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Abstract: This paper discusses recovery scenarios for geosynchronous satellites 

injected in a non-nominal orbit due to a launcher underperformance. The theory on 

minimum-fuel orbital transfers is applied to develop an operational tool capable to 

design a recovery mission. To obtain promising initial guesses for the recovery three 

complementary techniques are used: p-optimized impulse function contouring, a 

numerical impulse function minimization and the solutions to the switching 

equations. The tool evaluates the feasibility of a recovery with the on-board 

propellant of the spacecraft and performs the complete mission design. This design 

takes into account for various mission operational constraints such as e.g., the 

requirement of multiple finite-duration burns, third-body orbital perturbations, 

spacecraft attitude constraints and ground station visibility. In a final case study, we 

analyze the consequences of a premature breakdown of an upper rocket stage engine 

during injection on a geostationary transfer orbit, as well as the possible recovery 

solution with the satellite on-board propellant.  

Abbreviations and Symbols 

 

GEO    = geosynchronous orbit 

GTO    = geostationary transfer orbit 

LAE    = satellite ‘liquid apogee engine’ 

j    = index for infinite-thrust impulse j (j = 1, 2) 

k    = index for orbit specification (1 = initial orbit,  

     t = transfer orbit, 2 =  GEO) 

Ok    = initial orbit, final orbit, transfer orbit (k = 1, 2, t) 

ak, ek, ik, Ωk, ωk, νk = semi-major axis , eccentricity, inclination,  

    right ascension of  ascending node, argument of perigee, 

    mean anomaly  

θ1    =  true anomaly of first impulse in initial orbit 

fj    =   true anomaly of impulse j in transfer orbit 

∆    =  transfer angle = f2 – f1 

pk    =  semi-latus rectum 

∆∆∆∆Vj    = thrust vector of impulse j 

∆Vj, ∆Vtot   = velocity increment of impulse j, total velocity increment 

Ij    = position of impulse j 

Rj    = position vector of impulse j 

(C, γγγγ, L, ΝΝΝΝorth)  = orthogonal ‘Earth-centered inertial’ coordinate system 

(C, x, y, z)   = unit vectors in the ‘Earth-centered inertial’ system 

αi, δj    = right ascension and declination of impulse j 

(M, S, T, W)  = orthogonal ‘radial-tangential-normal’ coordinate system 
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X    = vector of unknowns (θ1, α2, pt) 

Sj, Tj, Wj   = components of the primer vector Pj  

w    = pole vector of transfer orbit  

µ    = gravitational constant  

φj    = sun angle for impulse j 

ageo    = geostationary altitude (42164.170 km) 

Isp    = specific impulse of satellite LAE 

F    = thrust of satellite LAE 

I Introduction 

A geostationary transfer orbit (hereafter GTO) mission encompasses the transfer of a satellite from a 

given injection orbit to geosynchronous orbit (hereafter GEO). Classical GTO mission designs rely on 

the insertion of the spacecraft by the launcher vehicle onto a target injection orbit. However, in the 

unlikely case of a non-nominal performance of the launcher, the GTO mission has to be re-designed 

considering new conditions. For example, in the case of a launch vehicle without re-ignitable engine, 

pointing errors may introduce considerable discrepancies between the parameters of the obtained 

injection orbit and the nominal one. Re-ignitable launchers, on the other hand, may suffer from a 

premature firing abort, possibly leading to an unexpected injection orbit such as an important 

misalignment of the line of nodes from the line of apses. 

In the present contribution, we discuss such cases of launcher misbehavior for typically inclined GTO 

missions. We show how to compensate for a potential shortage of the launch vehicle whenever 

possible, by efficiently using the separated spacecraft on-board propellant to reach GEO. This 

compensation is performed by making use of the extensive amount of literature available on the general 

case of minimum-fuel transfers between two inclined elliptical orbits such as e.g., [1], [2], [3], [4], [5], 

[6], [7], [8], [9], [10], [11]. Whereas these contributions are carried out in the unrealistic limit of two 

infinite-thrust impulses applied in a Keplerian gravitational field, we propose in this paper to relax 

these approximations and to develop a realistic mission operational tool. This tool takes into account 

for all practical GTO mission operational constraints and evaluates the possibility of recovery for any 

non-nominal injection. Section II presents a general picture of the transfer geometry and introduces the 

variables used in the study. Section III summarizes our methodology and in Section IV we apply the 

technique to a test case, where we study the consequences of a premature abort of an upper rocket stage 

engine. Conclusions are presented in Section V. 

II Transfer Geometry 

Let us consider the general case of a time-free, infinite-thrust transfer performed in a Keplerian (two-

body) gravitational field. The transfer is performed between a known initial elliptical injection orbit O1 

and a final circular geostationary target orbit O2, as described in Fig. 1. The classical Keplerian 

elements of these orbits are 

 

) , , , , ,( 1111111 θωΩ= ieaO  ( 1) 

 
for the initial orbit, and 

 

)0 ,0 ,( 2222 °=°=== ieaaO geo  ( 2) 

 
for the target orbit with ageo = 42164.170 km. These two orbits are connected by the transfer orbit  Ot, 

 

) , , , , ,( jtttttt fieaO ωΩ=  ( 3) 

 
through the application of the two impulses ∆∆∆∆Vj  at the impulse points Ij with true anomalies fj (j = 1, 2).  
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Figure 1: General transfer geometry. 

 

 

The transfer is described by the means of two coordinate systems. First, the inertial system (C, γ, L, 

North) is used, centered at the center of the Earth C (Fig. 1). For the sake of clarity, the corresponding 

system of unit vectors (C, x, y, z) is not shown in Fig. 1. The spacecraft and the impulse points Ij can 

now be located in inertial space in terms of their right ascensions αj and declinations δj (j = 1, 2). Along 

the transfer ellipse Ot, we also express the two impulses ∆Vj in the rotating coordinate system (M, S, T, 

W) as shown in Fig. 2. Here M is at the origin of the vehicle and S points along the direction of the 

position vector R, positive outwards. The vector T describes the circumferential direction of the 

satellite in the plane of Ot and W complements the right-handed system.  

III Method 

The goal is to design a recovery mission in the case of a non-nominal injection of the spacecraft. We 

define an injection to be non-nominal (or non-optimal) if at least one of the following two 

complications is encountered. First, the problem of a significant underperformance of the launch 

vehicle may occur. We define this to be the case whenever the semi-major axis a1 of the injection orbit 

O1 differs from its nominal value by more than a 3-sigma standard deviation. Second, one may have to 

deal with the situation where the node shift ω1 is such that the Simplified Nodal Transfer (SNT) 

strategy (see e.g., [9], [12], [13]) is far from optimum and thus not applicable. We define this to be the 

case whenever ω1 > 20°. The remaining injection orbit parameters e1, i1 and Ω1 are free parameters of 

the study. 

The method has two main steps: 

- Step 1: search for recovery scenarios to be used as initial guesses for Step 2 (see Section III.1) 

- Step 2: practical development of a realistic and complete recovery mission design (see Section 

III.2) 
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Figure 2:  Transfer orbit geometry 

 

 

 

III.1 Step 1: Search for recovery scenarios 

 

Following three complementary methods are used as a part of the first step: (1) p-optimized impulse 

function contouring (see Section III.1.1), (2) a numerical impulse function minimization (see Section 

III.1.2) and (3) the solutions to the switching equations (see Section III.1.3). These methods search for 

minimum-fuel solutions to perform the transfer to GEO and then evaluate the feasibility of a mission 

recovery with the on-board propellant of the spacecraft. The search is simplified by following two 

assumptions. First, the methods suppose that the transfer is realized by two infinite-thrust impulses. 

Second, they assume that the motion be entirely Keplerian i.e. Earth gravity and third-body orbital 

perturbations are neglected. Under these assumptions, the general problem of a minimum-fuel open-

time transfer between two elliptical orbits comprises 8 control parameters (see e.g., [1], [6]). These are 

the 6 ∆Vj impulse components and the 2 true anomalies fj of the impulses in the transfer orbit (j = 1, 2).  

We have 5 constraints on the final orbit, namely a2, e2, i2, Ω2, ω2. In consequence, there are 3 remaining 

free parameters left for the optimization of the total propellant expenditure (see e.g., [2], [6], [8], [9]) 

 

∆Vtot = |∆V1| + |∆V2| . (4) 
 

The choice of these independent variables is determined by the optimization method one aims to 

implement.  In this work we determine minimum ∆Vtot transfers by using the unknowns  

 

X
















=

tp

2

1

α

θ

, 

 

(5) 

 

where θ1 is the true anomaly of the first impulse in the injection orbit, α2  is the right ascension of the 

second impulse on GEO and pt is the parameter of the transfer orbit. These variables simplify the 

structure of the impulse function of Eq. (4) and avoid several undesirable discontinuities that are 

present in other formulations (see e.g., [2]). 
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III.1.1 P-optimization of the impulse function 

 

We examine the behavior of the impulse function ∆Vtot by using a technique introduced by McCue [2]. 

The method consists in computing the magnitude of the total velocity increment as a function of the 

right ascensions α1 and α2 of the two impulses. A minimization of ∆Vtot for each couple (α1, α2) is then 

performed with respect to the third variable pt, by implementing the so-called p-optimization technique. 

It is straightforward to obtain α1 by using the elements of O1 (Eq. [1]) in conjunction with the true 

anomaly θ1 given by Eq. (5). The contour-map of the impulse function is then computed by using the 

unknowns (α1, α2, pt). We refer to [2] for a complete formulation of the approach. For an explicit 

statement of the impulse function we refer to Section III.1.2, where ∆Vtot is computed in a slightly 

different manner as in [2]. 

Figures 3-8 show the shape of the impulse function for a set of different injection orbits O1. Figure 3 

shows the ∆Vtot needed for the geostationary transfer in the case of an injection orbit p1= 22000 km, e1 

= 0°, i1= 0°, Ω1 = 0°, ω1 = 0°. The contour lines agree with the result obtained in Figure 3(a) of [2]. A 

symmetry about the α1 – α2 = 0° plane is apparent and the Hohmann transfer would correspond to the 

straight line (α1, α1 + 180°, pt) with an optimal pt  of about 29000 km. We note that the method 

encounters a singularity when the transfer angle ∆ ≡ 180°, calling for a different approach. Throughout 

Figs. 4-8 we introduce eccentricity, inclination and node shift to the orbital elements of O1. We recover 

the well-known shape of the impulse function for each of these initial configurations. For instance, 

artifacts such as the appearance of an ‘inclination wall’ are clearly recognizable in Figs. 5-8 and agree 

with the shape of the contours obtained in Figure 11 of [2]. 

 
III.1.2 Numerical minimization of the impulse function 

 

The p-optimized contour plots described in Section III.1.1 allow to visualize the shape of the impulse 

function ∆Vtot of Eq. (4) for a given injection orbit. However, no accurate recovery scenario can be 

derived from this technique since the result is only optimized with respect to one variable, namely pt. In 

this section we propose to numerically optimize the transfer with respect to the three variables X(θ1, α2, 

pt) (see Eq. [5]). We compute the transfer orbit parameters and derive an explicit form of the impulse 

function with respect to X  by simple geometric arguments ([14]). 

The radius of the first impulse can be written as 

 

)cos1(

)1(

11

2

11
1

θ⋅+

−
=

e

ea
R  

 

(6) 

 

and the corresponding position vector is 

 

R1

















+⋅⋅

+⋅⋅Ω++⋅Ω⋅

+⋅⋅Ω−+⋅Ω⋅

=

)sin(sin

)]sin(coscos)cos([sin

)]sin(cossin)cos([cos

1111

11111111

11111111

θω

θωθω

θωθω

iR
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(7) 
 

The position vector of the second impulse is expressed by 

 

R2

















⋅

⋅

=

0
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2
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(8) 

 

and the pole vector defining the transfer orbit plane is 

 

w = R1×R2 / || R1×R2 || . (9) 
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Figure 3: Contour-map of the impulse function ∆Vtot 

(km/s) necessary to reach GEO. Initial orbit O1: p1= 

22000 km, e1 = 0°, i1= 0°, Ω1 = 0°, ω1 = 0°. 
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Figure 4: Contour-map of impulse function ∆Vtot 

(km/s) necessary to reach GEO. Initial orbit O1: p1= 

22000 km, e1 = 0.25°, i1= 0°, Ω1 = 0°, ω1 = 0°. 
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Figure 5: Contour-map of impulse function ∆Vtot 

(km/s) necessary to reach GEO. Initial orbit O1: p1= 

22000 km, e1 = 0°, i1= 20°, Ω1 = 0°, ω1 = 0°. 
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Figure 6: Contour-map of impulse function ∆Vtot 

(km/s) necessary to reach GEO. Initial orbit O1: p1= 

22000 km, e1 = 0.5°, i1= 25°, Ω1 = 0°, ω1 = 0°. 
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Figure 7: Contour-map of impulse function ∆Vtot 

(km/s) necessary to reach GEO. Initial orbit O1: p1= 

22000 km, e1 = 0.5°, i1= 25°, Ω1 = 0°, ω1 = 60°. 
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Figure 8: Contour-map of impulse function ∆Vtot 

(km/s) necessary to reach GEO. Initial orbit O1: p1= 

22000 km, e1 = 0.5°, i1= 25°, Ω1 = 0°, ω1 = 150°. 
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The inclination it and the right ascension of the ascending node Ωt of the transfer orbit are then 
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(10) 

 

and the transfer angle ∆ is obtained by  

 

∆ = 1cos− (R1/R1 · R2/R2) . (11) 

 

Finally, the true anomalies of the impulses in the transfer orbit are given by the equations 
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(12) 

 

and the argument of perigee is either ωt = -f2 if the intersection with GEO is at an ascending node, or 

ωt = π - f2 if the intersection with GEO is at a descending node. The transfer orbit eccentricity is then 

 

2211
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(13) 

 

The remaining parameter at = pt / (1 - et
2
) is now readily available and we obtain a formulation of 

the impulse function of Eq. (4) with respect to the unknowns X. In particular, we have (see e.g., [9]) 
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(14) 
and 
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An initial guess Xinit(θ1 init, α2 init, pt init) being provided, we now search for a minimum of the impulse 

function given by Eqs. (4), (14) and (15). Different values of θ1 init and α2 init are used, spread over a 

mesh encompassing values between 0° and 360°. We also constrain pt init to stay within the prescribed 

bounds for an elliptical transfer orbit ([2]) 

 

,
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(16) 
 

and do not consider the case of hyperbolic transfer orbits. We use a quasi-Newton algorithm for finding 

local minima, as proposed by [15]. The practical implementation is performed by invoking the NAG 

minimization routine E04JYF ([16]). If the obtained minimum underbids a given user-supplied 

threshold (in terms of km/s) then the corresponding transfer orbit Ot and the thrust vectors ∆Vj (j = 1, 2) 

are retained. The solution is then subjected to further operational consistency tests, presented in Section 

III.2. In the successful case the transfer is finally accepted as a potential mission recovery scenario. 

 
III.1.3 Solution of the switching equations 

 

The Lawden ‘primer vector’ formalism ([1], [9]) allows to express the conditions for an optimal bi-

impulsive transfer between a pair of elliptical orbits in the form of a set of 3 nonlinear algebraic 

equations,  

 









=++−−−

=++−−−

−+=−+

                                        .     0))((

                                                  0))((

                                                                      )1()1(

22

2

2222222222

11

2

1111111111

22221111

WKWyTSJTSqTy

WKWyTSJTSqTy

TqJqTqJq

 

 
 

 
 

                  (17) 

where 

 

. sin/)cos (

sin/)cos (

sin/)cos (

sin/)cos (

 21     , cos 1     ,sin y     ,cos 

11222

11221

12

12

j

∆−∆=

∆∆−=

∆−∆=

∆∆−=

=+===

WqWqK

WqWqK

SSJ

SSJ

,  j feqfefex

2

1

jtjjtjtj

 

 

 

 

 

 

 

                             (18) 

 

The switching equations of Eq. (17) provide an analytical means for the optimization of the unknown 

vector X(θ1, α2, pt). The primer vector  
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is the unit vector in the direction of the thrust and satisfies  

 

Pj |∆∆∆∆Vj | = ∆∆∆∆Vj ,    j = 1, 2                                                                  (20) 

1222 =++ jjj WTS  ,    j = 1, 2.                                                                   (21) 

 

An optimal solution to Eq. (17) must also satisfy the additional conditions (see Equations (8) and (11) 

in [9]) 
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q1T1 ≥ q2T2                                                                                (22) 

S1

2 + J1

2 = S2

2 + J2

2 ≤ 0.25.                                                                   (23) 

 

The first condition of Eq. (22) checks for the correct sequence of the impulses i.e. guarantees the first 

impulse to precede the second one. Equation (23) constrains the elevation angle of the optimal impulses 

to be less than 30° from the local horizontal plane. We solve Eqs. (17) by using the Powell hybrid 

method for the root finding of a set of nonlinear equations ([17]). The practical implementation is 

performed by the NAG routine C05NDF ([16]). Once more, the solution transfer orbit Ot and the thrust 

vectors ∆Vj (j = 1, 2) are retained and subjected to further operational consistency tests as presented in 

Section III.2. 

 

III.2 Step 2: Practical recovery mission design 

 
The results from Step 1 are used to develop a complete mission recovery design including multiple 

finite-thrust burns as well as third-body perturbations. This is done by using the mission design and 

optimization software  PANTHEON ([13]).  

Realistic LAE thrust values and burn duration constraints generally call for several LAE maneuvers, 

typically 4 or more. The transition from the two instantaneous infinite-thrust impulses used in Step 1 to 

the case of multiple LAE burns requires an additional optimization of the burn parameters. For instance, 

the burn locations (in terms of their right ascensions and longitudes) need to be readjusted and the exact 

duration of each LAE ignition needs to be computed. This optimization is performed as described in §5 

of [13].  

The PANTHEON software then numerically propagates the satellite from the non-nominal injection 

orbit O1 to GEO. This propagation is performed by using a Runge-Kutta-Nystroem scheme as 

described in [13] and [18]. In contrast to the Keplerian motion assumed in Step 1, the orbit is now 

accurately modeled, taking into account for following perturbations: J2 and J4 coefficients of the 

Earth’s gravitational potential, Earth’s precession and nutation, the gravitational influence of the Sun 

and the Moon and solar radiation pressure. Finally, the software also considers additional mission 

operational constraints such as e.g.: 

- the requirement of ground station visibility at the instants of each LAE burn ignition 

- the necessity to avoid interferences with other operating geostationary satellites, generated by the 

use of the same frequency band for commanding, telemetry and payload  

- various constraints on spacecraft attitude 

 

IV Case Study: Premature Abort of the Second Burn of a Re-ignitable Upper 

Rocket Stage Engine 

The approach developed in Section III is illustrated by simulating a realistic transfer orbit mission 

contingency scenario. We start from the assumption that, at the beginning, a standard geosynchronous 

transfer orbit strategy has been targeted. The launch is performed from Kennedy Space Center, Fl, 

USA. We use three ground stations for permanent visibility of the spacecraft: Luxembourg 1 (L1), 

Australia 1 (A1) and South America 1 (SA1). The nominal injection parameters after the successful 

completion of the upper rocket stage second burn are shown in Table 1 and an illustration of the 

situation is depicted in the scheme of Fig. 9. 

 

 

Table 1: Consequences on the injection orbit O1 of a 60 s premature abort of the upper rocket 

stage engine. The simulated injection GMT time is 2007/04/28, 4:28:10. 

 a1 (km) e1 (deg) i1 (deg) ΩΩΩΩ1111 ( ( ( (deg) ωωωω1111 ( ( ( (deg) ν1 (deg) 

nominal 

mission 

27375.558 0.540 23.972 9.006 180.003 180.064 

60 s 

premature 

upper stage 

abort  

19720.320 0.572 25.039 2.244 150.823 144.248 
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Figure 9: GTO injection of a spacecraft by a re-ignitable upper rocket stage engine (courtesy: 

Atlas Launch System Mission’s Planner’s Guide, 1998, ILS International Launch Services Inc. 

and Lockheed Martin Corporation) 

 

 
We now simulate the case of a 60 s premature abort of the second burn of the upper stage of the rocket. 

The impact on injection orbit parameters is shown in Table 1. The semi-major axis a1 is about 30% 

lower than in the nominal situation and the inclination i1 is larger by about 1°. In addition, a 

considerable node shift of about 30° is introduced by the failure of the rocket. 

In what follows, we analyze the possibility of a mission recovery with the on-board fuel of the satellite. 

This is done by applying our two steps methodology. In Section IV.1 we study the outcome of the Step 

1 techniques described in Section III.1 and test these solutions against some first mission operational 

constraints. Step 2 is then applied in Section IV.2 to obtain a realistic recovery design for the 60 s 

upper stage shortage by taking into account multiple finite-thrust burns, third-body orbital perturbations 

as well as various additional operational constraints. Section IV.3 gives supplementary results. 

 

IV.1 Selection of the recovery strategy 
 

Figure 10 shows the p-optimized contour plots and the solution of the switching equations for the non-

nominal injection orbit O1 shown in Table 1. The four solutions to Eqs. (17) are shown by circular, 

square, triangular and diamond markers, respectively. Every solution satisfies a consistency test 

propagation to GEO. This test propagation consists of two infinite-thrust impulses applied in a 

Keplerian gravitational potential, at the right ascensions indicated by Fig. 10. The conditions for 

acceptance of the test propagation are such that the final orbit semi-major axis a2 be in the interval 

[42050:42300] km and that e2 < 0.05° and i2 < 0.5°. 

We identify two solutions of the switching equations that coincide with the location of the deepest 

valleys of the impulse function as obtained by the p-optimization method. They can be found in the 

lower left quadrant of Fig. 10 at (α1, α2, pt) = (-93.75°, -2.35°, 16506.920 km) and (α1, α2, pt) = (-12.32° 

,-133.75°, 32815.721 km). The propellant expenditure is ∆Vtot = 2.107 km/s and ∆Vtot = 2.292 km/s, 

respectively. For these two solutions, the optimality conditions of Eqs. (22) and (23) are fulfilled, 

whereas the remaining two solutions in the upper right quadrant do not verify these equations.  

The different markers for each of the four points are used to indicate whether several operational 

constraints on the satellite are fulfilled at the instant of the burns and whether the transfer is of ‘short’ 

or ‘long’ type. At the impulsive ignitions j (j = 1, 2) of the satellite’s liquid apogee engine (hereafter 

LAE) thermal, power and sensor constraints are such that the angle φj between the spin axis of the 

spacecraft and the Sun needs to stay within a prescribed interval [φj min, φj max]. We use the values φj min = 
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50° and φj max = 100°. The circular and square markers indicate the transfers where both φj lie in this 

interval. A short transfer has a transfer angle ∆ < 180° and for a long transfer ∆ > 180°. 
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Figure 10: Simulation of a 60 s premature breakdown of the second burn of a re-ignitable upper 

rocket stage engine.  Contour-map of the impulse function ∆Vtot to reach GEO and switching 

equations solution. The right ascensions α1 and α2 indicate the location of the two infinite-thrust 

impulses in inertial space. 
 

Figure 11 shows the same plot but for the results of the minimization method. We observe a broad 

agreement between the solutions of the switching equations of Fig. 10 and the outcome of the 

numerical impulse function minimization of Fig. 11. A number of minima can be found around the 

locations of the four solutions of the switching equations. In the valleys (-93.75°, -2.35°) and (-12.32° 

,-133.75°) the data points are densely congested but do not coincide. We explain this finding by the 

long and narrow shape of these valleys, possibly containing several distinct minima. Numerical 

artifacts of the minimization method may also be at the origin of the scattering of the results in these 

regions. Apart from the minima close to the solutions of the switching equations we also obtain 

additional results. For example, the isolated minimum at (2.24°,-177.76°) has ∆Vtot = 2.842 km/s. The 

numerical minimization of the impulse function provides thus complementary information to the 

switching equations outcome. The legend to Fig. 11 is similar to the one of Fig. 10. 

 

IV.2 Practical mission recovery 

 

We use the minimum-fuel solution obtained in IV.1 that satisfies the constraints on the sun aspect 

angles φj , i.e. the optimum of ∆Vtot = 2.107 km/s at (α1, α2, pt) = (-93.75°, -2.35°, 16506.920 km). Step 

2 of the method (see Section III.2) is now applied to develop a complete mission recovery scenario 

including multiple finite-thrust burns as well as third-body perturbations. We consider a model satellite 

with a re-ignitable on-board engine using liquid bipropellant. The specifications of our spacecraft are 

shown in Table 2. Our final mission recovery design to GEO comprises 7 burns and is summarized in 

Table 3 and illustrated by Fig. 12. 
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Figure 11: : Simulation of a 60 s premature breakdown of the second burn of a re-ignitable upper 

rocket stage engine.  Contour-map of the impulse function ∆Vtot to reach GEO and corresponding 

local minima. The right ascensions α1 and α2 indicate the location of the two infinite-thrust 

impulses in inertial space. 
 

 

 
Table 2: Specifications for the model satellite used for the mission recovery 

Isp (s) F (N) Initial wet mass (kg) Mass flow rate 

(kg/s) 

Maximum burn 

duration (s) 

320 450 4250 0.15 3000 

Nominal 

GTO ∆Vtot 

(km/s) 

Nominal in-orbit 

lifetime (yrs) 

Consumption for GEO 

stationkeeping 

manoeuvers (km/s /yr) 

Consumption 

in inclined 

orbit (km/s /yr) 

Total 

propellant 

aboard (km/s) 

1.444 15 0.05 0.0025 1.444 + 

(15·0.05) ≈ 2.2 

 

IV.3 Overall results 

 

In Fig. 13 we show the total propellant expenditure ∆Vtot of the recovery as a function of the burn 

shortage of the upper stage. For comparison we also plot the ∆V necessary for the nominal GTO 

mission (1.444 km/s, see Table 2) plus the ∆V the upper stage was not able to consume due to the abort. 

The total propellant aboard our model satellite is about 2.2 km/s (see Table 2). A 60 s premature abort 

of the upper rocket stage, as described in Sections IV.2 and IV.3, produces thus an injection orbit on 

the limit of being recoverable by our model satellite. 

Figure 14 shows the remaining satellite lifetime after a successful recovery as a function of the upper 

stage burn shortage. The lower line (in green) indicates the lifetime left on GEO assuming that a year 

of North-South and East-West stationkeeping maneuvers consume about 0.05 km/s (Table 2). The 

upper line (in orange) indicates the remaining spacecraft lifetime in inclined orbit i.e. in the case where  
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Table 3: Mission recovery strategy for the 60 s premature breakdown of an upper stage rocket 

engine. Each row shows the transfer orbit parameters obtained after performing burn n (n = 

1,…,7). The first column holds the components of the thrust vector in the Earth-centered inertial 

coordinate system. The total propellant ∆Vtot used is approximately 2.107 km/s. 

 
Orbit 

(and 

approximate 

∆Vxyz [km/s]) 

Epoch 

yr/mth/day 

hr:min:sec 

a 

(km) 

e 

(deg) 

i 

(deg) 

Ω (deg) ω (deg) ν 

(deg) 

LAE 

burn 

duration 

(s) 

injection 

orbit 

2007/04/21 

4:28:10 

19720.320 0.572 25.039 2.244 150.825 144.248 / 

after burn #1 

(0.293, -0.146, 

0.016) 

2007/04/21 

9:42:49 

23287.850 0.589 25.069 359.572 165.463 69.357 3000.0 

after burn #2 

(0.182, -0.085, 

0.035) 

2007/04/21 

19:28:21 

26458.850 0.616 24.944 357.723 174.389 61.406 1753.7 

after burn #3 

(0..102, 0.377, -

0.229) 

2007/04/22 

1:16:43 

28487.898 0.495 15.286 356.687 174.854 261.962 3000.0 

after burn #4 

(0.022, 0.088,  -

0.053) 

2007/04/23 

3:55:30 

29164.159 0.461 13.358 356.524 175.148 354.380 744.0 

after burn #5 

(0.077, 0.301,  -

0.184) 

2007/04/24 

7:13:41 

32110.017 0.324 7.661 356.274 175.367 201.640 2344.3 

after burn #6 

(0.102, 0.407,  -

0.249) 

2007/04/25 

14:58:15 

38688.268 0.098 1.719 354.590 177.197 333.804 2735.4 

after burn #7 

(0.034, 0.142,  -

0.087) 

2007/04/27 

9:18:51 

42164.170 0.006 0.058 280.825 256.1344 40.943 851.8 

Figure 12: Practical mission recovery for the 60 s premature breakdown of an upper rocket stage 

engine. The circles (in red) indicate the longitude and latitude of burn n (n = 1,…,7) (see also 

Table 3). The arrows (in green) mark the longitude and latitude of the used ground stations. 
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inclination control is not performed any more. The dashed lines show a linear interpolation between the 

data point at 60 s and the limit value of about 77 s, for which the satellite is not recoverable any more 

with its on-board fuel. We note that for an upper stage abort of half a minute, our model satellite can 

still spend about half of its nominal lifetime on GEO. For a 1 minute premature abort, the satellite is 

capable to spend more than 30 yrs in inclined orbit. In the case of a 1.5 minutes abort, the satellite is 

not capable to reach GEO with its on-board propellant (see hashed zone [in red] on Fig. 14). 
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Figure 13: Dashed (line in blue): total velocity increment ∆Vtot needed to reach GEO vs upper 

stage second burn shortage. Solid line: ∆V necessary for the nominal GTO mission plus the ∆V 

the upper stage was not able to consume due to the abort. 

 

V Conclusion 

We analyzed the possibility to save a geostationary transfer orbit mission in distress with the on-board 

propellant of the spacecraft. As part of our methodology, we searched first for recovery simplified 

scenarios by implementing three different methods, originally developed in the limit of two infinite-

thrust impulses applied in a Keplerian gravitational potential: (1) p-optimized impulse function 

contouring, (2) numerical minimization of the impulse function and (3) the solution of the switching 

equations. We show these methods to be applicable in realistic GTO contingency cases and to provide 

an initial guess for a practical design of the recovery (Figs. 10-11). This practical design takes into 

account for multiple finite-thrust burns of the satellite’s LAE, third-body orbital perturbations and 

various mission operational constraints such as e.g., Sun aspect angles or ground station visibility (Fig. 

12).  

We validated the approach by presenting a test case where we studied the possibility to recover from a 

premature abort of the second burn of a re-ignitable upper rocket stage engine. We determined the 

remaining satellite lifetime on GEO after successful recovery as a function of the burn shortage of the 

launch vehicle (Fig. 14). We also addressed the question of potentially re-designing the entire mission 
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Figure 14: Remaining satellite lifetime vs upper stage second burn shortage. The lower line (in 

green) shows the remaining lifetime on GEO assuming a nominal lifetime of 15 years and a 

consumption of 0.05 km/s per year for stationkeeping maneuvers (see also Table 2). The upper 

line in orange indicates the remaining lifetime assuming that the spacecraft is put on inclined 

orbit immediately after recovery i.e. no North-South stationkeeping is performed. The hashed 

zone in red shows the region where the mission is not recoverable with the on-board propellant of 

the spacecraft. 

 

 
after the successful recovery by computing the lifetime of the satellite in inclined orbit, i.e. in the case 

where inclination control is not performed any more. This option may be of particular interest in the 

case where the remaining GEO lifetime is small e.g., less than 1 yr. In these conditions, the lifetime in 

inclined orbit is still considerable for our model satellite (> 30 yrs). Finally, we also identify the regime 

where no recovery is possible with the on-board fuel of the spacecraft (hashed zone on Fig. 14). In this 

case, alternate recovery strategies must be considered or the spacecraft must be de-orbited. 

Further GTO contingency cases were analyzed, but not shown in this work for the sake of conciseness. 

We simulated the non-nominal behavior of several re-ignitable and non re-ignitable launch vehicles 

and computed again the minimum propellant needed for a recovery. For more than 95% of the studied 

injection orbits, our three methods converged to results much alike the ones shown in Section IV.2 

(Figs. 10 and 11). Although the magnitudes of the isocontours and the minimum velocity increment 

∆Vtot needed to perform the transfer varied from case to case (depending on the actual injection orbit 

parameters), the switching equations solutions and the numerical minimization approach converged to 

the same transfer orbits. In some cases however, no elliptical transfer orbit could be obtained that 

verified the switching equations and the optimality conditions of Eqs. (22) and (23). Some minima 

retrieved by the numerical impulse function minimization, on the other hand, were found to be located 

as usual within the contour valleys. These cases showed the importance of implementing the three 

complementary techniques to search for elliptical transfer orbits. Finally, the subsequent design of a 

realizable recovery scenario as shown in IV.3 (Table 3 and Fig. 12) ultimately depends on the amount 

of propellant aboard the spacecraft and on the nature and the severity of the hazard encountered during 

launch.  
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