north-east-up (NEU) frame.  This is the 

frame in which most visual images in a flight simulator are generated. The six degrees of 

freedom (DOF) are: roll, pitch, yaw (i.e., the three Euler angles), altitude, longitude and 

latitude. The displacements, velocities and accelerations in the 6-DOF of the topodetic 

frame are usually calculated from those in the 6-DOF of the body frame, which are 

available from the flight dynamics and equations of motion (EOM). Because the 

accelerations in the topodetic frame are not used in the visual image generation, they are 

not usually available from the simulation computer. As mentioned in Chapter 4 (4.5.1), 

they are necessary for applying the state space predictor in a flight simulator to 

compensate the transport delay in the visual system. The formulas to calculate the 

accelerations in the 6-DOF of the topodetic frame are derived as follows. These six 

accelerations can be divided into two groups—three angular accelerations (2nd derivatives 

of the Euler angles) and three translational accelerations. 

F.1. Angular Accelerations 

The transformation of the angular velocities from the body frame to the earth 

frame is given by the kinematic equations 

 
1
0
0

tan sin tan cos p
cos sin q .

sin / cos cos / cos r

φ θ φ θ φ
θ φ φ
ψ φ θ φ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&

&

&

 (F.1) 

Denote 
TE

K φ θ ψ⎡ ⎤= ⎣ ⎦v & & &  (velocity vector in the earth or topodetic frame for the 

kinematic equations), [ ]TB
K p q r=v  (velocity vector in the body frame for the 

kinematic equations), and  
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 2

1
0
0

A
B E

tan sin tan cos
cos sin ,

sin / cos cos / cos

θ φ θ φ
φ φ

φ θ φ θ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

P  (F.2) 

then Eq. (F.1) can be rewritten in a compact form 

 2
E A B
K B E K .v = P v  (F.3) 

The accelerations may be calculated by taking the derivatives on both sides of Eq. (F.3), 

and the final result is 

 2 2
E A B A B
K B E K B E K ,+v = P v QP v& &  (F.4) 

where the matrix Q  is given by 
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Q  (F.5) 

Note that though the matrix 2
A

B EP  is dimensionless, the matrix Q  is not, and its units are 

1/sec. This also makes the second term of Eq. (F.4) an acceleration term (the unit is 21 / s ). 

The final result of product 2
A

B EP Q  is given by 
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2 21 22 32

31 32 33
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B E

α α α
α α α
α α α

⎡ ⎤
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⎢ ⎥⎣ ⎦

P Q  (F.6) 

where the nine elements are given in Table F.1. 

 Investigation shows that the second term of Eq. (F.4) is much smaller than the 

first term (the former is about one thousandth of the latter), and hence Eq. (F.4) may be 

approximated by discarding the second term, that is 

 2
E A B
K B E K ,≈v P v& &  (F.7) 
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or 

 
1
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tan sin tan cos p
cos sin q .

sin / cos cos / cos r

φ θ φ θ φ
θ φ φ
ψ φ θ φ θ
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This is exactly Eq. (4.34). 

Table F.1. Expressions of the nine elements of matrix 2
A

B EP Q  

Element Expression 

11α  ( ) ( )v cos sin cos sin sin w cos sin sin sin cosφ θ ψ φ ψ φ ψ φ θ ψ+ + −  

12α  u sin cos v sin cos cos wcos cos cosθ ψ φ θ ψ φ θ ψ− + +  

13α  ( ) ( )u cos sin v sin sin sin cos cos w sin cos cos sin sinθ ψ φ θ ψ φ ψ φ ψ φ θ ψ− − + + −  

21α  ( ) ( )v cos sin sin sin cos w cos cos sin sin sinφ θ ψ φ ψ φ ψ φ θ ψ− − +  

22α  u sin sin v sin cos sin wcos cos sinθ ψ φ θ ψ φ θ ψ− + +  

23α  ( ) ( )u cos cos v sin sin cos cos sin w sin sin cos sin cosθ ψ φ θ ψ φ ψ φ ψ φ θ ψ+ − + +  

31α  v cos cos w sin cosφ θ φ θ− +  

32α  u cos v sin sin wcos sinθ φ θ φ θ+ +  

33α  0  
 

F.2. Translational Accelerations          

The transformation of the angular velocities from the body frame to the earth frame is 

given by the navigation equations 

 
cos cos sin sin cos cos sin cos sin cos sin sin u

l cos sin sin sin sin cos cos cos sin sin sin cos v
h sin sin cos cos cos w

λ θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
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&
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 (F.9) 

Denote 
TE

N l hλ⎡ ⎤= ⎣ ⎦v & &&  (velocity vector in the earth or topodetic frame for the 

navigation equations) and [ ]TB
N u v w=v  (velocity vector in the body frame for the 
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navigation equations). Denote the transformation matrix for the translational velocities 

from the body frame to the topodetic frame as 

 
2

T
B E

cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos ,

sin sin cos cos cos
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⎢ ⎥− −⎣ ⎦

P  (F.10) 

then Eq. (F.9) can be rewritten in a compact form 

 2
E T B
N B E N .v = P v  (F.11) 

The translational accelerations may be calculated by taking the derivatives on both sides 

of Eq. (F.11), and the final result is 

 2
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 (F.12) 

This is the same as Eq. (4.35), and the matrix T  is available in Table 4.2. 

 In the VMS, the longitude and latitude are expressed in angles, therefore, the 

terms λ&&  and l&&   have to be divided by the corresponding radii to change to angles. The 

results are 
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=
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+
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with a=2.092565e+7 ft, the earth equatorial radius and ( )1b a f= − , the earth polar radius, 

where f=1/298.257 the earth flattening parameter. 
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collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
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