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Precision mean element (PME) satellite theories play a key role 

in orbit dynamics analyses.  These theories employ: 
 

• nonsingular orbital elements 

• comprehensive force models 

• Generalized Method of Averaging 

• Numerical interpolation concepts 

 
The Draper Semianalytical Satellite Theory (DSST) (Refs. 1 - 6), 

whose development was led by the author, and the independently-
developed Universal Semianalytical Method (USM) (Ref. 7) are examples 
of such theories.  These theories provide the capability to tailor the 
force modeling to meet the desired computational speed vs. accuracy 
trade-off.  The flexibility of such theories is demonstrated by their 
ability to include complicated atmosphere density models and spacecraft 
models in the perturbation theory context.  The value of high speed 
satellite theories, in this era of computational plenty, is that they 
allow new ways of looking at astrodynamical problems such as orbit 
design (Refs. 8, 9) and atmosphere density updating (Refs. 10, 11). 

 
In the mid to late-1980’s, the geodynamics community led the 

development of very precise geopotential models such as GEM T2 and GEM 
T3 (Ref. 12), and with the subsequent analysis of the TOPEX flight 
data, JGM-2 and JGM-3 (Ref. 13).  These were high degree and order 
geopotentials, at least 50 x 50.  In 1993, the DSST implementation in 
the GTDS program was extended to include the 50 x 50 geopotential 
models (Ref. 14).  The 50 x 50 geopotential, J2000 integration 
coordinate system, and solid Earth tide capabilities were integrated in 
GTDS by Scott Carter (Ref. 15).  This capability demonstrated 1 m 
accuracy versus the TOPEX Precise Orbit Ephemerides.  Subsequently the 
DSST Standalone program was also extended to include high degree and 
order geopotential models (Ref. 5).  More recently GTDS has been hosted 
in the Linux PC environment.  However, all of these efforts have been 
limited to modeling the motion of an artificial Earth satellite.  They 
did not consider the additional complexities associated with lunar, 
planetary, or other natural satellite orbiters.  Such complexities 
include: 

 

• additional coordinate systems (associated with the direction of 
the north pole of rotation and the prime meridian of the new 
central bodies) (Ref. 16) 

• normalized gravity model coefficients (desirable for high degree 
and order fields) (Ref. 17) 

• indirect oblateness 
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• generation of large degree and order spherical harmonics 
(necessitated by the mass distributions of the central bodies) 
(Ref. 18) 

• different central body rotation rates and their impact on the 
partitioning of short periodic and mean element perturbations 
(Ref. 19) 

• complications introduced because the J2 harmonic is no longer 
dominant as it is for the Earth spherical harmonic field 

• different atmosphere density models 

 
The production of high degree and order gravity models for 

central bodies other than the Earth is now a reality.  Consider the 165 
x 165 model for the lunar gravity field (Ref. 20), the 80 x 80 model 
for the Mars gravity field (Ref. 21), and the 180 x 180 model for the 
Venus gravity field (Ref. 22).  The existence of these high degree and 
order fields for central bodies other than the Earth motivates the 
extension of the DSST to deal with arbitrary central bodies. 

 
The emphasis in this paper is on orbits with the Moon and Mars as 

the central body. The results include modifications to the DSST 
algorithms and initial numerical results. 
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