

JBoss Middleware for Spacecraft Trajectory Operations

Kjell Stensrud United Space Alliance Software Engineer Ravi Srinivasan Hewlett Packard Senior Consultant

Dustin Hamm NASA Aerospace/Software Engineer

February 13, 2008

Abstract

- Project Background
 - What is the environment where we are considering Open Source Middleware?
- System Architecture
 - What technologies and design did we apply?
- Testing overview
 - What are the quality scenarios and test points?
- Project Conclusion
 - What did we learn about Open Source Middleware?

Project Background

- What is our core business?
- What is our software environment?
- What is our software need?
- What are our project goals?

Core Business

- We perform all of the Trajectory Analysis, Pre-mission Design, Operations, and Post-Flight Assessments for the Manned Space Program
 - We support the Space Shuttle Program (SSP),
 International Space Station (ISS), Constellation Program (CxP) and other vehicles
 - We support Ascent, Orbit, Rendezvous, and Entry Phases

Core Business

Analysis:

- How changes in the vehicle, environment, or procedures impact the vehicles trajectory, performance, and margins.
- Both nominal and off-nominal conditions.
- We answer "what if" type questions
- Pre-Mission Design:
 - Determines what the specific trajectory will be for an upcoming launch or mission phase
 - Determines the margins for the flight
 - Results in products that are consumed by the rest of the program

Core Business

Operations:

- Monitor the vehicle, Determine where the vehicle is, Tell the vehicle how to get where it needs to go
- During critical phases (Ascent, Rendezvous, and Entry) system failures cannot be tolerated and performance is a key concern
 - Possible loss of crew and loss of vehicle
- Done by flight controllers in a highly collaborative environment. A lot of concurrent use of data and user interaction with the system.

Software environment

- Mission Critical Flight Control Operations
- Software systems with legacies dating 40 years.
- Highly Customized infrastructure
- New space program requiring considerable new functional capabilities

Software Need

- Highly available computing system
- Sustainable infrastructure and applications
- Modifiable infrastructure, applications, and business models

Project Background

- Project Goals
 - Determine if Java technology is appropriate for high availability.
 - Determine if Java Open Source Middleware is a viable alternative to custom infrastructure.
 - Determine if JBoss Enterprise Application Platform can support our use cases and quality scenarios.

- What are the technologies employed?
- What is the test system architecture?
- What is the test application design?

- Technologies
 - Blade Server
 - RHEL
 - Sun JVM
 - MySQL (clustered for failover and redundancy)
 - JBoss AS (EJB3 and Service Beans)
 - JBoss Clustering (failover and redundancy)
 - JBoss Messaging (data distribution)
 - JBoss Cache (object state replication)
 - JGroups (failover of services)
 - Hibernate (object persistence)

TP - Test Point

Testing Overview

- What are the primary quality attributes and measures?
- What are our test criteria?
- What technologies were tested?
- What are our test results?

Primary Attributes & Measures

- Reliability
 - failover and fault recovery time in seconds of both processing load and connections
- Performance
 - processing load in compute units
 - data latency in seconds
 - data distribution in megabytes per second
 - data persisted in megabytes per second
- Scalability
 - number of client nodes
 - number of client workbenches

Test Criteria

- Reliability
 - program requirements for failover recovery
 - benchmark for current failover recovery
- Performance
 - benchmark of currently required processing units
 - program requirements for latency
 - benchmarks of current latency
- Scalability
 - benchmark of current number of clients
 - benchmark of current volume of data distributed
 - benchmark of current volume of data persisted

Technologies Tested

- JVM
 - computational performance
- JBoss Messaging
 - volume and latency of data distribution
 - failover of connections
- Hibernate/MySQL
 - volume and speed of data access
 - failover of data access
- JBoss AS
 - supported processing load
 - latency of processing steps
 - failover of processing

Test Architecture

Computational Load Modelling

- 1 work unit = 6 hour trajectory numerical integration
- total high speed processing in 62 work units

Processing Load Modelling

- computational load
- data access load
- messaging load

- Java Virtual Machine
 - algorithms complete is less than a fifth of the required time.
 - heap size stable during loading test
 - garbage collection consistent during testing
 - garbage collection does not impact latency of processing
 - Sun JVM proven to be most reliable
 - JRocket JVM generated segmentations faults

- JBoss MQ (example test case)
 - 4 node cluster running consecutively for 1 day
 - Continued for 5 more days with 3 node cluster
 - 28.5 million work units submitted to cluster
 - 3 sets of 20 work units submitted per second
 - Round-robin load balancing policy across cluster
 - 1.1 TB transferred, 2.4 MB/s average,
 - single HA Queue
 - Master node failure and recovery successful
 - Cause: inadvertent machine reboot

- JBoss Messaging (example test case)
 - Blade server with dual CPU
 - 2MB RAM for JBoss AS
 - 6 node cluster, 4 JBoss AS nodes, 2 MySQL nodes
 - 480 work units submitted to cluster per second
 - 3 sets of 40 work units to each JBoss AS node
 - Round-robin load balancing policy across cluster
 - 480 clustered database record merges per second
 - 480 JMS messages routed per second
 - Constant load for fifteen minutes
 - Consistent one second processing times for each one second batch of request

- Hibernate/MySQL
 - Standard Java Application with clustered MySQL
 - 20 threads performing 25K transactions
 - 1800 inserts/sec using Hibernate
 - 2800 inserts/sec using JDBC
 - Integrated JEE Application with clustered MySQL
 - greater than 1000 merges per second per node
 - greater than 1MB per second per node

Note: MySQL connection time limit is configurable, but connection time required during initial start up creates need for 10 sec timeout setting

- JBoss AS
 - supports number of required sequential pipe and filter style processing steps
 - individual filter steps include computational and persistent data access
 - individual pipe steps include messaging
 - support concurrent asynchronous processing load
 - supports processing load greater than5 times need
 - processing state failover in less than 30 sec

Project Conclusions

- Java application computational performance is acceptable given the proper hardware resources.
- JEE specification and supporting technologies can be used as a platform for mission critical operations.
- Open Source implementations of JEE, such as JBoss Enterprise Application Platform, are a viable alternative to custom enterprise solutions.
- NASA could elect to focus it's expertise on aerospace solutions and reuse existing open source middleware solutions.

Next Steps

- Explore Additional Technologies
 - Web Services
 - to expand access to business components to non Java clients
 - Enterprise Service Bus
 - to expand interoperability with external systems
 - Business Process Management
 - for orchestration of business workflows
 - Rich Client Platform
 - to integrate and manage side client components

